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Introduction: Single sided deafness (SSD) results in profound cortical 
reorganization that presents clinically with a significant impact on sound 
localization and speech comprehension. Cochlear implantation (CI) has been 
approved for two manufacturers’ devices in the United States to restore bilateral 
function in SSD patients with up to 10  years of auditory deprivation. However, there 
is great variability in auditory performance and it remains unclear how auditory 
deprivation affects CI benefits within this 10-year window. This prospective study 
explores how measured auditory performance relates to real-world experience 
and device use in a cohort of SSD-CI subjects who have between 0 and 10 years 
of auditory deprivation.

Methods: Subjects were assessed before implantation and 3-, 6-, and 12-months 
post-CI activation via Consonant-Nucleus-Consonant (CNC) word recognition 
and Arizona Biomedical Institute (AzBio) sentence recognition in varying 
spatial speech and noise presentations that simulate head shadow, squelch, 
and summation effects (S0N0, SSSDNNH, SNHNSSD; 0  =  front, SSD  =  impacted ear, 
NH  =  normal hearing ear). Patient-centered assessments were performed using 
Tinnitus Handicap Inventory (THI), Spatial Hearing Questionnaire (SHQ), and 
Health Utility Index Mark 3 (HUI3). Device use data was acquired from manufacturer 
software. Further subgroup analysis was performed on data stratified by <5  years 
and 5–10  years duration of deafness.

Results: In the SSD ear, median (IQR) CNC word scores pre-implant and at 3-, 6-, 
and 12-months post-implant were 0% (0–0%), 24% (8–44%), 28% (4–44%), and 18% 
(7–33%), respectively. At 6 months post-activation, AzBio scores in S0N0 and SSSDNNH 
configurations (n = 25) demonstrated statistically significant increases in performance 
by 5% (p = 0.03) and 20% (p = 0.005), respectively. The median HUI3 score was 0.56 
pre-implant, lower than scores for common conditions such as anxiety (0.68) and 
diabetes (0.77), and comparable to stroke (0.58). Scores improved to 0.83 (0.71–0.91) 
by 3  months post-activation. These audiologic and subjective benefits were observed 
even in patients with longer durations of deafness.

Discussion: By merging CI-associated changes in objective and patient-centered 
measures of auditory function, our findings implicate central mechanisms of 
auditory compensation and adaptation critical in auditory performance after 
SSD-CI and quantify the extent to which they affect the real-world experience 
reported by individuals.
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Introduction

Single-sided deafness (SSD) refers to profound unilateral 
sensorineural hearing loss, in which patients exhibit significantly 
poorer hearing thresholds in one ear with normal or near-normal 
hearing in the contralateral ear (Snapp and Ausili, 2020). Loss of 
access to binaural hearing cues including interaural timing differences 
(ITDs) and interaural level differences (ILDs) leads to deficits 
associated with the head shadow effect (HSE), squelch, and 
summation (Bakal et al., 2021). The HSE refers to the ability of the 
head to serve as an acoustic barrier as it blocks sound waves traveling 
toward the contralateral ear relative to the source of the sound. 
Squelch results from the central processing of different amplitudes, 
frequencies, and timing as sound reaches each ear. Lastly, summation 
amplifies the perception of sound as an auditory stimulus reaches both 
ears (Mertens et al., 2015). Loss of these binaural cues is associated 
with changes in central auditory processing that together clinically 
manifest as impairments in speech discrimination, hearing in noise, 
and sound localization in SSD patients (Tillein et al., 2016; Vannson 
et al., 2020).

Cochlear implantation has emerged as an important tool in the 
clinical treatment of SSD, with demonstrated benefit for hearing, 
tinnitus, and quality of life (Van de Heyning et al., 2008; Arndt et al., 
2017; Daher et al., 2023). In contrast to traditional strategies such as 
Contralateral Routing of Signal (CROS) or Osseointegrated Hearing 
Aids (OHA), a cochlear implant (CI) is the only device able to restore 
input to the deafened ear, and therefore provide some degree of 
bilateral function (Ericson et al., 1988; Hagr, 2007). Consequently, 
multiple studies have demonstrated improved hearing in noise and 
sound localization in SSD CI subjects (Firszt et al., 2012; Hansen et al., 
2013; Litovsky et  al., 2019; Speck et  al., 2021). Additional 
improvements to tinnitus and quality of life have also been observed, 
though quality of life assessment methods in the literature are highly 
variable (Benítez et al., 2021; Lindquist et al., 2023). There is also a 
paucity of data that connects auditory assessments to the experience 
of SSD CI subjects, which represents the cumulative effects of central 
auditory mechanisms of compensation and adaptation, and 
integration of CI input, in real-world settings. Such patient-centered 
measures offer valuable insight into the real-world impact of SSD and 
associated CI use, as well as an emerging focus in biomedicine 
research (Tyler et al., 2009).

