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Temporal and spectral analyses of 
EEG microstate reveals neural 
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photobiomodulation on the 
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Introduction: The quantification of electroencephalography (EEG) microstates 
is an effective method for analyzing synchronous neural firing and assessing 
the temporal dynamics of the resting state of the human brain. Transcranial 
photobiomodulation (tPBM) is a safe and effective modality to improve human 
cognition. However, it is unclear how prefrontal tPBM neuromodulates EEG 
microstates both temporally and spectrally.

Methods: 64-channel EEG was recorded from 45 healthy subjects in both 8-min 
active and sham tPBM sessions, using a 1064-nm laser applied to the right forehead 
of the subjects. After EEG data preprocessing, time-domain EEG microstate 
analysis was performed to obtain four microstate classes for both tPBM and sham 
sessions throughout the pre-, during-, and post-stimulation periods, followed by 
extraction of the respective microstate parameters. Moreover, frequency-domain 
analysis was performed by combining multivariate empirical mode decomposition 
with the Hilbert-Huang transform.

Results: Statistical analyses revealed that tPBM resulted in (1) a significant 
increase in the occurrence of microstates A and D and a significant decrease 
in the contribution of microstate C, (2) a substantial increase in the transition 
probabilities between microstates A and D, and (3) a substantial increase in the 
alpha power of microstate D.

Discussion: These findings confirm the neurophysiological effects of tPBM on 
EEG microstates of the resting brain, particularly in class D, which represents 
brain activation across the frontal and parietal regions. This study helps to better 
understand tPBM-induced dynamic alterations in EEG microstates that may be 
linked to the tPBM mechanism of action for the enhancement of human cognition.
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1. Introduction

Over the past decade, photobiomodulation (PBM) has attracted substantial interest as a 
practical method for treating a variety of pain and/or infections using low-dose red to near-
infrared (630–1,100 nm) light. Examples of PBM applications include pain alleviation (Fulop 
et al., 2010) and wound healing (Mester et al., 1971; Conlan et al., 1996; Yasukawa et al., 2007; 
Peplow et al., 2010). Transcranial PBM (tPBM), which refers to PBM administered to the 
cerebral cortex, has also been proven to boost human cognition (Eells et al., 2004; Barrett and 
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Gonzalez-Lima, 2013; Holmes et  al., 2019; Truong et  al., 2022) 
including attentional performance (Jahan et al., 2019) and to be a 
treatment for traumatic brain injury (Choi et al., 2012; Figueiro Longo 
et al., 2020), Alzheimer’s disease (Grillo et al., 2013; Nizamutdinov 
et al., 2021), and Parkinson’s disease (Quirk et al., 2012; Liebert et al., 
2021). A recent, comprehensive study by Zhao et  al. reported 
significant enhancements in visual working memory capacity in 
healthy humans through four experiments using two separate laser 
wavelengths (850 and 1,064 nm) and two stimulation sites (left and 
right forehead; Zhao et al., 2022).

The mechanism underlying tPBM has been proposed to involve 
cytochrome c oxidase (CCO), a crucial component in mitochondria 
responsible for energy generation. The photochemical reactions of 
CCO initiate a cascade of biochemical events, which were believed to 
enhance cellular energy production, promote neuronal metabolism, 
and modulate neurovascular coupling (Rojas et al., 2012; Lee et al., 
2017). To better understand the neurophysiological effects of tPBM 
on the human brain, different imaging modalities have been 
simultaneously employed, including electroencephalography (EEG; 
Wang et  al., 2019; Ghaderi et  al., 2021; Shahdadian et  al., 2022), 
functional magnetic resonance imaging (fMRI; Vargas et al., 2017; 
Dmochowski et  al., 2020), broadband near-infrared spectroscopy 
(bbNIRS; Tian et al., 2016; Wang et al., 2017; Pruitt et al., 2020; Wang 
et  al., 2022a), and functional near-infrared spectroscopy (fNIRS; 
Holmes et al., 2019; Truong et al., 2022).

EEG is a widely used and effective measurement tool for 
noninvasive monitoring of human neurophysiological activity in 
neuroscience research and clinical applications. In a subset of EEG 
research, EEG microstate analysis is an established method for 
investigating brain dynamics in the resting state (Lehmann et al., 
1987). EEG microstates are defined as global patterns of scalp 
potential topographies that dynamically alter over time in an ordered 
manner. Specifically, spontaneous EEG activity during the resting 
state can be described by a limited number of EEG topographical 
maps that remain stable for a short period (60–120 ms). These 
specific global scalp maps were obtained by spatial clustering of 
whole scalp topographies without considering the polarity inversion 
(Pascual-Marqui et  al., 1995; Koenig et  al., 1999; Koenig and 
Brandeis, 2016). Briefly, scalp topographies with high spatial 
correlation independent of polarity were first clustered into one 
representative topographical map, forming a class of microstates 
(Michel and Koenig, 2018). A dynamic train or alteration of the 
microstates is then found by fitting the template maps (or classes) 
back to the temporal data.

