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During the acquisition of electroencephalographic (EEG) signals, various factors 
can influence the data and lead to the presence of one or multiple bad channels. 
Bad channel interpolation is the use of good channels data to reconstruct bad 
channel, thereby maintaining the original dimensions of the data for subsequent 
analysis tasks. The mainstream interpolation algorithm assigns weights to channels 
based on the physical distance of the electrodes and does not take into account 
the effect of physiological factors on the EEG signal. The algorithm proposed in 
this study utilizes an attention mechanism to allocate channel weights (AMACW). 
The model gets the correlation among channels by learning from good channel 
data. Interpolation assigns weights based on learned correlations without the 
need for electrode location information, solving the difficulty that traditional 
methods cannot interpolate bad channels at unknown locations. To avoid an 
overly concentrated weight distribution of the model when generating data, 
we designed the channel masking (CM). This method spreads attention and allows 
the model to utilize data from multiple channels. We evaluate the reconstruction 
performance of the model using EEG data with 1 to 5 bad channels. With EEGLAB’s 
interpolation method as a performance reference, tests have shown that the 
AMACW models can effectively reconstruct bad channels.
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1. Introduction

EEG through the measurement of electrical potentials on the scalp, can reflect the activity 
of different brain regions and plays a crucial role in understanding brain function (Zaitcev et al., 
2017; Bhavsar, 2019). As the cost of EEG equipment decreases and data acquisition becomes 
easier, the application of EEG is becoming more widespread (Soufineyestani et al., 2020). When 
recording EEG signals, various factors (such as broken wire contacts, other malfunctions, 
bridged electrodes and abnormal impedance, etc.) can lead to electrodes failing to accurately 
capture the physiological information of brain neurons. These abnormal channels are commonly 
referred to as “bad channels” in the literature. Directly removing bad channels will reduce the 
number of channels and consequently alter the data dimensions (channels*times) (Hu and 
Zhang, 2019).

In recent years, there are more and more researchers applying machine learning 
techniques to EEG analysis (Lotte et al., 2018), including various applications such as fatigue 
detection in drivers (Zeng et al., 2018; Zhong et al., 2022), motor imagery (Al-Saegh et al., 
2021; Khademi et al., 2022), sleep monitoring (Hussain et al., 2022; Phan et al., 2023), and 
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emotion recognition (Wang et al., 2014; Xue et al., 2020; Islam et al., 
2021). However, missing data caused by bad channels can 
significantly reduce the accuracy of machine learning models 
(Emmanuel et al., 2021).

The volume conduction phenomenon provides researchers with 
the opportunity to reconstruct bad channels by utilizing information 
from the unaffected channels, ensuring that the original data 
dimensionality is preserved. The interpolation is faced with the 
essential question of which channels of data to use and what 
proportion of each channel to use. The prevailing method used for 
channel interpolation is the inverse distance method, which assigns 
weights based on the distances among the good channels and the bad 
channel. Channels that are farther away are given smaller weight 
proportions, while closer channels are given larger weight proportions. 
Relying solely on the physical distance to determine weights is 
insufficient and fails to consider the influence of physiological factors 
[e.g., skull conductivity and scalp conductivity (Ollikainen et  al., 
1999)] on EEG signal. Measuring the impact of these physiological 
factors on signal transmission is challenging. However, employing 
data-driven models circumvents the complex analysis process. Data-
driven models focus on patterns rather than the underlying causes of 
data changes. Each factor is treated as a variable influencing 
correlation, and the resulting weights stem from the correlations 
between these variables. Deep learning, a pivotal component of data-
driven models, excels in processing high-dimensional data (LeCun 
et al., 2015).

This study proposes interpolation algorithms that use the attention 
mechanism to assign weights. The AMACW adopts a 
multidimensional vector representation for each channel, capturing 
the interrelationships among channels within a high-dimensional 
space. By utilizing attention mechanisms, the algorithm calculates 
correlations among these vectors and subsequently transforms these 
correlations into channel weights. During model training, CM was 
employed to disperse attention, resulting in the dispersion of weights. 
This facilitates the utilization of data from multiple channels during 
data generation, thereby enhancing the model’s anti-
interference ability.