Due to atrophy of spiral ganglion neurons and cortical 
reorganization that occur with longer durations of deafness, the length 
of auditory deprivation prior to CI can have important impacts on 
auditory outcomes achieved after CI. This has been extensively studied 
in subjects with bilateral hearing loss (Shibata et al., 2011; Anderson 
et al., 2017; Grégoire et al., 2022). SSD differs from bilateral hearing 
loss due to intact acoustic input from the normal hearing ear that 
shapes cortical reorganization after onset of deafness as well as 
bimodal integration after CI (Han et al., 2021; Karoui et al., 2023). 
Clinically, a duration of deafness of 10 years is commonly considered 

the threshold at which individuals are less likely to benefit from CI, 
although some patients have obtained benefit with even longer 
durations of auditory deprivation (Muigg et al., 2020; Bernhard et al., 
2021; Nassiri et al., 2022). United States FDA criteria for CI in SSD 
also limit patients to less than 10 years duration of deafness. However, 
spiral ganglion neuron atrophy and changes in central auditory 
processes occur continuously after onset of deafness, and the extent to 
which length of auditory deprivation can change auditory performance 
with CI for subjects within the current clinical window of 10-year 
duration of deafness is unclear (Nassiri et al., 2022).

Due to small number of subjects, limited scopes of assessment, 
and heterogeneity in both the audiologic and quality-of-life 
assessments performed, CI-associated audiologic outcomes and 
impact to quality of life for SSD subjects remain incompletely 
understood. Additionally, as CI benefit is highly variable between 
individuals, more research exploring factors that may impact CI 
outcomes, such as duration of deafness, is required. We present data 
from a prospective observational study of a population of SSD subjects 
with varying durations of auditory deprivation before and after 
CI. We hypothesize improvements in performance across audiologic 
and patient-centered measures following implantation. Additionally, 
we hypothesize a correlation between the duration of deafness and 
outcomes (both audiometric and patient-reported) in our SSD-CI 
patient population. By linking data from audiological testing, patient-
centered quality of life measures, and real-world device use, this study 
investigates how auditory input provided by the CI translates into real-
world experience for subjects, and the impact of short (<5 years) to 
medium (5–10 years) durations of deafness, with findings relevant for 
further investigations of neuroscientific mechanisms that underlie 
compensation and adaptation after SSD and bimodal integration 
after CI.

Methods

Patient recruitment

This was a prospective cohort observational study (NCT # 
05052944) of patients undergoing CI for SSD recruited from the Johns 
Hopkins Cochlear Implant Center between January 2020 and August 
2022 on a rolling basis. Data analysis was performed in January 2023. 
Inclusion criteria for study participants were patients diagnosed with 
SSD who met FDA candidacy criteria for CI in SSD 
(Supplementary Table 1), including audiometric pure tone average 
(PTA) of >80 dB HL at 500, 1000, 2000, and 4,000 Hz in the deafened 
ear and ≤ 30 dB HL in the contralateral ear, score of ≤5% on a 
developmentally-appropriate monosyllabic word list, and at least 
1-month trial of a CROS hearing aid without subjective benefit. 
Patients who failed to meet these criteria, declined consent for data 
collection, were unable to perform audiologic tasks (e.g., non-English 
speaking patients) or were medically or surgically contraindicated for 
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CI surgery were excluded from the study. This study was approved by 
the Johns Hopkins School of Medicine Institutional Review Board 
(IRB00230644), and informed consent was obtained prior 
to enrollment.

Data collection

Clinical and demographic data were compiled in a study database. 
Duration of deafness was extracted from medical charts. Speech 
perception performance of the implanted ear and patient-centered 
outcome measures were performed at pre-implant evaluation, and 3-, 
6-, and 12-months following CI activation. At each time point, 
audiologic function of the implanted ear was evaluated using 
consonant-nucleus-consonant (CNC) words and Arizona Biomedical 
Institute (AzBio) sentence tests by an experienced CI audiologist 
during routine clinic visits. Word and sentence lists were chosen at 
random from prespecified sets at each visit. CNC word recognition in 
the implanted ear was assessed in sound field at 60dBSPL. The 
candidate ear was appropriately fit with a power hearing aid 
programmed to prescriptive formula, NAL-NL2, for the unaided air 
conduction thresholds. The non-implanted ear was masked using 
speech noise presented via insert headphone at a signal to noise ratio 
of +4 dB. AzBio sentence recognition was performed with signal 
presented at 60dBSPL with +8- or + 5-dB signal-to-noise ratio multi-
talker babble in three main spatial presentations: (1) speech and noise 
projected from in front of the participant (S0N0), (2) speech projected 
toward the participant’s candidate (CI) SSD ear and noise projected 
toward their non-candidate (non-CI) ear with normal hearing 
(SSSDNNH), and (3) speech projected toward the study participant’s 
non-CI ear and noise projected to their CI ear (SNHNSSD; 
NH = Normal Hearing).