Recent publications have demonstrated that tPBM enables 
significant alterations in EEG spectral power across the human cortex 
(Zomorrodi et  al., 2019; Wang et  al., 2021) and in functional 
connectivity across several resting-state brain networks (Zomorrodi 
et al., 2019; Ghaderi et al., 2021; Shahdadian et al., 2022). However, 
previous EEG-based studies have not investigated the influence of 
tPBM on the temporal dynamics of the human brain. To the best of 
our knowledge, only a short conference abstract by Zomorrodi et al. 
(2021) has reported the effects of tPBM on the temporal dynamics of 
the human brain. Therefore, it remains unclear how tPBM dynamically 
modulates the human brain. Accordingly, this study addressed two 
key questions: can tPBM modulate EEG microstates and their 
topographical spectral parameters? If so, which temporal and spectral 
parameters of microstates would tPBM modulate significantly? 

We hypothesized that tPBM significantly affects the parameters of 
certain microstate classes.

This study shared the 64-channel EEG data reported earlier (Wang 
et al., 2021; Shahdadian et al., 2022; Wang et al., 2022b), comprising 
45 healthy subjects undergoing both active and sham 8-min tPBM 
using a 1,064-nm laser applied to the right forehead. The novelty of 
this study differs from our prior work on several key analysis 
methodologies and findings. For the first time, EEG microstate 
analysis (Michel and Koenig, 2018) has been applied to investigate 
brain dynamics under tPBM. Different temporal microstate 
parameters were extracted and compared to assess the effects of tPBM 
on temporal dynamics in the human brain. In addition, EEG 
microstate spectral analysis was performed using multivariate 
empirical mode decomposition (MEMD; Lang et al., 2018) and the 
Hilbert-Huang transform (HHT; Huang et al., 1998; Huang and Wu, 
2008). This newly developed frequency-domain analysis enabled us to 
quantify the alteration in the EEG power of microstate classes over 
different experimental periods for both tPBM and sham sessions. By 
the end of this study, our statistical results revealed significant changes 
in the occurrence, contribution, and transition probabilities of 
different microstate classes as well as alterations in frequency-band-
specific microstate power, which affirmed our hypothesis.

2. Materials and methods

2.1. Participants

We recruited 49 healthy human subjects (29 males, 19 females, 
26 ± 8.8 years of age) from the University of Texas at Arlington local 
community to participate in this study. Participants had to be satisfied 
the following criteria: (1) no psychiatric disorder or neurological 
condition, (2) no severe brain injury, (3) no history of violence or 
imprisonment, (4) no current intake of any psychotropic medicine, 
(5) no smoking or excessive alcohol consumption, (6) had not been 
diagnosed with diabetes, as required by the laser’s manufacturer (Cell 
Gen Therapeutics LLC, Dallas, Texas). Due to observed fatigue or 
drowsiness during EEG measurements, four subjects were excluded 
from the dataset, leaving 45 remaining participants in the subsequent 
data analysis. The experimental protocol was approved by the 
Institutional Review Board of the University of Texas at Arlington. 
Prior to all measures, each participant’s informed consent 
was obtained.

2.2. Experimental procedures

We employed a 1,064-nm continuous-wave (CW) laser with FDA 
clearance (Model CG-5000 Laser, Cell Gen Therapeutics LLC, Dallas, 
Texas) for our noninvasive tPBM experiment (Figure 1A). The laser 
had a 13.6 cm2 irradiation area, and its power was set at 3.4 W. Using 
this laser’s output, a total energy dose of 1,632 J was delivered 
throughout an 8-min tPBM session (3.4 W  ×  60 s/
min × 8 min = 1,632 J), resulting in a laser power density of 0.25 W/
cm2. The light was delivered over the right frontopolar region close to 
the Fp2 site without physical contact (Figure  1B). For the sham 
condition, the laser device was also on to ensure subjects heard the 
device operation sound and were unaware of being in the sham 
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condition. However, the laser strength was reduced to 0.1 W for sham 
stimulation, and a black cap was placed in front of the laser aperture 
to obstruct the light further. Participants would not be aware of the 
cap as it was placed after they closed their eyes. Throughout the 
experiment, participants were required to wear a pair of laser 
protection goggles.