In recent years, the popular Transformer series models as an 
significant branch of the attention mechanism models, most of its 
models combine Softmax with the attention mechanism. The analysis 
found a negative correlation between some of the channels (Jackson 
and Bolger, 2014). The application of the Softmax function led to an 
inability of the model to effectively harness data from these negatively 
correlated channels. In order to use more channels of data in 
interpolation, this study introduced a simple function to 
replace Softmax.

AMACW has the advantage of being able to reconstruct bad 
channels at unknown locations. In certain open source datasets, 
experimenters have placed electrodes that are not part of the standard 
system according to the task, and the positional information of these 
electrodes has not been disclosed (Zheng et al., 2019; Guillot and 
Guillot, 2022). Consequently, when these channels are deemed as bad 
channels, the inverse distance method cannot be  used for 
reconstruction. The AMACW algorithm offers an advantage in such 
cases as it does not depend on the positional information of the 
electrodes. It only requires training the model using the data from the 
dataset that does not contain bad channels. Once the model is trained, 
it can be applied to the reconstruction process.

2. Related research

2.1. Based on the distance interpolation 
algorithm

The distance-based interpolation algorithm, with the inverse 
distance method at its core, aims to accurately calculate the distances 
among electrodes to allocate weights more effectively.

Soong et al. (1993) evaluated the reconstruction performance of 
nearest-neighbor interpolation (NNI, only focuses on a few channels 
close to the bad channel, and each channel is given the same weight), 
planar-spline interpolation (PSI, projects the electrode positions onto 
a plane and then calculates the weights by the inverse distance 
method), and spherical- spline interpolation (SSI, projects the 
electrode positions onto the sphere and then calculates the weights by 
the inverse distance method). They found that the reconstruction 
results obtained using global interpolation methods (PSI and SSI) 
were superior to those achieved using local interpolation 
methods (NNI).

Courellis et al. (2016) expanded on the SSI method by introducing 
a weight allocation tactic. In their study, they incorporated three 
different distance measures: Euclidean distance (EuD), great-circle 
distance (GCD), and ellipsoidal geodesic length (EGL) to represent 
the distances among channels. These distance measures were utilized 
in conjunction with the inverse distance method to allocate weights. 
The researchers evaluated the performance of the model in the 
presence of one bad channel in the data. They found that the EGL 
distance measure yielded a higher reconstruction accuracy compared 
to the other distance measures.

Dong et al. (2021) introduced a novel model based on the three-
concentric spheres head model (which provides a more accurate 
representation of electrode locations). By analyzing the impact of scalp 
conductivity, they developed a head model which is more applicable 
for EEG interpolation. After projecting the electrodes onto this model, 
the channel weights are then calculated.

2.2. Algorithm for fusing time information

EEG signal as a temporal signal, some scholars have studied the 
pattern of change in the temporal dimension of the data and applied 
it to data reconstruction.

Bahador et  al. (2021) proposed an interpolation method that 
consists of two steps. (1) The data is sliced into smaller segments in 
the temporal dimension and each segment is interpolated using good 
channel data. The interpolation calculates the channel weights 
according to the Eud among channels. (2) Correlation of the temporal 
dimension. Correlations among small segments are calculated using 
data from the good channels, and the correlations are then converted 
into weights. Each small segment fuses data from other small segments 
by weight. Finally, the data from the small segments are stitched 
together to form the complete interpolated data.

Saba-Sadiya et  al. (2020) designed a depth encoder-decoder 
model (ED_model) for bad channel reconstruction that does not 
calculate the distance among electrodes and thus does not require 
accurate localization information. The model is based on CNN, which 
is widely used in the image field and is improved so that it can 
be applied to the reconstruction of EEG data. The data processing 
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section projects the electrode positions from three-dimensional space 
to a two-dimensional plane but only uses an 8*8 square grid to 
represent the position relationships among them. The EEG data is 
transformed into picture data similar to multi color channels, with the 
planar representing the location information among channels and the 
color channel of the original image becoming the temporal dimension 
of the EEG data.