Patient-centered assessments were collected via the following 
survey instruments: Tinnitus Handicap Inventory (THI), Spatial 
Hearing Questionnaire (SHQ), and Health Utility Index Mark 3 
(HUI3). These instruments were selected to evaluate real-world 
experience of CI subjects. The THI quantifies the self-reported severity 
of tinnitus on one’s quality of life through a 25-question survey, to 
which subjects can answer with “yes,” “sometimes,” or “no.” Each 
answer choice is weighted differently and totaled to provide a THI 
score on a scale from 0 to 100 quantifying the patient’s tinnitus 
severity. Classification of THI scores is as follows: 0–16 indicates slight 
to no handicap; 18–36 mild handicap, 38–56 moderate handicap; 
58–76 severe handicap; and 78–100 catastrophic handicap 
(Wakabayashi et al., 2020).

The SHQ is a patient self-report tool designed to assess patient 
experience in various spatial hearing scenarios. It consists of 24 items, 
each a different spatial hearing scenario scored on a scale from 0 to 
100, with lower scores denoting more difficulty with the scenario and 
therefore greater impairment. An aggregate score was derived from 
the average of all 24 items, which encompassed 8 sub-domains: 
perception of male, female, and children’s voices, music, source 
localization, understanding speech in quiet, understanding speech in 
noise with speech and noise projected from in front of the individual, 
and understanding speech in noise with speech and noise presented 
in separate ears.

The HUI3 is a multi-attribute health-status assessment quantifying 
an individual’s health-related quality of life with respect to 8 

dimensions: vision, hearing, speech, ambulation, dexterity, pain, 
emotion, and cognition. The responses offer 3–6 levels of 
discrimination, with results combined formulaically in line with 
single- and multi-attribute utility scoring systems on a scale from 
−0.36 to 1.00, where 1.00 represents perfect health and 0 represents 
death (HUI3 scoring allows for health scores representing states worse 
than death; Horsman et al., 2003). HUI3 has been validated at the 
population level across multiple common disease conditions allowing 
comparative analysis of health utility (Grootendorst et  al., 2000; 
Horsman et  al., 2003; Maddigan et  al., 2006; Kaplan et  al., 2007; 
Asakawa et al., 2008; Guertin et al., 2018).

Device use was monitored using the CI manufacturer’s proprietary 
data-logging system. Device use was reported in hours/day of wearing 
time. At each visit, the hours/day of use for the previous time interval 
was recorded. For example, the device use measurement at the 
6 month time interval was representative of the previous 3 months 
(time from the 3 month visit to the 6 month visit).

Statistical analysis

For this rolling, open recruitment study, statistical significance of 
differences in measures between study time points was calculated 
using univariate linear mixed effects regression models with subject 
ID’s entered as random effects to address missing data, age as a 
covariate, and measured variables as fixed effects. These models were 
then analyzed via t-tests using Satterthwaite’s method for statistical 
significance, which was set at p < 0.05. Further subgroup analysis was 
performed according to the period of deafness from the onset of a 
patient’s SSD symptoms to the patient’s CI surgery, referred to 
hereafter as the duration of deafness. Patients were stratified into two 
groups: <5 years and 5–10 years duration of deafness at time of 
implantation. The data were not normally distributed for this 
population, so median scores (IQR) are reported. All statistical 
analyses were performed using R Statistical Software (v4.2.3; R Core 
Team, 2021). Linear mixed-effects modeling was conducted via the 
lmerTest package (v3.1.3; Kuznetsova et al., 2017).

Results

Demographic and clinical data

Demographic and clinical data of the study cohort are presented 
in Table 1. A total of 44 subjects who underwent CI implantation were 
enrolled at the time of this analysis and included 20 males (45.5%) and 
24 females (54.5%), with a mean (SD) age of 51.9 (14.3) years at time 
of implantation. As a rolling study, 33 patients reached 3 months, 25 
patients reached 6 months, and 16 patients reached 12 months at time 
of analysis. One patient was lost to follow up after 3 months due to 
relocation out of the study area. The most common etiology of SSD 
was idiopathic sudden sensorineural hearing loss in 27 patients (61%), 
including 22 patients with concurrent vertigo consistent with 
labyrinthitis. Other etiologies included Meniere’s disease (5 patients), 
iatrogenic causes (post-surgical, 4 patients), and schwannomas (2 
patients; Supplementary Table 2). Duration of deafness at time of 
implantation was <5 years in 39 patients (88%) and 5–10 years in 5 
patients (12%). The right ear was implanted in 19 (43%) of subjects. 
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Audiological and patient reported outcomes did not differ by laterality 
of implant. MED-EL Flex 28 was implanted in 35 patients and 
Cochlear 632 in 9 patients. Nineteen patients underwent CI evaluation 
and met inclusion criteria but elected not to proceed with 
implantation. These subjects were not included at the time of this 
analysis. Analysis of this subgroup revealed no significant differences 
in baseline CNC, AzBio, THI, SHQ, or HUI3 scores compared to 
those who underwent CI (Supplementary Table 3). Survey response 
rates were 68, 64, 76, and 94% at pre-implant, 3 months, 6 months, and 
12 months, respectively. No significant differences were observed in 
age, sex, race, pre-implant audiometric thresholds, or laterality of 
implant when stratified by duration of deafness. Analysis of duration 
of deafness as a continuous variable yielded significance when 
exploring its impact on pre-implant spatial hearing scores, but not at 
any other time point in this study (Supplementary Table 7). Figure 1 