Figure 1C depicts the experimental protocol. Each subject was 
assigned a random order for the two study sessions: active tPBM and 
sham tPBM. In order to prevent any carry-over effects, two visits had 
to be  separated by at least 1 week. Subjects were instructed to sit 
comfortably with their eyes closed during EEG acquisition. The 
resting state EEG data were recorded for 2 min of pre-stimulation, 
8 min of active/sham stimulation, and 3 min of post-stimulation. 
We used a Biosemi (64-channel) 10–10 EEG equipment to acquire the 
EEG data (Figure 1B). The electrical gel was applied to each electrode 
prior to each EEG measurement in order to boost conductivity and 
the signal-to-noise ratio of the collected data.

2.3. EEG data analysis

2.3.1. EEG data preprocessing
We employed the EEGLAB toolbox (Delorme and Makeig, 

2004) to preprocess 64-channel EEG data. Since either 256 or 
512 Hz was used to acquire the EEG data, the 512 Hz data were 
first down-sampled to 256 Hz to ensure consistency. The EEG 
signals underwent bandpass filtering between 1 and 70 Hz using 
the EEGLAB “filtfilt” function. Additionally, a notch filter at 60 Hz 

was employed to remove line noise. Re-referencing was performed 
by subtracting the average voltage signals across all 64 electrodes 
from each of the EEG time series. The Independent Component 
Analysis (ICA) technique (Campos Viola et al., 2009) was applied 
to eliminate artifacts caused by eye blinks, eye movements, or jaw 
clenches. ICA components were manually inspected, and the noisy 
components corresponding to the noise and artifacts were 
excluded. Subsequently, the artifact-free EEG time series were split 
into four temporal segments to better characterize the EEG 
microstates in response to tPBM/sham stimulation: (1) a 2-min 
pre-stimulation (Pre) period, (2) the first 4-min temporal segment 
during active/sham tPBM (Stim1), (3) the last 4-min segment of 
active/sham tPBM (Stim2), and (4) a 3-min post-stimulation 
(Post) period.

2.3.2. EEG microstate analysis in the time domain
The EEG microstate analysis in the time domain was performed 

following the procedure presented in Koenig et al. (1999) and Michel 
and Koenig (2018). We employed a Matlab-based microstate toolbox 
(Koenig, 2017) compatible with EEGLAB (Delorme and Makeig, 
2004) to compute EEG microstates. The main steps of the time-
domain EEG microstate analysis are depicted by the gray-shaded left 
column in Figure 2 (i.e., Figures 2A–D) with 4 steps.

The principle of microstate analysis consists of finding a set of the 
most dominant topographical maps representing different crucial 
brain states and then fitting these maps back to the EEG data. The 
global field power (GFP) was calculated for each sample time 
as follows:

FIGURE 1

(A) A photograph of our 1,064-nm laser used for the study. (B) A cartoon showing the EEG setup and the tPBM site on the participant’s right forehead. 
(C) Schematic diagram of the experimental protocol. A total of 45 subjects were randomly divided into two groups: active-sham or sham-active 
stimulation. Each experiment included EEG recordings of a 2-min baseline, an 8-min active or sham tPBM, and a 3-min recovery period. A minimum 
1-week waiting period between two visits was required to avoid potential effects from active tPBM.
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where N is the number of EEG electrodes (N = 64 in this study), 
and vi(t) is the voltage of electrode i at time t. The time-resolved 
GFP(t) reflects the global power alteration of the EEG signal at time t; 
the GFP peaks correspond to the moments of high global neuronal 
synchronization (Skrandies, 2007). It is known that the scalp 
topographies around the peaks remain quasi-stable (Lehmann and 

Skrandies, 1980; Skrandies, 1989; Koenig et al., 2002; Koenig and 
Brandeis, 2016; Michel and Koenig, 2018).

In step 1 (Figure 2A), we determined the scalp topographical 
maps at the GFP peaks for each participant within each experimental 
temporal period for both tPBM and sham sessions separately.