2.3. Virtual EEG channel

High-density placement of electrodes can obtain more detailed 
information, but in practice, it leads to a lower user experience, a 
longer time to place electrodes and expensive costs (Sun et al., 2023). 
Therefore scholars have begun to investigate the use of low-density 
EEG to generate high-density EEG. This is similar to bad channel 
interpolation in that both generate new channel data based on already 
known channel data.

Li et al. (2022) designed the GAN (IWGAN) for EEG channel data 
generation using WGAN as a framework. WGAN is more stable than 
the original GAN (Arjovsky et  al., 2017), and IWGAN further 
improves the training stability by improving the loss function. 
IWGAN generates new channel data not only similar to the real values 
but also incorporates other channel data. Through testing, it is found 
that (1) the lack of channel data decreases the accuracy of the 
classification task a lot, and (2) replacing the original channel data 
with the generated data, the accuracy is similar. This shows that for the 
downstream task, the generated channel data can replace the original 
channel data to some extent, thus reducing the number of real 
electrodes placed in the experiment.

Svantesson et al. (2021) use the transposed convolution in CNN 
to implement upsampling (Up_CNN) into more data. The model first 
convolves the data, encoding it from the spatial dimension to the 
temporal dimension. Subsequently, the data undergoes transposed 
convolutional decoding to revert from the temporal dimension. After 
decoding, the missing positions are filled in. Using the same 
architecture, they trained two virtual channel generation models and 
a bad channel interpolation model. The CNN network analyses every 
data so that bad channels, if any, can be detected and repaired.

Sun et  al. (2023) proposed the EC-informer model based on 
informer (Zhou et al., 2021), which is a variant of Transformer that 
uses historical data to predict data in the future over a long period of 
time, while EC-informer uses historical data to generate data for the 
same time period. EC-informer uses historical data to generate data 
for the same time period. EC-informer inherits the low computational 
complexity of informer, but at the same time has fewer input channels 
(4 channels) than other EEG generation models, resulting in less 
computational effort in the model as a whole, thus reducing the 
computational load on the EEG processing equipment. This is 
especially important for portable BCI devices.

2.4. Attention mechanisms

When a substantial amount of information is presented, humans 
tend to selectively attend to a portion of the information while 
disregarding other components (Buschman and Miller, 2010). 
Similarly, attention mechanisms in deep learning serve a comparable 

purpose, allowing models to process data without being restricted by 
positional constraints (Dosovitskiy et al., 2021) or sequential order 
(Vaswani et al., 2017). These models have the capacity to autonomously 
select relevant and significant information based on the task.

In recent years, the attention mechanism has attracted more and 
more attention in the field of deep learning, and the application areas 
have been expanded from natural language processing to the image 
field. Vaswan et al. proposed the first transformer model using only the 
attention mechanism in “attention is all you need,” and the model and 
its variants have achieved excellent results in the field of natural 
language processing. This model and its variants have achieved excellent 
results in the field of natural language processing. The transformer 
model has been continuously improved to set new records in several 
tasks, and Alexey et  al. and Liu et  al. believe that the attention 
mechanism is also applicable to the image domain, and they have 
improved the transformer model and applied it to several image tasks. 
Informer and EC-informer are both centered on the attention 
mechanism. However, compared with the AMACW model proposed 
in this study, there is a big difference in the model structure and the data 
processing process. The EC-Informer structure encodes the EEG data 
and sends it into the multi-layer attention structure for computation, 
which leads to a huge increase in the computational load of the model. 
The EEG data in the AMACW algorithm will only operate with the 
results of the attention calculation, reducing the amount of computation.

3. Methods

Interpolation methods based on distances range from PSI (2 
Dimensions), spherical interpolation (3D), to three-concentric sphere 
(3D). Models representing the relationship between electrodes 
increase in model dimensions as more factors are considered. The 
AMCMW algorithm proposed in this study uses an Embedding layer 
to represent the relationship between channels in a high dimensional 
space. The attention mechanism is then used to describe, the 
correlation between the channels and then the correlation is 
transformed into interpolated weights.