shows the composite audiogram of the study population prior to 
CI. Average word recognition scores (WRS) using NU-6 words in the 
normal and deafened ears of participants at their initial CI evaluation 
were approximately 98 and 14.3%, respectively (Figure 1).

Speech perception performance

Figure 2 shows the audiologic trajectories of CI recipients. In the 
subject cohort analyzed, CNC word scores were available for 44 
subjects pre-implant. Overall, significant improvement was achieved 
by 3 months post-CI (Figure 2). Median (IQR) CNC word scores 
pre-implant and at 3-, 6-, and 12-months post-CI activation were 0% 
(0–0%), 24% (8–44%), 28% (4–44%), and 18% (7–33%), respectively. 
Compared to baseline, statistically significant change in CNC score 
was achieved by 3 months (p < 0.0001) and further changes between 
3-, 6-, and 12- months did not reach statistical significance. We did 
not detect a statistically significant difference at each time point 
when stratified by duration of deafness. However, not all individuals 
benefited equally from CI. Of 5 subjects who had no or minimal 
improvement in CNC after CI, subject A had hearing loss due to 
Charcot Marie Tooth, which negatively affects CI outcomes 
(Chaudhry et al., 2020; Kobayashi et al., 2021), subject B had no 
observed benefit to CNC scores but reported significant subjective 
improvement on SHQ and HUI questionnaires, subject C had 
10-year duration of deafness prior to CI, and subjects D and E were 
non-users (declined to use and experienced difficulty with use due 
to employment gear, respectively). In addition, subjects F, G, and H 
had decline in hearing in the implanted ear between 3 and 12 months 
after initial improvement. Upon further clinical review, it was 
observed that cancer recurrence occurred in subject F that limited 
CI use, subject G developed tolerance issues to CI sound 
(hyperacusis), and etiology of hearing decline was unknown in 
subject H (Supplementary Table 4).

TABLE 1 Summarized demographic and clinical characteristics of 
enrolled subjects.

Demographic N  =  44 subjects

Age at implantation, mean (SD), y 51.6 (14.0)

Patient sex

  Male 20 (45.5%)

  Female 24 (54.5%)

Patient race

  White 35 (79.5%)

  Black or African American 6 (13.6%)

  American Indian or Alaskan native 1 (2.3%)

  Hispanic or latino 2 (4.6%)

Laterality of implant

  Right 19 (43.2%)

  Left 25 (56.8%)

Cochlear implant device

  MED-EL 35 (79.5%)

  Cochlear Ltd 9 (20.5%)

Duration of deafness

  ≤5 years 39 (88%)

  5–10 years 5 (12%)

FIGURE 1

SSD patients at baseline; NH, normal hearing ear; SSD, impacted ear. 
(A) Baseline audiogram (B) Word recognition scores (NU-6). Data 
presented as mean  ±  1 SD.

FIGURE 2

CNC word scores over time; red represents median (IQR) CNC word 
recognition scores over time. *p  <  0.05; **p  <  0.01; ***p  <  0.001.
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Figure 3 shows hearing in noise assessment using AzBio in 3 
distinct spatial configurations. CI recipients demonstrated the most 
benefit in the SSSDNNH configuration, with a median improvement of 
20% in AzBio scores relative to pre-implantation by 6 months post-CI 
activation (p = 0.005). In the S0N0 configuration, CI recipients 
demonstrated a modest but statistically significant 5% increase in 
AzBio scores by 12-months post-CI activation (p = 0.03). No 
significant changes were observed in the SNHNSSD configuration. 
Additionally, no significant differences were observed in AzBio scores 
when stratified by duration of deafness.

Patient-reported outcomes

Tinnitus
Pre-implant THI was completed by 30/44 (68%) subjects while 

post-implant THI was completed by 21 subjects at 3 months, 19 
subjects at 6 months, and 15 subjects at 12 months post-CI activation. 
The largest significant reduction in THI scores was observed at 
3 months-post CI activation, with median (IQR) scores dropping from 
28 (8–48), indicating mild handicap due to tinnitus severity, to 12 
(2–24), indicating slight to no handicap due to tinnitus severity 
(p < 0.001). This reduction subsequently plateaued and THI scores 
remained similar through 12 months post-CI activation (t12: 14 (6–22); 
p = 0.004). When stratified by duration of deafness, no statistically 
significant differences were observed in tinnitus severity 
(Supplementary Figure 1).

