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Parkinson’s disease (PD) is the second most common neurodegenerative disease 
in the world, and alpha-synuclein (α-syn) abnormal aggregate and mitochondrial 
dysfunction play a crucial role in its pathological development. Recent studies 
have revealed that proteins can form condensates through liquid–liquid phase 
separation (LLPS), and LLPS has been found to be widely present in α-syn aberrant 
aggregate and mitophagy-related protein physiological processes. This review 
summarizes the occurrence of α-syn LLPS and its influencing factors, introduces 
the production and transformation of the related protein LLPS during PINK1-
Parkin-mediated mitophagy, hoping to provide new ideas and methods for the 
study of PD pathology.
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1. Introduction

1.1. Parkinson’s disease

Parkinson’s disease (PD) is the second most common neurodegenerative disease in the 
world, with approximately 6.1 million people affected worldwide in 2016. PD occurs mainly in 
older age groups, with a prevalence of about 0.5–1% in people aged 65–69 years, rising to 1–3% 
in people aged 80 years and older, and with a higher prevalence in men than in women (Tanner 
and Goldman, 1996; GBD 2016 Parkinson’s Disease Collaborators, 2018). With the aging of the 
population, the prevalence and incidence of PD are projected to increase by 30% by 2030, posing 
a heavy burden on social development (Chen et al., 2001).

Patients with PD often exhibit motor and non-motor symptoms. Motor symptoms such as 
bradykinesia, rigidity, resting tremor, postural instability; and non-motor symptoms include loss 
of smell, sleep disturbance, autonomic dysfunction, psychological disorders, cognitive 
impairment, etc. (Kouli et al., 2018; Armstrong and Okun, 2020). The exact cause of PD is still 
unknown, and studies have shown that its occurrence may be related to various factors such as 
genetics, environment, and lifestyle. The main pathological features of PD are abnormal 
aggregate of alpha-synuclein (α-syn) to form Lewy bodies and progressive loss of dopaminergic 
neurons in the substantia nigra compacta. Mitochondrial dysfunction is also thought to play a 
vital role in the development of PD pathology. Mitochondria produce ATP through the process 
of oxidative phosphorylation, which is the primary source of intracellular energy production, 
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and impaired mitochondrial function in PD patients leads to a 
reduction in energy production, which negatively affects neuronal 
function and survival. In addition, mitochondria are the main source 
of oxidative stress, and the generation of reactive oxygen radicals can 
cause damage to cellular components (such as proteins, lipids, and 
DNA), and mitochondrial dysfunction in PD exacerbates oxidative 
stress, further triggering cytotoxic and inflammatory responses 
(Grunewald et al., 2019; Monzio Compagnoni et al., 2020; Malpartida 
et  al., 2021). When mitochondria are damaged, cells degrade the 
damaged mitochondria through selective autophagy (i.e., mitophagy) 
to regulate cellular homeostasis.

There is a close relationship between α-syn and mitophagy, which 
plays an essential role in the pathogenesis of PD. Mitophagy can 
remove abnormally aggregated α-syn, and enhanced mitophagy 
reduces α-syn aggregate, thereby attenuating the pathological 
progression of PD (Picca et  al., 2021). Moreover, the abnormal 
aggregate of α-syn can interfere with the normal function of 
mitophagy-associated proteins (e.g., PINK1, Parkin), thus affecting 
the mitophagy process (Minami et al., 2015).

Currently, PD treatment can only relieve patients’ symptoms 
rather than cure them. Therefore, exploring the cause of the disease 
and clarifying the pathological process are crucial for furthering 
understand PD and finding appropriate treatments. Further 
exploration of the roles played by α-syn and mitophagy in the 
pathology of PD, and their interactions, has become an important 
starting point to clarify the pathogenesis of PD.

1.2. Liquid–liquid phase separation (LLPS)

Recent studies have revealed a close relationship between phase 
separation and PD. Such as oil drops in water, the process by which 
different components of a liquid environment are separated to form 
two or more distinct phases under certain conditions due to 
differences in their biophysical properties is known as liquid–liquid 
phase separation (LLPS). In living cells, biomolecules (proteins or 
nucleic acids) are separated by LLPS into liquid-like, non-membranous 
bodies (called phases, also known as biomolecular condensate) with 
specific functions, and there are distinct interfaces between the 
different phases to form separate compartments isolated from the 
external environment, ensuring that different biochemical reactions 
take place in time- and space-constrained compartments (Wang and 
Zhang, 2019; Gouveia et al., 2022). An increasing number of studies 
have shown that LLPS is involved in the formation of intracellular 
membraneless organelles, such as P granules (Brangwynne et  al., 
2009), nucleolus (Brangwynne et al., 2011), stress granule proteins 
(SG) (Molliex et al., 2015) etc. LLPS of biomacromolecules (proteins 
or nucleic acids) has become an important mechanism to assist 
cellular functions. In a solution containing a biomolecule, 
biomolecules and solvent molecules tend to be evenly distributed to 
maintain the maximum entropy value and the lowest free energy 
(Alberti et al., 2019). When the concentration of biomacromolecules 
gradually increases, the biomacromolecules gradually aggregate and 
self-assemble to form a concentrated phase due to multivalent 
interactions between molecules, especially weak interactions. In this 
case, their reduced entropy value is compensated by the additional 
molecular interactions in the concentrated and diluted phases (Zhang 
et al., 2020). The possession of intrinsically disordered regions (IDR) 