The AMACW consists of a channel embedding layer, an attention 
computation layer, a weight calculation layer and output layer. The 
embedding layer transforms the channel names (or order) into feature 
vectors. The attention computation layer utilizes these feature vectors 
to calculate the correlations between the bad channel and other 
channels, and the weight calculation layer transforms these 
correlations into weights. Original EEG data was passed through a 
layer normalization to optimize the data distribution. The processed 
data are randomly zeroed for some channels in the channel mask 
layer. During training, the model employs a CM to optimize the 
allocation of attention, thereby enhancing the model’s robustness and 
interference resistance. The structure of the AMACW algorithm 
model and the CM is depicted in Figure 1.

3.1. Channel-embedding layer

For the model to take into account the many factors that affect the 
EEG signal, we propose channel embedding. Channel embedding is 
the representation of each channel as a high-dimensional vector. These 
feature vectors are variables and the training process of the model can 
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be understood as the vectors finding the right position in space to 
represent themselves in relation to other channels. Distance-based 
algorithms only represent correlations between channels in 3D space, 

using a channel embedding layer allows for a more detailed and 
comprehensive description of the factors thus improving 
interpolation accuracy.

FIGURE 1

AMACW algorithm. The channel names are converted to vectors by the embedding layer, and then the weights of each channel are obtained by the 
attention score calculation layer and the weight calculation layer. In the training stage, the original data is optimally distributed by Layer Normalization 
(LN), and then a random part of channels are zeroed in the channel masking layer (CM). The processed data are summed by weights to get the output 
data. In order to minimize the difference between the distribution of the real values and that of the input data, the real values are subjected to the same 
operations as in the LN layer. CM and LN are valid only in the training stage. (A) Model training stage and (B) Model testing stage.
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The dimension of vectors impacts the performance of models. If 
the dimension is too small, it may not capture the complex 
relationships among channels, while a dimension that is too large can 
lead to issues such as overfitting and longer training time (Yin and 
Shen, 2018). Regarding the vector dimension of the channel-
embedding layer, two factors need to be taken into account: (1) there 
are many physiological factors that influence EEG (Ollikainen et al., 
1999), and more variables can describe these influences in more detail. 
(2) the number of training samples is limited, and too many variables 
increase the risk of overfitting. Therefore, this study devises two 
models with vector dimensions of 20 and 35 and evaluates 
their performance.

3.2. Attention computation layer

Attention computation involves matching the task vector with the 
background vectors using a score function to determine the 
distribution of attention (Niu et al., 2021). The feature vector of the 
bad channels (query) and the feature vector of other channels (key) 
calculate the similarity separately to obtain attention scores. AMACW 
employs the dot_product (Luong et al., 2015) as the matching method, 
which is a global attention computation approach. The attention 
scores were computed as:

 score query,keys query keys� � � � T

The key characteristic of dot_product is that the query is 
compared with each key to calculate their similarity, enabling the 
model to observe all channels.

3.3. Weight calculation layer

The attention scores are transformed into weights for each 
channel, which is similar to the normalization layer in classification 
models, which converts inputs into proportions. The choice of a 
normalization function that matches the task can accelerate model 
convergence and improve accuracy (Martins et al., 2016; Zhang and 
Sennrich, 2019).

Visualizing the EEG signals, it can be found that some of the 
data between the EEG channels are negatively correlated (e.g., 
Figure 2). Although the use of the Softmax function as a weight 
calculation function was able to suppress the expression of 
channels that were poorly correlated, it suppressed the expression 
of channels that were negatively correlated. Therefore, we have 
chosen a simple and commonly used proportional calculation 
method that retains attention on negatively correlated channels 
and yields negative weights. The Simple function to calculate the 
proportion of each component to the sum of the absolute 
values is:

 

weight � � � � �

��
simple score score

score
i

j
N

j
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3.4. Output layer

Layer Normalization (LN) is widely applied to the Transformer 
family of models, the benefit of accommodating variable input data 
lengths. That is, the length of data processed by the model is not 
fixed (e.g., for training, the length of each input data is 200, and for 
testing, the length of each input data is 2000). Although the 
functioning principle of LN is still unclear, through a large number 
of experiments and analyses, it is generally agreed that 
normalization can smooth the gradient, accelerate model 
convergence and improve generalization ability (Ba et al., 2016; Xu 
et al., 2019).