Quality of life – spatial hearing
Figure 4A shows overall SHQ scores for the study cohort at 

each time point and stratified by duration of deafness. The overall 
study population demonstrated improvement in spatial hearing-
related quality of life, with statistically significant increases from 

37 (30–60) at pre-implant to 57 (44–76) at 3 months (p < 0.01) 
and 51 (46–76) at 12 months post-CI activation (p = 0.03). These 
overall score improvements were driven by improvements in 
SHQ subdomains specifically related to spatial hearing in the 
context of male, female, and children’s voices as well as music. 
SHQ scores for speech in quiet in the overall population improved 
mildly at 6 months post-CI activation by 11 points (Figure 4B, 
p = 0.03). In contrast, subjects reported significant improvements 
in speech in noise scenarios both when speech and noise are 
presented in front (Figure 4C) and when they are presented from 
separate directions (Figure  4D). In both scenarios, the 
improvement manifested by 3 months post-activation (p < 0.001) 
and remained stable through 12 months post-activation. When 
examined by duration of SSD prior to CI, important differences 
emerged in the SHQ data. Subjects with 5–10 years duration of 
SSD reported better spatial hearing quality of life prior to 
implantation relative to those with SSD for <5 years. Although 
this difference did not reach statistical significance (p = 0.12), it 
was driven by improved scores in SHQ questions related to 
speech in noise scenarios (Figures  4C,D) and a statistically 
significant difference (p < 0.05) was reached specifically in 
scenarios where speech and noise are separated. Post-activation, 
subjects with 5–10 years duration of deafness reached SHQ  
scores similar to those with <5 years duration of 
SSD. Consequently, the magnitude of reported improvement in 
SHQ was reduced for those with 5–10 years duration of deafness 
at time of implantation.

Health utility
Median HUI3 scores were 0.56 (0.48–0.71) for the study 

population prior to CI, increased to 0.83 (0.72–0.91, p < 0.001) by 
3 months post-activation, and remained stable at 0.79 (0.62–0.88, 
p = 0.82) and 0.78 (0.61–0.85, p = 0.62) at 6-, and 12-months, 

FIGURE 3

AzBio sentence recognition scores over time stratified by duration of deafness (<5 years, 5–10 years) prior to implantation. (A) S0N0: speech and noise 
projected from in front of the subject. (B) SSSDNNH: speech projected toward the SSD ear and noise toward the normal ear. (C) SNHNSSD: speech projected 
toward the normal ear and noise toward SSD ear; NH, normal hearing ear (green check); SSD, impacted ear (red “X”). *p < 0.05; **p < 0.01; ***p < 0.001.
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respectively (Figure 5A). When stratified by duration of SSD prior to 
CI, subjects with 5–10 years duration demonstrated lower HUI3 
scores at 3- and 6-months follow-up, although this difference did not 
reach statistical significance (p = 0.67, p = 0.66). By 12-months post-
activation, these subjects actually reported higher HUI3 scores than 
those with <5 years duration of SSD, though this difference also did 
not reach statistical significance (p = 0.08). Sub-domain analysis of 
single-attribute utility scores revealed that lower HUI3 scores in the 
overall study population prior to CI were primarily driven by poorer 
scores reported in the hearing subdomain (Figure 5B), and not by 
variance in emotional (Figure 3C) or pain (Figure 5D) subdomains 
that may be indirectly impacted in other health states. In particular, 
subjects with 5–10 years duration of deafness demonstrated higher 
variance in reported scores in the hearing subdomain at 6- and 
12-months. Notably, when contextualized against other common 
health states, HUI3 scores for SSD were worse than anxiety (0.68), 
diabetes (0.77), COPD (0.65), and heart disease (0.72), and 
comparable to stroke (0.58; Figure 5E).

Device use
Device use analysis demonstrated consistent daily wear-time 

through 12 months following activation for the overall study 
population (Figure 6). When stratified by duration of deafness, those 
with 5–10 years demonstrated median (IQR) daily wear-time of 5.4 h/
day (3.5–9.8) compared to 8.3 h (5.7–12.2) for the <5 years cohort 
(p = 0.82) at 3 months following activation. However, wear-time for the 
5–10 years cohort steadily improved to a median (IQR) of 8.5 (6.2–
11.3) hours daily and no significant difference was demonstrated at 
6- and 12-months between groups.