and low-complexity domains (LCD) is one of the characteristics of 
proteins capable of LLPS, with IDR lacking a stable conformation that 
contributes to the involvement of intermolecular interactions. LCD is 
characterized by amino acid bias and/or repetitive linear motifs, a 
feature often associated with structural disorders of proteins (Molliex 
et al., 2015).

Biomolecules form condensate through LLPS, the condensate is 
not static after its formation and will change as the external 
environment changes and the internal structure is adjusted (Wang 
and Zhang, 2019). In the initial stage of LLPS to form a condensate, 
the mutual gravitational force between the liquid molecules is not 
sufficient to hold the entire liquid phase clumps together, and these 
condensates float in solution in the form of a liquid with a high 
degree of mobility. With the passage of time or under the action of 
various influencing factors, the intermolecular gravitational force 
inside the condensate gradually increases, and the structure of the 
droplet gradually becomes more organized. This ordered structural 
state is called gel-like, gel-like has a certain degree of elasticity and 
solid nature, but still has a certain degree of mobility. Based on 
gel-like formation, further interactions can lead to re-aggregate of the 
gel to form fibrous aggregate (Alberti et al., 2019). The size, formation 
rate, and biophysical properties of phase-separated protein 
condensate are important for their realization of different cellular 
functions, and such properties change when influenced by different 
factors, such as the transition from a highly fluid liquid state to a 
hydrogel state and eventually to a solid-like condensate (Banani et al., 
2017; Alberti et  al., 2019). In addition, multiple factors (e.g., 
environmental changes, changes in the protein itself, protein–protein 
interactions, etc.) have been found to affect the physiological 
functions of proteins/RNA by influencing the LLPS process of 
biomolecules (Ray et  al., 2020; Poudyal et  al., 2022; Huang 
et al., 2022a).

In addition, LLPS also plays a vital role in the study of human 
pluripotent stem cells (hPSCs), where many key transcription factors 
and RNA-binding proteins can undergo phase separation phenomena 
to form condensate that influences the expression of specific genes and 
cell fate decisions and is involved in the regulation of the process that 
maintains the stemness and self-renewal capacity of hPSCs (Kim, 
2021; Lim and Meshorer, 2021).

1.3. Relationship between LLPS and 
neurodegenerative diseases, and PD

Recently, we found that multiple neurodegenerative disease-
associated proteins undergo the biophysical process of LLPS, such 
as Tau protein in Alzheimer’s disease (AD) (Ambadipudi et  al., 
2017; Wegmann et al., 2018; Kanaan et al., 2020; Wen et al., 2021), 
α-syn in PD (Hardenberg et al., 2020; Ray et al., 2020), FUS (Patel 
et al., 2015; Zbinden et al., 2020) and TDP-43 (Conicella et al., 2016; 
Liu and Fang, 2019) associated with amyotrophic lateral sclerosis 
(ALS) and frontotemporal dementia (FTD), etc. The current focus 
is mainly on α-syn and phase separation processes in mitophagy. 
LLPS is observed to occur in the early stages of α-syn aberrant 
aggregate (Elbaum-Garfinkle, 2019; Ray et al., 2020), the formation 
of biomolecular condensates by α-syn phase transition is closely 
related to the pathogenesis of PD. In addition, LLPS has been found 
to be involved in the regulation of mitophagy processes (Noda et al., 
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2020; Yamasaki et al., 2020; Peng P. H. et al., 2021; Xing et al., 2021; 
Brodin et al., 2022). LLPS in α-syn and mitophagy are discussed 
further below. Therefore, it is important to observe and study the 
role of LLPS in α-syn abnormal aggregate in PD and its role in 
regulating mitophagy for our further understanding of the 
pathogenesis of PD.

This review generalizes the occurrence, development, and related 
influencing factors of α-syn LLPS, a key pathological protein in PD, 
and the research progress of LLPS in PINK1-Parkin-mediated 
mitophagy, starting from the mechanism of the role of biomolecular 
condensates in the process of α-syn aggregate and mitophagy in PD, 
and discusses its importance in the development of PD pathology, 
hoping to provide new ideas and methods for the pathological 
research of PD.