During the model training stage, good channel data are adjusted 
to the data distribution through the normalization. Models will not 
use LN in testing. LN is calculated as follows:
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Where g and b are learnable parameters denoting gain and 
bias. ⊙ is a dot production operation. μ and σ denote the mean and 
variance of the good channel data. H is the number of input data per 
round of training. v is the good channel EEG data.

The same operation is applied to the real data (label data) to 
reduce the difference between the values of the input data and the 
label data. The calculation is as follows:

 
Re Real g al b� � �� � �

�
�

Where the values of g, b, μ, and σ are the same as in the LN.
After calculating the weights for each channel, the normalized 

data is summed by weight to generate the interpolated data.

 
Interpolation weight V
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�
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3.5. Channel masking layer

In the initial training, it had been found that attention would have 
been focused on one channel that had been close to the bad channel 
in physical space. This resulted in interpolation with data having come 
from almost this one channel, which could have led to large 
reconstruction errors if the data in this channel had been disturbed. 
Therefore we have designed an EEG channel masking (CM) method. 
CM effectively spread attention, thereby reducing the influence of data 
abnormalities from a few channels on the process of 
data reconstruction.

CM is a process of randomly zeroing some of the channel data 
before it is fed into the model. If the model allocates a large amount of 
attention to the masked channel, it will cause the output to tend to 
zero, resulting in a particularly large loss value and forcing the model 
to adjust its parameters to divert some attention to other channels.

In each training epoch, CM randomly zeroes a part of the data 
(Figure 3). This causes new samples to be generated from the same 
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original sample due to the different areas of zeroing. This increases the 
training sample size of the model, which helps to improve the 
generalization ability of the model.

Taking the reconstruction of channel CZ as an example, Figure 4 
(left) illustrates the weight distribution of the model without using 
the CM mechanism during training, while Figure 4 (right) shows 

the weight distribution of the model using the CM mechanism. 
Without using the masking mechanism, most of the weights are 
allocated to channel C3. When the masking mechanism is applied, 
the weights are distributed among channels FZ, C3, C4, and PZ, 
ensuring that the weights are not excessively concentrated on a 
single channel.

FIGURE 2

Displays the data from part of the channels, revealing segments that exhibit obvious negative correlations. It can be clearly observed that the red region 
is negatively correlated with the blue region.

FIGURE 3

Channel Masking. The channel masking is a random zeroing of the data by 0–5 channels. Because the channels are chosen randomly, they are 
received differently for the model at different epoch, increasing the amount of sample data. When the model focuses too much attention on the 
zeroed channels, it causes the output values to converge to 0, which leads to excessive loss values, forcing the model to spread its attention.
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4. Experimental evaluation

There are two application situations for the AMACW algorithm: (1) 
The electrodes in the dataset all belong to the standard system, and the 
model is used directly to repair the bad channels. The ACWM model is 
used in the same way as other models. (2) The bad channels in the 
dataset do not belong to the standard lead system and their location 
information is unknown. Traditional location-based algorithms are 
unable to perform bad channel repair. The AMACW algorithm can train 
a proprietary model using the good channels data in the dataset. 
Considering that in general, the amount of data captured by EEG 
experiments is limited, we used only a small amount of data to train the 
model. For convenience of description later in the text. The model 
applied to the first case will be referred to as the general model and the 
second as the special model.

4.1. Data sources

If there is too much similarity in the data, this could allow the 
model to learn some particular features leading to overfitting. We have 
collected some datasets with variability with the aim of simulating real 
use cases and testing the robustness of the algorithm. A number of 
four datasets were used for the experiments, namely SEED-V (Liu 
et al., 2022), A test–retest resting and cognitive state EEG dataset 
(TRCS) (Wang et al., 2022), EEG Motor Movement/Imagery Dataset 
(MMI) (Schalk et  al., 2004), and The OpenMIIR Dataset (MIIR) 
(Stober et  al., 2015). These datasets were collected by different 
laboratories under different experimental tasks (Table 1).

SEED-V, TRCS, and MIIR show data from the entire recording 
process, the authors of MMI have edited the data to retain only a small 
amount of data from the task phase.