Discussion

In this study, we report data from a prospective observational study 
of a large cohort of adult subjects undergoing cochlear implantation 
after sustaining SSD. Importantly, our data show the pervasive and 
profound impact on health utility due to SSD (Figure 5), the significant 

FIGURE 4

Spatial Hearing Questionnaire (SHQ) scores to assess subjective spatial hearing experiences over time stratified by duration of deafness (<5  years, 
5–10  years) prior to implantation. (A) Overall aggregate SHQ scores. (B) SHQ scores in speech-in-quiet scenarios. (C) SHQ scores in scenarios where 
speech and noise are both projected from in front of the subject. (D) SHQ scores in scenarios where speech and noise are separated. *p  <  0.05; 
**p  <  0.01; ***p  <  0.001.
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FIGURE 5

Health Utility Index Mark 3 (HUI3) scores to assess health-related quality of life over time stratified by duration of deafness (< 5  years, 5–10  years) prior 
to implantation. (A) Overall HUI3 multi-attribute utility scores (B) HUI3 single-attribute hearing scores (C) HUI3 single-attribute emotion utility scores 
(D) HUI3 single-attribute pain utility scores (E) HUI3 multi-attribute utility scores for major common debilitating conditions and at baseline for SSD 
patients. *p  <  0.05; **p  <  0.01; ***p  <  0.001.
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overall improvement in auditory performance achieved after CI, and the 
real-world experience reported by subjects. Secondly, audiologic and 
patient-reported data are presented here within the scope of the current 
FDA criteria for CI in SSD, which allows for up to 10 years in duration 
of deafness, and suggest that overall, patients with longer periods of 
auditory deprivation exhibit similar improvement in outcomes post-CI 
compared to those with shorter periods. Although outcome differences 
did not reach statistical significance in our cohort, likely due to limited 
statistical power, emerging trends in these results are consistent with 
central processes that play an important role in mediating clinical 
outcomes in SSD.

Speech understanding in quiet

Similar to previous studies on CI outcomes in SSD, speech 
understanding in quiet, as measured by CNC word scores, improved 
significantly in the deafened ear after implantation (Figure 2; Hansen 
et al., 2013; Sladen et al., 2017; Galvin et al., 2019; Sullivan et al., 2020). 
Interestingly, when compared to previous studies in subjects undergoing 
unilateral CI for bilateral hearing loss, SSD subjects demonstrated 
reduced plateau performance and earlier time to plateau, which has also 
been observed in other studies (Chang et al., 2010; Dillon et al., 2013; 
Holden et al., 2013). Whereas bilateral hearing loss patients typically 
reach plateau in 6–12 months and sometimes continue to improve over 
years, SSD patients in this cohort almost uniformly reached plateau at 
only 3 months post activation, consistent with other SSD CI studies 
(Cusumano et  al., 2017; Buss et  al., 2018). Simultaneously, SSD CI 
subjects demonstrate lower plateau scores relative to bilateral hearing 
loss patients, which may be related to challenges in isolating the CI ear 
during testing. Similar to other studies, CNC word scores in this study 
were obtained using sound field testing with masking noise presented 
via insert earphones to the normal-hearing ear. A signal to noise ratio 
of +4 dB was used to assess patients in the present study. While this SNR 
was selected to ensure complete isolation of the CI ear, the high level of 
noise may also lead to artifactually decreased CNC word scores in the 

implanted ear. Indeed, previous studies using lower noise levels (e.g., 
SNR +10 dB) have found higher CNC scores in SSD CI patients, 
although that strategy risks inadequate masking and confounding 
acoustic input from the normal hearing ear (Buss et al., 2018). Currently, 
there is a lack of specific audiometric standards for assessing speech 
recognition in SSD CI recipients. In children, when speech was directly 
streamed into the CI device, improved CNC word scores were observed 
(Park et al., 2021, 2023).

Alternatively, reduced speech recognition scores in SSD CI subjects 
may be related to cortical level reorganization in unilateral hearing loss 
(Bilecen et al., 2000; Ponton et al., 2001; Khosla et al., 2003; Burton et al., 
2012). Patients with SSD exhibit greater neuronal activity in the auditory 
pathways associated with their normal hearing ear, suggesting the 
development of an aural dominance, or preference, for the normal ear 
(Li et al., 2006; Chang et al., 2020; Vannson et al., 2020). This has been 
thoroughly demonstrated in numerous animal studies. Studies in deaf 
cats in particular have simultaneously demonstrated a weaker 
representation of the deaf ear and a stronger representation of the 
normal hearing ear at the cortical level in both hemispheres (Cheung 
et al., 2009, 2017; Kral et al., 2013). Furthermore, previous studies have 
demonstrated this development of an aural preference in SSD patients 
is increased when there is a longer duration of time in a state of 
asymmetric hearing (Polonenko et al., 2017).