2. LLPS of the pathological protein 
α-syn in PD

2.1. Occurrence of α-syn LLPS

α-syn misfolding and aggregate is a key target for PD treatment. 
Therefore, observing the role of α-syn LLPS in aggregate is crucial 
for us to clarify the pathogenesis of PD further (Giampa et al., 2021; 
Gadhe et al., 2022; Li et al., 2022). α-syn is a naturally unfolded 
protein consisting of 140 amino acids, which is abundantly present 
in presynaptic nerve endings, and consists of three structural 
domains: a positively charged amphiphilic N-terminal domain 
(residues 1–60), which interacts with the membrane; a hydrophobic 
non-amyloid beta component (NAC) domain (residues 61–95), 
which is involved in fiber formation and aggregate; and a negatively 
charged acidic C-terminal domain (residues 96–140), associated 
with α-syn nuclear localization and involved in the interaction of 
α-syn with metal ions, ligands and other proteins (Uversky and 
Eliezer, 2009; Poudyal et al., 2022). It was found that the LCD in the 
N-terminal and NAC domains of α-syn are the key factors driving 
the phase separation of α-syn, but exactly which residues are 
involved is still unknown.

In vitro, expression of purified α-syn undergoes LLPS and occurs 
before α-syn aggregate. The formation of liquid-like condensates of 
α-syn in the presence of 10% polyethylene glycol (PEG)-8,000 at a 
concentration of ≥200 μm was observed by differential interference 
contrast microscope (DIC), which was further confirmed by light 
scattering and fluorescence imaging using fluorescein isothiocyanate 
(FITC)-labeled α-Syn (10% labeled). Over time, α-syn condensates 
undergo an abnormal phase transition from liquid (day 2) to gel (day 
5) to solid-state (day 30), with reduced mobility and migration 
capacity, eventually giving rise to amyloid fibril aggregate. Also, α-syn 
condensates were observed to appear in the cellular model and 
transform into perinuclear aggregates (Ray et  al., 2020). This 
phenomenon was also observed in nematodes, when yellow 
fluorescent protein (YFP)-tagged human α-syn protein was stably 
expressed in nematode body wall muscle cells, the emergence of 
condensates in nematode adults was observed by high-resolution 
fluorescence lifetime imaging microscopy (FLIM), and the liquid state 
(days 1–11) was gradually transformed into a starch-rich hydrogel 
with the nature of Louisianian vesicles as nematodes grew (days 
13–15) (Hardenberg et al., 2021).

2.2. Multiple factors affect the α-syn LLPS 
process

2.2.1. Experimental conditions affect LLPS
Changes in the reaction system such as protein concentration, 

aggregates, salt concentration of the buffer system, pH, time, 
temperature, etc. can have certain effects on α-syn LLPS (Figure 1). 
When observing the process of protein LLPS, a certain amount of 
molecular aggregates (e.g., PEG8000, etc.) is often added to simulate 
the intracellular physiological environment, and usually the higher 
the protein concentration (e.g., α-syn concentration ≥ 200 μm) and 
molecular aggregates concentration (PEG-8000 ≥ 10%, w/v), the 
faster LLPS occurs (Ray et al., 2020; Sawner et al., 2021). In addition, 
the LLPS of α-syn in vitro is affected by the salt concentration of the 
buffer system, when salt is present (≥500 mM NaCl), the N-terminal 
and C-terminal of protein molecules are neutralized and the 
hydrophobic effect is enhanced, which contributes to the occurrence 
of LLPS (Sawner et  al., 2021). The higher the ionic strength, the 
higher the concentration of protein required for LLPS to occur. The 
critical concentration for LLPS to occur in α-syn under acidic pH 
(pH = 5.5) conditions is reduced, which may be related to its closer 
proximity to the isoelectric point of α-syn. The size and physical 
properties of α-syn condensates also change with increasing time 
(day 0–day 30) and temperature (4°C–37°C). Experimental utensils 
were also found to affect the LLPS process. When the slides were 
treated with Pluronic F-127, the surface hydrophilicity of the slides 
increased, LLPS was enhanced, and α-syn aggregate increased 
(Sawner et al., 2021).

In addition, α-syn LLPS has been associated with a variety of 
factors that may be involved in regulating the onset of PD by affecting 
α-syn LLPS processes and altering the normal biological function of 
α-syn, these are described below (Mukherjee et al., 2022).

2.2.2. PD-related factors affect α-syn LLPS
Metal ions affecting PD pathology (Ca2+, Cu2+, Fe3+, Mn2+) were 

found to accelerate the progression of α-syn LLPS, and this promoting 
effect could be reversed by the corresponding metal ion chelators (Ray 
et al., 2020; Sawner et al., 2021; Huang et al., 2022b; Xu et al., 2022b). 
Ca2+ interacts with the acidic region of the C-terminus of α-syn to 
improve the binding of α-syn to the membrane (Tamamizu-Kato et al., 
2006), and also makes the structure of the α-syn monomer more open, 
which promotes intermolecular electrostatic and hydrophobic 
interactions and thus LLPS (Han et al., 2018).

Adao, R. found that lipids may be associated with α-syn in PD and 
that negatively charged lipids induce α-syn folding and promote α-syn 
aggregate (Adao et al., 2020). At the same time, we observed that the 
α-syn condensates also recruits lipid membranes, and the N-terminal 
of α-syn binds to negatively charged lipids, resulting in a tighter 
conformation of α-syn that accelerates α-syn LLPS and the formation 
of fibrous aggregate (Fusco et al., 2014).