4.2. Data processing and dataset 
preparation

The data exported from the EEG device is simply preprocessed 
and then made into a dataset (the entire processing flow is shown in 
Figure 5). The preprocessing steps include re-referencing (average 
reference), filtering [0.1–30 Hz (Hu and Zhang, 2019)], and resampling 
(according to Nyquist’s rule, the resampling frequency is half of the 
sampling frequency). To ensure fairness in performance comparisons 
with open-source models, we retained only the channels common to 
both the 10–20 system and the two datasets. After preprocessing, the 
data is segmented into intervals of 200 data, and a random channel is 
selected to be set to zero, while its original value and channel name 
are recorded.

The general model was trained using data from participants 
#1–5 in SEEV-V and MIIR. It was then tested using participant #1 in 
MMI and participant #1 data in TRCS. The training and test data 
came from different datasets, which better reflects the effect of the 
model when it is actually used. Special models were trained using 
only participants #1, #2, and #3 from SEED-V and tested using 
participants #4 and #5 from SEED-V. The proprietary model was 
trained using a small amount of data because the electrodes at 
unknown locations were mostly special electrodes placed by the 
experimenter according to the task, and it was difficult to collect 
other datasets using the same special electrodes. And most 
EEG-related experiments do not collect large amounts of EEG data 
(Mahesh, 2018).

An increasing number of scholars are using more dense electrode 
placement schemes in EEG experiments (Oostenveld and Praamstra, 
2001). When some disturbances (e.g., sweat) are present, the number 
of affected electrodes increases (Sun et al., 2023). To test the model’s 
redundancy, testing data with 1 to 5 bad channels were created.

FIGURE 4

The effect of the channel mask on the weight assignment of the model. Weight values of the output model when interpolated to the CZ. (A) shows the 
model trained without the channel mask and (B) shows the model trained with the channel mask. The colors represent the weights for the channels, 
with red representing positive weights, gray representing zero, and blue representing negative weights.
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The model training is done to estimate the performance of the 
model, 10% of the training data is randomly selected from the training 
data as the validation set. The data sets for different purposes are 
named in order to facilitate the descriptions in the subsequent sections 
(Figure 6). (1) Training set: 90% of the training data. (2) Validation 
set: 10% of the training data. (3) Test set: test data.

4.3. Experiment setup

4.3.1. Comparison model
EEGLAB, as a mainstream EEG data processing platform, 

contains two algorithms, Spherical and Planar. These two algorithms 
belong to the traditional distance-based interpolation methods and 
can be used directly without training. We take these two algorithms 
as the baseline.

In contrast to the deep learning approach for calculating 
correlation, representing inter-channel correlation using the 
Pearson correlation coefficient is simpler and more time-efficient. 
Therefore, we created a model based on PCC. Initially, within the 
training set, correlation coefficients among channels are computed, 
and then these coefficients are converted into weights for use 
in interpolation.

In this study, we constructed DE_model, IWGAN, and Up_CNN 
as mentioned in the related work section. The DE model structure is 
fixed (input data length and channel data amount are non-variable). 
The structure of IWGAN and Up_CNN can be adjusted according to 
the number of channels and the length of the generated data.

4.3.2. AMACW model
In this study, we  designed two models, namely “simple_20” 

(embedding dimension = 20) and “simple_35,” based on different 
embedding dimensionality.

These models are constructed according to the requirement of 17 
channels and generating 200 number of data points per computation. 
The computational amount (generating 200 data points) and the number 
of parameters of the model are shown in Table 2. The computational 
amount and the number of parameters of the AMACW model are much 
smaller than other models, which means that the AMACW model 
consumes only a very small amount of computing resources and storage 
space, which is beneficial to be applied to wearable devices.

We do not limit the training time and number of rounds for the 
model. For every 100 epochs of training, the validation set is used to 
test the training effectiveness of the model, and when the loss value of 
the model in the validation set only fluctuates in a small range, the 
model is considered to have converged and then training is stopped.

TABLE 1 Brief description of the four datasets.

Dataset name Background Number of 
participants

Device Sampling 
frequency

SEED-V
Watching the video induced happy, sad, fearful, disgusted, 

and neutral emotions in participants
20 Neroscan 1,000 HZ

A test–retest resting and cognitive 

state EEG dataset(TRCS)

Resting (eyes-open and eyes-closed) and subject-driven 

cognitive states (memory, music, subtraction)
60 Brain Products 500 HZ

EEG Motor Movement/Imagery 

Dataset(MMI)

Participants perform 4 tasks based on on-screen prompts. 