In step  2 (Figure  2B), we  performed two-level clustering to 
identify global microstates. The first level of clustering was performed 
to identify the individual-level EEG microstates for each experimental 
segment (Pre, Stim1, Stim2, and Post), separately for tPBM and sham 
sessions. All topographical maps acquired per subject per each 
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FIGURE 2

A flowchart for EEG microstate analysis. Panels (A–D) show steps of the time-domain EEG microstate analysis; Panels (F–H) show steps of the 
frequency-domain EEG microstate analysis. δ: delta band (0.5–4  Hz); θ: theta band (4–8  Hz); α: alpha band (8–13  Hz); β: beta band (13–30  Hz). Panels 
(E,I) represent the process for statistical analysis in the time and frequency domain, respectively.
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temporal segment were clustered into 4 maps using the k-means 
clustering algorithm (Koenig et al., 2002; Murray et al., 2008). These 
4 clustered maps present dominant microstate classes, which have 
been commonly used and reported in numerous EEG microstates 
studies. Since the individual microstate classes obtained by the 
k-means clustering had no particular order and thus were potentially 
mismatched between participants (Koenig et al., 2002; Koenig, 2017), 
the second level of clustering was performed on EEG microstates of 
all subjects for each experimental period (Koenig et  al., 1999), 
separately for the tPBM or sham session. The outcome of this 
clustering was the group-level microstate classes for each experimental 
period (Pre, Stim1, Stim2, and Post), separately for the tPBM or sham 
session. Finally, a permutation-based clustering step was employed to 
identify the “global” microstate classes based on the two groups of 4 
microstate classes from the tPBM and sham sessions, serving as 
representative microstates for all experimental periods of both tPBM 
and sham sessions.

In step 3 (Figure 2C), the global microstate classes were fitted back 
to each subject’s temporal EEG data to assign a label of one microstate 
class to every EEG data instant. The assigned microstate class was 
chosen as the one that had the highest spatial correlation with the 
scalp topography of the corresponding EEG data instant (Brodbeck 
et al., 2012; Michel and Koenig, 2018). The spatial correlation was 
computed using Pearson’s correlation coefficient (Brandeis et al., 1992) 
defined as follows:
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where N is the number of electrodes, ui and vi are the voltage of 
electrode i of the two topographical maps. At the end of Step 3, the 
labeled microstate time series for all subjects were obtained in both 
tPBM and sham sessions (Figure 2C).

In Step 4 (Figure 2D), the resulting microstate time series were 
used to compute four temporal microstate parameters as follows:

 • Duration: the average duration that the microstate class is 
continuously presented (in ms). The microstate duration reflects 
the average time that the brain sustains synchronized activities.

 • Occurrence: the number of occurrences of a microstate class 
divided by the total duration (in s) of the analyzed EEG data. The 
occurrence parameter reveals how frequently a microstate class 
occurs over time (Khanna et al., 2014; Michel and Koenig, 2018).

 • Contribution: the proportion of the total occurrence duration of 
one microstate over the whole analysis time. The contribution 
parameter indicates the time coverage of each microstate class 
relative to other classes (Lehmann et al., 2005).

 • Transition probability: proportion of the number of transitions 
from one microstate class to another over the number of all 
transitions occurring during the analysis period (Lehmann et al., 
2005; Khanna et al., 2015).

2.3.3. EEG microstate analysis in the frequency 
domain

In parallel, we  performed EEG microstate analysis in the 
frequency domain, following the framework proposed in Li et al. 

(2021). Because conventional time-frequency spectral analysis that 
employs Fourier or wavelet transform usually fails to analyze EEG 
signals with a short temporal length [60–120 ms for the case of 
EEG microstates (Pascual-Marqui et  al., 1995; Mandic et  al., 
2013)], many studies have employed the Hilbert transform in 
microstate analysis because of its feasibility in analyzing short-
length signals (Mandic et al., 2013; Milz et al., 2017; Comsa et al., 
2019). Thus, following the methodology proposed in Shi et  al. 
(2020) and Li et al. (2021), we performed a spectral analysis of 
EEG microstates (Shi et  al., 2020) by employing a multivariate 
empirical mode decomposition (MEMD) algorithm incorporated 
with the Hilbert-Huang transform (HHT; Huang et  al., 1998; 
Huang and Wu, 2008). The procedure of EEG microstate analysis 
in the frequency domain is depicted by the yellow-shaded right 
column in Figure  2 (i.e., Figures  2F–H) in 3 steps, as briefly 
described below. Detailed mathematical expressions are provided 
in Supplementary material.

First, MEMD was performed to decompose N-channel EEG 
signals into a set of intrinsic mode functions (IMFs) that 
represent different oscillatory levels embedded in the original 
signals. MEMD is an extended method of EMD, the latter of 
which is a data decomposition method for non-linear and 
non-stationary signals (Huang et al., 1998). EMD enables any 
complicated dataset to be expressed in a finite number of IMFs. 
MEMD was developed by taking signal projections along 
different directions in N-dimensional spaces, a generalization of 
EMD (Rehman and Mandic, 2010). This step is illustrated in 
Figure 2F.