Synaptophysin is related to the membrane fusion and release of 
synaptic vesicles. The abnormal aggregate of α-syn may interfere with 
synaptophysin’s normal function and affect synaptic vesicles’ transport 
and release process, thereby affecting neurotransmission. Synapsins 
have also been found to affect the α-syn LLPS process, and when 
synapsin 1 and α-syn are co-expressed in cells, condensates rich in 
both proteins appear. Synapsin 1 condensates are poorly mobile and 
are thought to act as scaffolding molecules for this condensate, α-syn 
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condensates are more mobile and are recruited to aggregate within the 
condensates, and synaptic vesicles (SVs) are involved in the regulation 
of this process (Hoffmann et al., 2021).

Multiple drugs for PD affect α-syn LLPS, such that α-syn does not 
undergo LLPS in the presence of dopamine (an inhibitor of α-syn 
aggregate) (Ray et  al., 2020); yohimbine (a polyhydroxyflavonol 
compound) delays the α-syn liquid–solid phase transition in a dose-
dependent manner, which in turn inhibits amyloid aggregate, and also 
breaks down amyloid fibrils in mature α-syn condensates (Xu et al., 
2022c). Curcumin prevented the transformation of α-syn into amyloid 
by reducing the mobility of α-syn condensate and also delayed the phase 
separation transition of PD-associated α-syn E46K and H50Q mutants 
(Xu et al., 2022a). The antimicrobial peptide LL-III interacts with α-syn 
monomer and condensate bodies to stabilize the condensate state of 
α-syn and prevent its transition to the fibrillar state (Oliva et al., 2021).

Several proteins have also been observed to be involved in α-syn 
LLPS. e.g., the proline-rich P2 region of tau protein interacts with the 
α-syn C-terminus to recruit α-syn into tau condensates (Siegert et al., 
2021). TDP-43 prion-like structural domain monomers promote fibril 
formation and exhibit enhanced cytotoxicity when co-incubated with 
α-syn (Dhakal et al., 2021; Agarwal et al., 2022). The interaction of the 
positively charged N-terminal of Prion protein with the negatively 
charged C-terminal of α-syn synergistically promotes LLPS condensate 
formation and liquid-to-solid transition (Agarwal et al., 2022).

2.2.3. α-syn own change affects α-syn LLPS
Mutations of α-syn are closely related to the occurrence and 

development of PD, and the most common ones are A53T and 

E46K. These mutations will increase the abnormal aggregate of α-syn, 
leading to synaptic toxicity, neuronal degeneration, and cell death. 
α-syn point mutations A53T, E46K also contributes to α-syn LLPS and 
subsequent fiber formation (Ray et al., 2020). In addition, protein 
post-translational modifications (PTM) are involved in α-syn LLPS 
regulation. N-terminal acetylation increases protein solubility and 
delays α-syn LLPS; S129 phosphorylation accelerates α-syn LLPS and 
the subsequent liquid-to-solid to amyloid transition (Ray et al., 2020). 
The different structural domains of α-syn are also involved in the 
LLPS process. Electrostatic interactions at the C-terminus regulate 
α-syn LLPS, and truncated α-syn accelerates the aggregate of α-syn 
amyloid through phase separation (Gallardo et al., 2020; Huang et al., 
2022a). In addition, the positively charged N-terminal also interacts 
with the negatively charged C-terminal over long distances, protecting 
the NAC region and thus self-inhibiting LLPS (Sawner et al., 2021). 
When α-syn undergoes LLPS, its conformation changes from a 
“hairpin” structure to an “elongated” structure, which becomes highly 
flexible and disordered, promoting protein interactions and LLPS 
(Ubbiali et al., 2022).

2.3. Synaptic nuclear protein family 
members and α-syn LLPS

β-syn, γ -syn is a member of the same synaptic nuclear protein 
family as α-syn and is also closely associated with the pathogenesis of 
PD. β-syn is a 134 amino acid protein with extensive synaptic 
co-localization with α-syn. It cannot aggregate alone due to the lack 

FIGURE 1

Multiple factors affect the α-syn Liquid-liquid phase separation (LLPS) process. α-syn undergoes LLPS to form liquid condensates, and under the 
influence of various factors, the state changes, forming hydrogel and eventually forming amyloid-like fibril. (1) Multiple factors promote α-syn LLPS. (i) 
Experimental conditions, such as protein concentration; aggregating agent; salinity; acidic pH; incubating time; temperature. (ii) External substances, 
such as metal ion (Ca2+; Cu2+; Fe3+; Mn2+); liposome; synaptophysin; interacting protein (Tau; TDP-43; Prion). (iii) α-syn own change, such as point 
mutation (A53T; E46K); posttranslational modification (phosphorylation); structural domain (C terminal). (2) Multiple factors slow down α-syn LLPS. (i) 
External substances, such as medicine (dopamine; myricetin; curcumin; antimicrobial peptide). (ii) α-syn own change, such as posttranslational 
modification (acetylation); structural domain (N terminal).
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of hydrophobic residues 73–83 in its NAC region. β-syn can also play 
a neuroprotective role by inhibiting α-syn aggregate and fiber 
formation (Kahle et al., 2000; Uversky et al., 2002; Sharma et al., 2020), 
V70M and P123H alter the structure and amyloidosis of β-syn, which 
accelerates the aggregate of β-syn (Ohtake et  al., 2004). γ-syn is 
structurally similar to α-syn and can form fibers alone, but its 
formation rate is much slower than that of α-syn.