Following CI, bimodal integration between ears also relies on 
central processes that may be  impacted by duration of auditory 
deprivation (Balkenhol et al., 2020). Despite these centrally-mediated 
adaptations, however, our results suggest that in aggregate, SSD 
individuals implanted with 5-10-year duration of deafness still perform 
as well as those implanted earlier. On an individual level, 1 subject with 
10-year duration of deafness did not experience any CNC benefit and 
there was also an emerging trend of subjects with longer duration of 
deafness experiencing a slower trajectory to plateau performance. This 
difference did not reach statistical significance, potentially due to 
inadequate statistical power as a result of a limited sample in our 
5–10 year duration of deafness cohort. However, our findings are 
consistent with studies demonstrating longer durations of deafness 
being associated with decline in centrally-mediated adaptive processes 
that may result in a slower trajectory of auditory learning (Kral and 
Eggermont, 2007; Balkenhol et al., 2020). In pediatric populations with 
early- and even late-onset SSD, EEG activity has demonstrated a partial 
reversal of the cortical reorganization initiated at the onset of their 
hearing loss associated with consistent and chronic CI use (Lee et al., 
2020). Collectively, this implicates the eventual benefits of CI in partially 
restoring the aural balance between ears impacted by SSD in adult 
patients as well, even if it may take longer in patients with longer 
durations of deafness.

Speech understanding in noise and spatial 
hearing

In this study, head shadow (SSSDNNH), squelch (SNHNSSD), and 
summation (S0N0) effects were separately assessed in SSD CI patients 
(Figure 3). Consistent with previous studies (Buechner et al., 2010; 
Arndt et al., 2017), our data demonstrate SSD was most detrimental in 
the SSSDNNH condition and CI improved patient performance by 
6 months post-activation, driven partly by benefits associated with the 
HSE. In other spatial configurations, measured Az Bio scores 

FIGURE 6

Device use data over time stratified by duration of deafness (<5  years, 
5–10  years).

https://doi.org/10.3389/fnins.2023.1247269
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ullah et al. 10.3389/fnins.2023.1247269

Frontiers in Neuroscience 09 frontiersin.org

demonstrated a ceiling effect, defined primarily by initial scores above 
85% (Spahr et al., 2014), which may mask subsequent changes due to 
CI. This ceiling effect also has been found in prior studies and therefore, 
although AzBio is commonly used in the assessment of hearing in noise 
in bilateral hearing loss patients, the SSD population may require 
unique and more specific audiological testing to elucidate the true effect 
of CI on speech understanding in noise when the contralateral ear is 
normal (Litovsky et al., 2006; Massa and Ruckenstein, 2014).

While duration of deafness did not significantly impact speech 
understanding in noise (Figure 3) or patient-reported spatial hearing 
experience post-CI (Figure 4), we found that subjects with between 5 and 
10-years duration of deafness tended to report less impact on spatial 
hearing experience prior to implantation compared to subjects with 
<5-year duration of deafness (Figure 4). This finding is consistent with 
central compensatory mechanisms that occur after monaural hearing 
loss. Studies have demonstrated that these mechanisms may lead to 
improvements in sound localization despite monaural hearing and lack 
of ILD and ITD cues. For instance, Agterberg et al. (2014) found that 
some SSD listeners are able to compensate for the loss of ILDs and ITDs 
by adopting high-frequency spectral-shape cues provided by the pinna of 
the hearing ear for sound localization in the horizontal plane, and that this 
ability deteriorates when the pinna is filled with a mold or if the hearing 
ear also has high-frequency hearing loss. Similar to our data, the authors 
also found large inter-subject variability in the extent of compensation. 
The SHQ survey used in our study also presents spatial hearing scenarios 
that predominantly relate to sound localization in the horizontal plane 
(e.g., direction of moving car, location of a talker in a room, etc.).

Our data are limited by the lack of objective sound localization 
testing, which have been previously studied in the SSD-CI population 
(Firszt et al., 2012; Gartrell et al., 2014; Ludwig et al., 2021). For instance, 
Litovsky et al. (2019) tested 9 SSD subjects with varying durations of 
deafness and did not identify overall differences in root-mean-square 
(RMS) errors between those with shorter vs. longer durations of 
deafness. However, subjects with longer durations of deafness were not 
tested with moving sound sources (e.g., direction of moving vehicle) 
that constitute important real-life scenarios presented in the 
SHQ. Overall, practical limitations have constrained objective sound 
localization testing to small series of research participants, unlike the 
large cohort reported in this study. While some studies (Heo et al., 2013; 
Ramakers et  al., 2017) have demonstrated a significant correlation 
between objective measures and self-reported questionnaires assessing 
sound localization, further investigation is needed to define the extent 
to which objective sound localization testing concord with subjective 
real-world experience scored on survey instruments such as the 
SHQ. However, as CI is ultimately intended to improve the quality of life 
of individuals, it remains important to understand the real-world 
impact of SSD-CI and the extent to which central processes may play a 
role. Our data suggest that compensation may occur by 5 years of 
auditory deprivation in SSD subjects and can lead to improved real-
world spatial hearing experience that consequently reduces the 
magnitude of perceived benefit related to spatial hearing after CI, 
despite objective gains in hearing in noise ability.