Next, HHT was performed on each of IMFs to estimate the time-
frequency Hilbert spectra of all EEG channels and to facilitate the 
sharp identification of imbedded structures. In addition, the EEG 
microstate sequences obtained by time-domain analysis (Figure 2C) 
were imported to generate the segmented Hilbert spectra for each 
EEG microstate (Figure  2G). Given that the Hilbert spectrum is 
written as Hn(ω, t) for the EEG data from the nth channel in the 
frequency ω at time t, the power for microstate m at the nth channel 
in the frequency band (<fb>) would be equal to:
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where Lm is the total temporal length of the microstate m, and ∆ω 
is the range of the frequency band <fb>. Specifically, <fb > covers delta 
band (δ: 0.5–4 Hz), theta band (θ: 4–8 Hz), alpha band (α: 8–13 Hz), 
and beta band (β: 13–30 Hz). This step is depictured and marked in 
Figure 2H.

Finally, the percentage changes of the power for microstate m 
during tPBM/sham and post-tPBM/sham periods with respect to the 
pre-stimulation (baseline) power were defined as follows:
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where <seg> covers three temporal segments (Stim1, Stim2, and 
Post). These percentage changes were calculated for both tPBM and 
sham sessions.
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2.3.4. Statistical analysis
For the time-domain microstate analysis (Figure  2E), 

we  performed a one-way repeated-measures ANOVA on the 
microstate temporal results of the two experimental sessions 
(tPBM and sham) to test the period effects (Pre, Stim1, Stim2, 
Post). We  verified the normality and homoscedasticity 
characteristics of the data to ensure that ANOVA usage was 
appropriate. Post-hoc pairwise comparisons were further carried 
out using Tukey’s adjustment for multiple variable comparisons to 
assess significant differences across 4 experimental periods (Pre, 
Stim1, Stim2, Post).

For the frequency-domain microstate analysis (Figure  2I), 
we employed the cluster-based permutation test (CBPT; Maris and 
Oostenveld, 2007; Oostenveld et  al., 2011; Pellegrino et  al., 2016; 
Benavides-Varela and Gervain, 2017) to compare the normalized 
frequency-specific power of four microstate classes between tPBM 
and sham sessions. This analysis enabled us to assess the significant 
differences in microstate power between tPBM and sham sessions 
across these four microstate classes.

3. Results

3.1. Alterations of EEG microstate 
topographies induced by tPBM

The four most dominant EEG microstate classes (A, B, C, and D) 
were identified under different conditions, and the respective 
microstate topographies are presented in Figure  3. Specifically, 
Figure 3A shows four microstate topographies derived from all the 
temporal segments and two tPBM/sham sessions. Figures  3B,C 
illustrate the time-dependent topographies under sham and tPBM 
interventions across all four microstate classes. These figures clearly 
display that microstate A exhibited a left occipital to right frontal 
polarity orientation, while microstate B presented a right occipital to 
left frontal orientation. Microstates C and D revealed roughly 

symmetric occipital to frontal and central to frontal polarity patterns, 
respectively.

3.2. Alterations of EEG microstate 
parameters induced by tPBM

As mentioned in Section 2, the labeled microstate time series were 
obtained by fitting the global microstate classes to each subject’s EEG 
data (Figure 2C). By using the microstate sequences, we computed 
several key temporal microstate parameters of the four experimental 
periods (Pre, Stim1, Stim2, and Post) for the tPBM and sham sessions. 
One-way repeated-measures ANOVA (rmANOVA) enabled us to 
reveal significant tPBM-induced changes in two key microstate 
temporal parameters throughout different experimental periods or 
segments for both tPBM and sham sessions.

Figures 4A,B depict the occurrence (per sec) and contribution (in 
%) of the four microstate classes throughout the different experimental 
periods (Pre, Stim1, Stim2, and Post) of the tPBM and sham sessions. 
The post-hoc rmANOVA tests along with Tukey’s method revealed a 
significant increase in the occurrence of microstates A and D and a 
significant decrease in the contribution of microstate C during the 
tPBM session. Specifically, the occurrence of microstate A gradually 
increased during the tPBM stimulation, leading to a significant 
difference between the Pre and Stim2 periods (pTukey = 0.022). During 
the Post period, the occurrence of microstate A decreased significantly 
compared with that during Stim2 (pTukey = 0.049). The occurrence of 
microstate D also increased notably during Stim1 of the tPBM session 
(pTukey = 0.038 compared to Pre).