Interactions between members of the synaptic nucleoprotein family 
have been widely discovered, but whether β-syn, γ -syn is involved in 
the regulation of α-syn LLPS is currently unknown. Observing the 
effect of β-syn, γ-syn on α-syn condensate formation by LLPS may 
provide us with new insights to study the interactions between synaptic 
nucleoproteins and prevent abnormal aggregate of α-syn.

3. Phase separation in mitochondrial 
homeostasis in Parkinson’s disease

3.1. Overview of mitophagy

Cellular homeostasis is an important basis for the organism to 
maintain normal physiological activities. Therefore, maintaining 
cellular homeostasis is of great significance for disease prevention and 
treatment. Currently, cells maintain homeostasis by removing 
damaged components through two main pathways: (1) Ubiquitin-
proteasome system (UPS): degrades short-lived proteins in cells. (2) 
Autophagy-lysosome pathway (ALP): digests long-lived proteins in 
cells and participates in the autophagy of abnormal organelles (Nijholt 
et  al., 2011). These two systems are synergistically involved in 
maintaining the normal function of neurons, and when they become 
dysfunctional, they trigger the development of neurodegenerative 
diseases, such as PD.

Cellular autophagy plays an essential role in maintaining cellular 
metabolic homeostasis and involves a series of processes such as 
double membrane formation, extension, vesicle maturation (called 
autophagosomes), and translocation of target cargo to lysosomes 
(Glick et al., 2010; Ghavami et al., 2014). Mitochondria are important 
double-membrane organelles in the cell and play a role in fundamental 
processes of cellular activity such as ATP production, calcium 
signaling, and iron homeostasis (Raffaello et al., 2016; Spinelli and 
Haigis, 2018). Mitophagy is the process by which damaged and aged 
mitochondria are delivered to lysosomes for degradation via the 
autophagic pathway for mitochondrial quality and quantity regulation 
(Pickles et al., 2018; Onishi et al., 2021). Mitophagy is a crucial way 
for cells to prevent damaged mitochondria accumulation and perform 
mitochondrial quality control (Liu et al., 2019).

Narendra et  al. (2008) first revealed PINK1-Parkin-mediated 
mitophagy and demonstrated that it is one of the key pathways of 
mitophagy (Nardin et  al., 2016; Kumar et  al., 2017). PINK1 is a 
mitochondrial targeting protein that enters mitochondria under 
physiological conditions via the translocase of the outer membrane 
(TOM) complex on the outer mitochondrial membrane (OMM) and 
the inner membrane translocase (TIM) 23 complex on the translocase 
of the inner membrane (IMM) (Pickrell and Youle, 2015; Sekine and 
Youle, 2018). When PD induced mitophagy occurs, mitochondria 
undergo depolarization, PINK1 accumulates on the OMM, and the 
S228 and S402 sites undergo autophosphorylation while 
phosphorylating the S62 site of the Parkin Ubl structural domain, 

recruiting and activating the E3 ubiquitin ligase Parkin, which in turn 
ubiquitinates mitochondrial outer membrane-associated proteins and 
recruits autophagy receptors (e.g., p62/SQSTM1, etc.), isolate and 
translocate damaged mitochondria for degradation via the autophagy-
lysosome pathway, and mediate mitophagy (Narendra et al., 2008; 
Matsuda et al., 2010; Ziviani et al., 2010; Heo et al., 2015; Lazarou et al., 
2015; Wauer et al., 2015; Han et al., 2020). Dysregulation of mitophagy 
may contribute to the neurodegenerative pathogenesis of PD.

Mitophagy plays an important role in PD. Abnormal mitochondrial 
function and damage are present in patients with PD, mitophagy can 
remove the damaged mitochondria and reduces mitochondrial 
dysfunction and mitochondria-associated cytotoxicity (Malpartida 
et al., 2021). This helps maintain the balance of energy metabolism 
within the cell and the healthy state of the mitochondria. Furthermore, 
mitochondria are one of the major intracellular sources of oxidative 
stress, and when mitochondrial function is impaired, it leads to 
excessive oxidative stress and mitochondrial DNA damage (Lizama 
and Chu, 2021). Mitophagy reduces oxidative stress and mitochondrial 
DNA damage, thereby protecting neurons from damage. Therefore, 
mitophagy is considered a potential therapeutic target for PD.