Health utility

While previous studies have investigated quality of life changes 
related to SSD-CI, to our knowledge this is one of the first studies to 

measure health utility (Daher et al., 2023). HUI3 is a validated health 
utility instrument that allows not only comparison to other disease 
states but also downstream calculation of quality adjusted life years and 
cost-effectiveness, which are important measures for future health 
economic studies. Additionally, existing studies involving CI patients 
with bilateral hearing loss have already established that HUI3 is sensitive 
to hearing-related interventions (Kitterick et al., 2015). Though it is 
well-documented that hearing loss, including bilateral hearing loss, can 
have debilitating impact on quality of life, this is one of the first studies 
that quantifies the extent of this impact in SSD (Huddle et al., 2017; 
Nordvik et al., 2018; McRackan et al., 2019). Notably, when compared 
to other major conditions such as asthma, COPD, diabetes, and 
hypertension, SSD is associated with lower HUI3 scores prior to 
treatment, with scores comparable to that of stroke (Figure  5E). 
Considering that differences of 0.03 in HUI3 scores are regarded as 
clinically important (Samsa et  al., 1999; Grootendorst et  al., 2000; 
Drummond, 2001), this study highlights the profound impact of 
unilateral hearing loss that tends to be under-recognized.

Importantly, subdomain analysis of HUI3 scores shows that the 
reduced scores observed in SSD individuals prior to CI are primarily 
driven by the hearing subdomain (Figure 5B). This contrasts with 
other inner ear conditions where scores in the pain and emotion 
subdomains, which are indirectly related to the measured health 
condition and could be mediated by comorbid conditions such as 
depression and anxiety, are important drivers of poor health utility 
(Sun et al., 2014). CI use was associated with significant improvements 
in HUI3 scores over time (Figure 5A), suggesting an improvement in 
health-related quality of life consistent with previous studies (Muigg 
et al., 2020; Lindquist et al., 2023). Interestingly, greater variance in 
reported scores was observed at 6- and 12- months post activation in 
subjects with 5–10 years duration of deafness. This suggests there may 
be other factors contributing to this variability in CI experience that 
may be unmasked with longer periods of deafness and require further 
study. Interpretation of survey data is limited by both selection and 
reporting bias, as well as the lack of survey instruments specific to CI 
such as the CIQOL (McRackan et  al., 2019). Nonetheless, taken 
together with audiological assessments and other patient-centered 
data, a more comprehensive picture on the real-world impact of SSD 
and subsequent electrical stimulation of the cochlea is obtained.

Device use

Device use data provides us with information regarding the real-
world usage of subject CIs. Device use was similar regardless of duration 
of deafness and remained stable through 12-months post-CI activation 
(Figure 6). Further, in our data, increased device use is associated with 
higher CNC scores (Supplementary Table 5). While this has also been 
reported in previous studies, the direction of causality remains to 
be confirmed as it is possible that subjects are reducing their device use 
when there is insufficient benefit, rather than poor performance solely 
due to lack of use (Holder et al., 2020; Holder and Gifford, 2021).

Taken together, our findings demonstrate the debilitating impact 
of SSD and the benefits of CI in individuals with short- and medium-
term auditory deprivation, though some trends in the data may 
suggest differential impacts of CI may arise after 5 years of auditory 
deprivation. Centrally-mediated processes involving compensation 
after SSD and adaptation to bimodal hearing after CI are understood 
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to play important roles in auditory processing after SSD-CI. Data 
presented here illustrate the changes in audition related to those 
processes and their correlation to individual experiences in real-
world settings.

Limitations

For this prospective observational study, intrinsic limitations 
exist related to missing data and statistical power, particularly in the 
cohort with longer duration of auditory deprivation. Although 
drop-out occurred in only 1 subject over the course of the study, 
survey response rates were more variable and vulnerable to 
reporting and selection biases. Further, sound localization testing 
was not performed due to practical limitations associated with the 
size of the study. Additionally, both objective and subjective 
assessments for CI subjects are imperfect and the instruments used 
in our study reflect both the limitations associated with those 
assessments and opportunities for instrument development 
specifically for the SSD population. Several confounding variables 
could have influenced some of our findings; as such, further studies 
in addition to our preliminary analysis of duration of deafness are 
encouraged to explore the effects of such variables, such as hearing 
aid use prior to implantation and surgical factors at the point of 
implantation. Though the literature is sparse, some evidence exists 
in adult listeners of varying hearing impairments to suggest a 
positive association (r ~ 0.3) between cognitive function and speech 
perception in noise (Dryden et al., 2017). As such, we encourage 
additional cognitive function testing in the SSD-CI population to 
help elucidate the impact SSD may have on cognition and 
subsequently demonstrate any secondary effects on speech 
perception performance. Further studies comparing the effects of 
CI in subjects with unilateral hearing loss and in subjects with 
bilateral hearing loss may also be needed to understand the extent 
to which CI restores bilateral hearing and benefits patients as a 
treatment option for these conditions. Lastly, further research is 
needed to fully capture the neural mechanisms that may 
be responsible for auditory adaptations in individuals with SSD, 
especially in those with longer durations of deafness.
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