For the contribution parameter, the post hoc rmANOVA results 
showed that the contribution of microstate C of the tPBM session was 
significantly decreased during Stim2 compared to the baseline (Pre; 
pTukey = 0.045). Regarding the sham condition, the rmANOVA analysis 
revealed significant differences in the contribution parameter of 
microstate B across four periods (prmANOVA = 0.038). However, the post 
hoc test did not identify any significant differences for six pairs of 

FIGURE 3

EEG microstate topographies of 4 microstate classes. (A) Global microstate topographies obtained from both tPBM and sham sessions during four 
experimental periods (Pre, Stim1, Stim2, and Post). (B) Microstate topographies during the four temporal segments under Sham session. (C) Microstate 
topographies during the four temporal segments under active tPBM session.
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periods. The smallest pTukey value for this case was 0.125 between the 
Pre and Stim1 periods. For other microstates, the statistical analysis 
did not reveal any significant differences across the four periods of 
both experimental sessions.

3.3. Alterations in transition probabilities 
among microstate classes induced by tPBM

Further analysis of the transition probabilities between different 
microstate classes revealed several significant differences induced by 
tPBM. Figure 5 shows the transition probabilities among the four 
microstate classes. Statistical results showed that the transition 
between microstates A and D increased significantly during the active 

stimulation period, whereas the transition between microstates B and 
C declined significantly. Specifically, the post hoc Tukey’s test revealed 
significant increases in the transition probabilities from microstate A 
to D between the Pre and Stim 2 periods (pTukey = 0.01) and Stim1 and 
Stim2 periods (pTukey = 0.013). The transition from microstate D to A 
also significantly increased between Stim1 and Stim2 (pTukey = 0.041). 
In contrast, the transition probabilities from microstate B to C 
significantly decreased (pTukey < 0.05, when comparing the Pre and 
Stim2 periods). Similarly, a significant drop in the transition 
probabilities from microstate C to B was also observed (pTukey = 0.01 for 
Pre and Stim2 periods and pTukey = 0.04 for Stim1 and Stim2 periods). 
For the sham session, the statistical analysis did not reveal any 
significant differences in the transition probabilities across the four 
temporal periods.

FIGURE 4

Statistical comparisons of the microstate (A) occurrence (1/s) and (B) contribution (%) parameters among four temporal segments (Pre, Stim1, Stim2, 
and Post) for each of the four microstate classes, A, B, C, and D. These comparisons are made independently for the active and sham sessions. 
Statistical results were obtained by one-way repeated measures ANOVA and the post hoc pairwise comparisons with Tukey correction. Significant 
differences between a period pair are marked as “∗” for p  <  0.05 after Tukey correction.
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3.4. Influences of tPBM on EEG microstate 
topographical power

As mentioned in section 2, we performed EEG microstate analysis 
in the frequency domain and calculated the percentage changes in 
power for each microstate across the delta (0.5–4 Hz), theta (4–8 Hz), 
alpha (8–13 Hz), and beta (13–30 Hz) frequency bands using Eq. (4). 
Accordingly, Figures 6A,B show the baseline-normalized changes in 
microstate power across the delta band (Figure 6A) and alpha band 
(Figure 6B) for the four microstate classes during the tPBM and post-
tPBM periods. The topographical maps also highlight channels whose 
cluster-associated p-values were below 0.05.

CBPT revealed significant differences in normalized power 
between the tPBM and sham sessions across multiple microstates. 
Specifically, within the delta band, the results revealed significantly 
lower normalized powers during and after tPBM compared to the 
sham session across all four microstate classes. In contrast, in the 
alpha band, the microstate powers of class D exhibited significant 
augmentation during the active tPBM session (Stim 1 and Stim 2) 
compared to the sham session. This augmentation, prominently 
observed in the central to the left-parietal region during Stim1 and in 
the mid-frontal to the left-parietal region during Stim2, underscores 
the distinctive impact of tPBM on microstate D in the alpha band.

4. Discussion

4.1. Effects of tPBM on EEG microstate 
classes and respective brain networks

Regarding EEG microstate classes, several simultaneous 
EEG-fMRI studies have investigated correlations between EEG 
microstates and fMRI resting states (Smith et al., 2009; Britz et al., 
2010; Musso et al., 2010). Accordingly, microstate A is related to the 
activation of the bilateral superior and middle temporal lobes; 
microstate B is associated with the activation of the bilateral occipital 
cortex (Smith et al., 2009; Britz et al., 2010; Michel and Koenig, 2018). 
In addition, microstate C is linked to the dorsal anterior cingulate 
cortex, bilateral inferior frontal cortices, and right insular area, while 
microstate D is correlated with activation in the right-lateralized 
dorsal and ventral areas of the frontal and parietal cortices (Smith 
et al., 2009; Britz et al., 2010). Compared with prior publications in the 
literature, the four EEG microstate classes identified in this study are 
in good agreement with previous findings (Koenig et al., 2002; Michel 
and Koenig, 2018).