3.2. LLPS in mitophagy

Recently, LLPS has also been observed in mitophagy (Hollenstein 
and Kraft, 2020; Noda et al., 2020; Darling and Shorter, 2021; Hayashi 
et al., 2021; Zhang, 2022), Parkin, autophagy receptor p62/SQSTM1, 
TFEB, and several other biomacromolecules play important roles in 
mitophagy (Figure  2). However, the mechanisms by which these 
biomolecules undergo selective autophagy, how their biophysical 
properties affect their physiological functions, and whether they are 
associated with susceptibility to autophagic degradation remain 
unclear. Here we  highlight recent studies on phase separation in 
PINK-Parkin-mediated mitophagy and explore the role and 
mechanisms of biomolecular condensates in regulating PINK-Parkin-
mediated selective autophagy (Table 1).

3.2.1. LLPS of Parkin
Parkin is an E3 ubiquitin ligase of the RING-between-RING 

(RBR) family consisting of 465 amino acids, including a ubiquitin-like 
(Ubl) structural domain (residues 1–76) and four zinc-ligated cyclic 
structural domains: RING0 (residues 141–225), RING1 (residues 
226–327), IBR (residues 328–378) and RING2 (residues 410–465) in 
five parts (Koyano et al., 2014). The IBR structural domain is prion-
like and is thought to play a critical role in Parkin phase separation to 
form condensates. By adding Azami-Green fusion tags to ubiquitin-
coupled enzyme (E2) and Ash (Assembly helper) fusion tags to 
ubiquitin ligase (E3), Ryota et al. observed the interactions between 
them and found that during mitophagy, multiple E2s interact with 
activated Parkin to form a liquid–liquid phase separation within the 
cell, which subsequently triggers activation of E3 and subsequent 
ubiquitination of the substrate (Hayashida et al., 2023).

Previous studies have found that in PD pathology, PINK1 
accumulation on the OMM triggers low-level ubiquitination and 
phosphorylation of Parkin, and activated Parkin ubiquitinates OMM 
proteins, providing more substrates for PINK1 and accelerating Parkin 
recruitment to the mitochondria and activation. PINK1 plays a key 
role in Parkin recruitment and activation, and it is known that Parkin 
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undergoes LLPS to form liquid condensate under normal physiological 
conditions, so whether Parkin will still undergo LLPS and then 
be  activated after PINK1 removal, and how its liquid condensate 
biophysical properties will be changed. This provides a new perspective 
further to investigate the role of PINK1/Parkin in mitophagy.

Post-translational modifications associated with the PINK1/
Parkin pathway (e.g., phosphorylation, ubiquitination, etc.) play a 
key role in the regulation of mitophagy (Li et al., 2023). Different 
isoforms of phosphatase and tensin homologs (PTEN) have been 
found to be involved in the regulation of mitophagy. Subtype PTEN-a 

regulates mitophagy by promoting PINK1-mediated ubiquitin 
phosphorylation and accelerating the recruitment of Parkin in 
damaged mitochondria (Li et al., 2018; Barazzuol et al., 2020). The 
other isoform, PTEN-L, inhibits mitophagy by antagonizing 
ubiquitin phosphorylation, preventing Parkin mitochondrial 
translocation and inhibiting its E3 ubiquitin ligase activity (Wang 
et  al., 2018). In addition, protein phosphatase with EF-hand 
structural domain 2 (PPEF2) was shown to inhibit PINK1-dependent 
mitophagy through ubiquitin dephosphorylation, acting as a negative 
regulator of mitophagy (Wang et al., 2018; Wall et al., 2019). Various 

FIGURE 2

PINK1-Parkin-mediated mitophagy process. When Parkinson’s disease occurs, mitochondria depolarize, PINK1 accumulates in the mitochondrial outer 
membrane and recruits parkin. Parkin ubiquitinate mitochondrial outer membrane proteins and recruit autophagy receptors (such as p62/SQSTM1, 
OPTN, etc.), which bind to LC3 and other proteins to mediate autophagosome formation and autophagy-lysosomal pathway.

TABLE 1 Proteins that undergo LLPS during mitophagy in Parkinson’s disease.

Protein Character Key domain Condition Effect

Parkin E3 ubiquitin ligase IBR

Parkin is activated by PINK1 and 

interacts with a variety of E2 

ubiquitin coupled enzymes, and LLPS 

occurs

Mediate ubiquitination of 

mitochondrial outer membrane 

substrate proteins

p62/SQSTM1 Autophagy receptor protein PB1 UBA

LLPS occurs upon binding of p62/

SQSTM1 to ubiquitinated substrate 

proteins

Mediate phagophore formation and 

eventually form autophagosomes

OPTN Autophagy receptor protein UBA
LLPS occurs when OPTN binds to 

ubiquitinated proteins

Mediate phagophore formation and 

eventually form autophagosomes

TFEB transcription factor bHLH

TFEB condensates are observed in 

Hela cells, but the conditions for its 

occurrence remain unclear

Activate autophagy-lysosome gene 

expression and participates in the 

autophagy-lysosome pathway

PAS
A variety of ATG proteins involved in the 

PAS

A variety of ATG proteins 

LCD domain

Atg13 and Atg17-Atg29-Atg31 

complexes serve as scaffold proteins, 

and Atg1 is recruited to the 

condensate to function

Recruitment of ATG proteins for 

further autophagosome formation
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deubiquitinases (DUBs) such as USP8, USP14, USP15, USP30, 
USP35, etc. negatively regulate mitophagy by interacting with parkin 
or its substrates to antagonize parkin activity (Eiyama and Okamoto, 
2015; Harper et  al., 2018). Could we  also observe the effect of 
different post-translational modification effectors (e.g., PTEN 
isoforms, DUBs, etc.) on parkin by phase separation? This may 
provide a new starting point to further clarify its interaction mode.