As shown in section 3, the statistical analysis of the temporal and 
spectral characteristics of these four microstates revealed that tPBM 
mainly modulated microstates A and D. This set of modulations 

FIGURE 5

Transition probabilities between each pair of the four microstate classes and respective statistical comparisons under separate active and sham 
conditions. Statistical results were obtained by one-way repeated measures ANOVA and post hoc pairwise comparisons with Tukey’s correction. 
Significant differences between respective pairs are marked as “*” for p  <  0.05, after Tukey’s correction.
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implies that tPBM has the ability to alter or stimulate the resting 
human brain in the frontal, temporal, and parietal cortices. A recent 
human study (Dmochowski et al., 2020) that employed BOLD-fMRI 
to assess tPBM-induced hemodynamic activity found increases in 
resting-state functional connectivity in seed regions in the frontal, 
temporal, and parietal cortices. Another report from our own group 
developed a combined analysis of Singular Value Decomposition and 
eLORETA (Wang et  al., 2022b), which revealed a tPBM-induced 
enhancement in alpha power in the frontal–parietal network. Thus, 

our findings derived from the EEG microstate analysis supplemented 
prior findings in brain regions stimulated by tPBM.

4.2. Effects of tPBM on EEG microstate 
classes and respective brain networks

As presented in sections 3.2 and 3.3, the results showed significant 
increases in (i) the occurrence of microstates A and D and (ii) the 

A

B

FIGURE 6

Topographic maps of group-averaged (n  =  45), baseline-normalized changes in microstate power in four microstate classes during tPBM/sham and 
post-tPBM/sham periods in the (A) delta band and (B) alpha band. Stars/crosses indicate clusters of electrodes with significant differences between the 
conditions (“*” for pcluster < 0.01 and “x” for pcluster < 0.05). The purple color of the stars/crosses in (A) indicates that the normalized delta powers in the 
tPBM session were significantly lower than those in the sham session. The red color of the crosses in (B) indicates that the normalized alpha powers of 
the tPBM session were significantly higher than those in the sham session.
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transition between microstates A and D during the stimulation period 
of the active tPBM session. These findings imply that tPBM promotes 
brain activity in microstates A and D, as well as more frequent 
transitions between them, all of which can also be considered potential 
indicators of active neuromodulation effects of tPBM. Previous studies 
on the functional significance of EEG microstates (Britz et al., 2010; 
Milz et al., 2016; Seitzman et al., 2017) have suggested that microstate 
A is associated with the auditory network, while microstate D is 
related to the dorsal attention network (DAN). A recent study using 
resting-state fMRI (Argilés et al., 2022) also reported an alteration in 
the functional connectivity of the DAN after red light exposure. 
Moreover, several papers have reported significant enhancement of 
attention and memory induced by tPBM (Barrett and Gonzalez-Lima, 
2013; Hwang et al., 2016; Vargas et al., 2017; Jahan et al., 2019). In 
particular, Zhao et al. recently demonstrated that right-forehead tPBM 
with a 1,064-nm laser significantly enhances visual working memory 
capacity based on neuropsychological measurements of 
occipitoparietal contralateral delay activity (CDA; Zhao et al., 2022), 
which is well accepted as a robust neural correlate of visual working 
memory. Thus, we  speculate that the tPBM-promoted increase in 
activity in microstates A and D may be a potential mechanism for 
brain function enhancement.

4.3. Alterations by tPBM in EEG microstate 
topographical delta and alpha powers

In addition to the time-domain EEG microstate analysis, 
we assessed the spectral information of microstate classes throughout 
the different experimental periods of both tPBM and sham sessions. 
To the best of our knowledge, only a few studies have focused on 
frequency-domain analysis of EEG microstates (Li et al., 2021). By 
combining the MEMD and HHT methods (Cho et al., 2017; Yang and 
Ren, 2019), we could overcome the tribulation due to the short-length 
signals of EEG microstates and estimate the frequency-specific power 
of different microstate classes. Accordingly, microstate spectral 
analysis revealed significant differences in the normalized power 
between the tPBM and sham sessions. Specifically, we observed that 
active tPBM induced significant reductions in normalized delta power 
in three microstates (A, B, and D). This aligns with prior findings 
(Jahan et al., 2019; Wang et al., 2021; Shahdadian et al., 2022) that have 
also reported a decrease in delta power during and after tPBM. For 
instance, a previous study demonstrated a significant decline in delta 
power in the tPBM group, as opposed to a notable increase in delta 
power in the sham group (Jahan et al., 2019). These observations 
resonate with previous EEG studies that have inferred a connection 
between the increase of slow wave oscillations and an individual’s 
proclivity for rest and sleep. Thus, tPBM emerges as a potential 
mitigator of neuronal fatigue through its capacity to augment cellular 
energy production and promote neuronal metabolism.

Microstate spectral analysis also unveiled that tPBM significantly 
enhanced normalized alpha power topographies in microstate D 
during the active tPBM period. In particular, enhanced powers 
occurred in the central to left-parietal region during Stim1 and in the 
mid-frontal to left-parietal region during Stim2. This latter finding 
underscores the importance of both alpha power and microstate 
D. Because microstate D is closely associated with brain activity in the 
dorsal and ventral areas of the frontal and parietal cortices (Smith 

et al., 2009; Britz et al., 2010), our results imply that right-prefrontal 
tPBM facilitates significant promotion of EEG activity in microstate 
D across the frontal and parietal regions in alpha rhythm. Overall, 
both time-domain and frequency-domain EEG microstate analyses 
presented us with the same key microstate class, namely, class D, 
which was most significantly modulated by the right-forehead tPBM 
with a 1,064-nm laser compared to other EEG microstate classes.

It is worth noting that although the local stimulation site 
experienced a slight increase in skin temperature due to light 
absorption, the changes in microstate parameters observed in this 
study were not a result of the thermal effect caused by light. Studies on 
the effects of tPBM on brain temperature, conducted through a 
computational model (Bhattacharya and Dutta, 2019) and magnetic 
resonance thermometry (Dmochowski et  al., 2020), revealed no 
significant difference in temperature between tPBM and sham 
conditions. Additionally, a recent EEG study comparing tPBM and 
thermal stimulation found notable differences in the alterations of 
EEG power topography between the two types of stimulation (Wang 
et al., 2021).

4.4. Limitations and future work

While this study has enabled us to obtain several new findings, 
several limitations exist. First, in Session 4.2, we attempted to elucidate 
the impact of tPBM on microstate parameters by considering the roles 
of microstates suggested by previous studies in the literature. However, 
the specific function of microstates may vary depending on the 
circumstances in which the EEG data was collected. Second, we took 
the ICA-based artifact correction approach, which could create an 
author-made artifact and thus affect the validity of the study. Third, 
we chose to adopt four microstate classes, as mostly employed in prior 
EEG microstate studies. Nevertheless, we acknowledge that integrating 
formal criteria to determine the optimal number of microstates holds 
the potential to bolster the robustness of the analysis. Last, it is 
possible that tPBM may affect the occurrence of artifacts since some 
of them are related to brain behaviors.

To overcome the limitations, further work includes (1) to 
conducting source localization analysis that can provide a more 
comprehensive explanation of the changes in microstate parameters 
throughout the tPBM session and further insights into its effects; (2) 
to perform artifact rejections to minimize potential confounds 
introduced by artifact correction methods; (3) to introduce a more 
systematic procedure for microstate selection to characterize more 
comprehensively/accurately the microstate patterns present in the 
EEG data; and (4) to investigate tPBM-induced artifacts on 
EEG microstates.

5. Conclusion

In this study, 64-channel EEG data were recorded from 45 healthy 
subjects under both active and sham 8-min tPBM with a 1,064-nm 
laser delivered on the right forehead of the subjects. Both time- and 
frequency-domain analyses were employed to identify and investigate 
tPBM-induced alterations in the dynamic EEG microstates in the 
human brain. Four global microstate classes for both the tPBM and 
sham sessions throughout the different experimental periods (i.e., 
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pre-, during, and post-stimulation) were first identified using 
conventional EEG microstate analysis. Various temporal microstate 
parameters were then extracted and statistically analyzed to assess the 
effects of tPBM on temporal brain dynamics. Moreover, spectral 
analysis was also performed to investigate the variation in EEG power 
of microstate classes over the respective periods of tPBM and sham 
sessions. Statistical analyses revealed that tPBM resulted in (1) a 
significant increase in the occurrence of microstates A and D and a 
significant decrease in the contribution of microstate C; (2) a 
substantial increase in the transition probabilities between microstates 
A and D; and (3) a substantial increase in the alpha power of 
microstate D. These findings not only were consistent with our 
previous reports on tPBM-induced alterations in EEG power, but also 
confirmed the neurophysiological effects of tPBM on EEG microstates, 
particularly in class D, which reflects brain activation across the 
frontal and parietal regions. Future efforts should include 
investigations of the relationships between cognition-evoked 
functional improvement and alterations of EEG microstates in 
response to tPBM for a better understanding of the underlying 
mechanism between them.
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