3.2.2. LLPS of p62/SQSTM1
p62/SQSTM1 mediates selective autophagy of ubiquitinated 

protein aggregates (Bjorkoy et al., 2005). p62/SQSTM1 consists of 
440 amino acids with Phox and Bem1 (PB1) structural domains at 
the N terminus, followed by ZZ-type zinc finger motifs, LC3 
interaction region (LIR), Keap1 interaction region (KIR), and 
ubiquitin-associated (UBA) structural domain at the C terminus 
(Ichimura et al., 2008; Sanchez-Martin et al., 2019). The PB1 and 
UBA structural domains of p62/SQSTM1 mainly mediated the 
onset of phase separation (Berkamp et al., 2021). We observed the 
formation of p62/SQSTM1 condensates in vivo, and phase 
separation occurred when reconstituted p62/SQSTM1 mixed with 
polyubiquitin chains in vitro, and the cohesive bodies exhibited a 
semi-liquid nature (Figure 3). In addition, the phase separation 
process of p62/SQSTM1 is influenced by several factors, such as 
post-translational modifications of the protein like phosphorylation, 
acetylation (You et al., 2019; Fujioka and Noda, 2021), p62/SQSTM1 
disease-associated mutations (M404T, G411S) (Sun et  al., 2018; 
Zaffagnini et al., 2018), interacting proteins (NBR1, Nur77, KEAP1, 
MOAP-1, DAXX, etc.) (Yang et al., 2019; Sanchez-Martin et al., 
2020; Peng S. Z. et al., 2021). Phosphorylation of S406, acetylation 

of K420 and K435, M404T and G411S mutations, autophagy 
receptor NBR1, E3 ubiquitin ligase receptor protein KEAP1, and 
death domain-associated protein DAXX all promote p62/SQSTM1 
phase separation and increase condensate mobility and autophagic 
degradation (Lee et al., 2017; Yang et al., 2019; You et al., 2019; 
Sanchez-Martin et al., 2020). The N-terminal IDR domain of Nur77 
interacts with the N-terminal PB1 domain of p62/SQSTM1 to form 
a Nur77-p62 condensate, isolating damaged mitochondria and 
transferring them to lysosomes (Berkamp et al., 2021; Komatsu, 
2022). In contrast, the Bax-binding protein MOAP-1 interacts with 
the PB1-ZZ structural domain of p62, interfering with the self-
oligomerization and liquid–liquid phase separation process of p62 
(Tan et al., 2021). LC3B was also found to regulate p62/SQSTM1 
phase separation negatively.

p62 acts as an autophagy receptor that recognizes depolarized 
mitochondria through the ubiquitin chain and isolates and transfers 
damaged mitochondria by interacting with LC3. p62 has also been 
observed to interact with the upstream factor of the isolation membrane, 
FIP200, to recruit the ULK1 protein kinase complex and autophagy-
related (ATG) protein to form the isolation membrane (Fan et al., 2010; 
Jain et al., 2010; Danieli and Martens, 2018). Later, we may be able to 
further clarify the role of p62 in mitophagy by observing exactly how 
PINK1-Parkin-mediated ubiquitination of OMM proteins is involved 
in the altered nature of p62 condensate and whether phase transitions 
occur during the interaction of p62 with LC3 and ATG proteins.

3.2.3. LLPS of OPTN
OPTN acts as an autophagy receptor protein that interacts with 

LC3 to connect damaged mitochondria to autophagosomes. Phase 

FIGURE 3

LLPS of p62/SQSTM1. (1) Autophagy receptors p62/SQSTM1 recognize and bind to ubiquitylated substrate proteins, form p62/SQSTM1 aggregates 
through the liquid–liquid phase separation mechanism, which in turn mediate the formation of phagophore, and finally degrade damaged 
mitochondria by forming autophagosomes. (2) A variety of factors, such as post-translational modifications, point mutations, and multiple interacting 
proteins influences the formation of p62/SQSTM1 condensate.
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separation of OPTN has also been observed. Yamano et al. observed 
the occurrence of OPTN LLPS by using Fluoppi’s protein–protein 
interaction technique, which fused Ash tags to ubiquitin chains and 
humanized AzamiGreen (hAG) tags to the autophagy receptor protein 
OPTN. Phase-separated condensates were formed through multivalent 
interactions between the ubiquitin chain and the ubiquitin-binding 
domain of OPTN. In addition, ATG9A has been observed to 
co-localize with the OPTN condensates and interact with OPTN in the 
process of phagophore and autophagosome formation. When this 
interaction is absent, mitophagy does not occur (Yamano et al., 2020).

Further observation of the altered biophysical properties of 
OPTN in mitophagy using phase separation and whether it interacts 
with key autophagy proteins such as Parkin and LC3 may help us to 
understand its biological functions in mitophagy further.

3.2.4. LLPS of TFEB
Transcription factor EB (TFEB) is a key transcription factor that 

regulates the autophagy-lysosome system. It promotes the formation 
and function of autophagosomes and regulates mitophagy by 
promoting the transcription of autophagy-lysosome-related genes 
(e.g., PINK1, Parkin, LC3, etc.). TFEB undergoes LLPS to form 
condensate in vitro and in living cells, and IPMK which encodes 
inositol polyphosphate multi-kinase inhibits LLPS of TFEB. In vitro 
purified maltose-binding protein (MBP)-tagged TFEB undergoes 
LLPS in the presence of 200 μM NaCl and 5% PEG-8000, and the 
addition of IMPK was found to inhibit the formation of TFEB 
droplets (Chen et al., 2020). Phase separation of TFEB has also been 
observed in Hela cells. When IPMK is absent, the number of TFEB 
condensates and their co-localization with MED1 and target mRNAs 
increases, and activates TFEB, which in turn promotes autophagy and 
lysosomal biogenesis (Chen et al., 2020; Ferrari and Martens, 2020). 
Biological small molecules such as Ro-3,306 increase TFEB 
condensate body size and propensity to fuse, promoting lysosomal 
biogenesis and function in a TFEB-dependent manner and autophagy 
(Wang et al., 2022).

TFEB activates genes such as PINK1 and LC3 and promotes the 
formation of autophagic vesicles for degradation. In addition, TFEB 
can also inhibit the expression of genes such as mfn1 and mfn2, 
which inhibit mitochondrial proliferation by suppressing the 
mitochondrial fusion process. Whether these autophagy gene-
expressed proteins can regulate TFEB biological activity by altering 
the biophysical properties of TFEB condensate bodies may be  a 
starting point for us to explore other functions of TFEB.

3.2.5. LLPS of PAS
The formation of preautophagosomal structures (PAS) in the 

early stages of autophagy is closely related to LLPS, and Fujioka et al. 
found that the interaction between ATG1 complexes containing IDR 
structural domains resulted in phase separation in vitro to form a 
liquid condensate, which is PAS. Also, the mobility of PAS is essential 
for its dynamic recruitment of ATG proteins during autophagosome 
formation. The mobility of PAS is crucial for its dynamic recruitment 
of ATG proteins during autophagosome formation. For example, it 
activates ATG1 kinase to initiate autophagy and facilitates the binding 
of ATG9 vesicles to promote the formation of synaptic 
autophagosomal membrane vesicles. PAS formation is also inhibited 
when ATG1 undergoes point mutations or phosphorylation 
inhibition phase separation occurs (Fujioka et al., 2020).

As the initial step of autophagy, the PAS is the basis for the 
subsequent formation of complete autophagosomes. The unique 
fluidity of the liquid condensate formed by LLPS may be ideal for 
forming autophagosome assemblies, and LLPS may continue to play 
an important role in subsequent autophagosome formation.

Mitophagy is a key process in Parkinson’s disease and many important 
human neurodegenerative diseases. As an important mechanism 
regulating the process of mitophagy, understanding the changes of 
autophagy-related protein LLPS provides new ideas for the study of 
mitophagy and new solutions for the pathological study, diagnosis, and 
treatment of Parkinson’s disease and many mitochondria-related diseases.

4. Summary

There is currently no effective treatment for PD, so an in-depth 
understanding of its pathogenesis is of great significance for treating 
of PD. There is increasing evidence that liquid–liquid phase 
separation is involved in the pathological process of PD, that phase 
separation to form biomolecular condensates is involved in abnormal 
α-syn aggregate and mitophagy, and that altered biophysical 
properties of condensates are involved in regulating protein aggregate 
and mitophagy processes in PD.

LLPS of α-syn occurs at the pre-nucleation stage of its aggregate, 
and delaying the process of α-syn LLPS may serve as a new target for PD 
treatment. Mitophagy plays a crucial role in the clearance of damaged 
mitochondria in PD, and various key mitophagy proteins and related 
structures have been found to undergo LLPS. In addition, there is also 
a close relationship between α-syn aggregate and mitophagy, and α-syn 
aggregate negatively affects the regulation of mitophagy. Further studies 
exploring the relationship between α-syn and mitophagy will help 
unravel PD’s pathogenesis and provide new ideas for developing relevant 
therapeutic strategies. However, it is unclear whether LLPS is involved 
in the interaction process between α-syn and mitophagy. Therefore, to 
further understand PD pathology, it is essential to reveal the interaction 
of phase separation with abnormal α-syn aggregate and mitophagy.
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