The tasks included imagined movements and real movements
109

Not mentioned in the 

original article
160 HZ

The OpenMIIR Dataset(MIIR)
Participants listen to and visualize 12 short music clips (7 to 

16 s each)
10

Not mentioned in the 

original article
512 HZ

FIGURE 5

Entire data processing process. The raw data are pre-processed and cut into small segments. After randomly selecting a channel as a bad channel, the 
positions of the original bad channel are filled with zeros. The data values of the original bad channel are the labels for model training.
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4.4. Results

The models are trained using data from the training set and the 
validation set is used to filter out the models that perform better. The 
models are then tested for performance on the test set.

We chose MSE to assess the performance of the model, calculated 
as follows:

 
MSE

y y
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N

�
�

�

�
�

�

�
��� 1

2
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Where y is the true value (original value). y


 is the predicted value. 
This is the data calculated by the model. N is the number of data 
inferred in total.

The MSE quantifies the degree of difference among the estimated 
values and the ground truth values. A higher value indicates a greater 
discrepancy among the estimated and actual values, indicating lower 
estimation accuracy of the model. The error value of the model for 
each of the bad channel conditions is the mean MSE of multiple 

samples: erro
MSE

M
k
M

k
� �� 1 ,where M is number of samples.

The general models and comparison models perform in the test 
set as shown in Tables 3, 4. The special models are used in the 
background of unknown positional information. Spherical and Planar 
as distance based algorithms are required to obtain positional 
information, therefore they are interpolated with the positional 
information obtained first (Table 5).

The disparity in error values across all models in the two test sets 
is substantial. Consequently, we  focus more on the performance 
comparison of different models in the same test set. In the TRCS 
dataset, Spherical algorithm has higher reconstruction accuracy than 
AMACW model in the presence of 1 bad channel. However, as the 
number of bad channels increases, the error value of the AMACW 
model grows slowly. Simple35 reduces the error by 22.06% compared 
to Spherical in the presence of 3 bad channels. The error values of the 
generative model for virtual channels are almost unaffected by the 
increase in channels. In general, AMACW model has higher 
reconstruction accuracy with multiple bad channels.

The reconstruction accuracy of the special model for a small 
number of bad channels (1–2 bad channels) is lower than that of the 
Spherical but higher than that of the Planar. This indicates that the 
interpolation of the special model for bad channels with unknown 
locations is usable but not very accurate. In the presence of 3–5 bad 
channels, the accuracy of the special model is higher than that of 
Spherical. Therefore the AMACW method can be used as a way to 
handle the situation encountered here in experiments using open 
source datasets, compensating for the problem of interpolating bad 
channels with unknown locations by traditional methods.

4.5. Analysis

Visualizing the reconstructed data and the real data, we observed 
that at most points the reconstructed data were close to the real values. 
However, when several bad channels are close to each other, the 
interpolation algorithm fits poorly at points with higher amplitudes, 

FIGURE 6

The names of different sets. The data are preprocessed in the same way, with the training data being sliced into small segments and 10% randomly 
selected to form the validation set. The test data is preprocessed without segmentation which facilitates testing. (A) General models use datasets and 
(B) Special models use datasets.

TABLE 2 Model generates 200 data calculations and the number of 
parameters of the model.

Model name PFLOs Parameters

Simple_20 5.8 M 374

Simple_35 6.1 M 629

ED_model 96.0 M 1.9 M

IWGAN 637.7 M 28.4 M

Up_CNN 855.5 M 517.6 M
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and a similar phenomenon was observed in the Bahador et al. (2021) 
and Li et al. (2022) experiments. This part of the data points causes a 
large reconstruction error.

When both FZ and CZ are bad channels, the effect of reconstructing 
the FZ channel is shown in Figure 7 (subplot a is the effect of the MMI 
dataset and subplot b is the effect of the TRCS dataset). Both algorithms 
fit well at points with low amplitude, but poorly at points with higher 
amplitude. However, these higher magnitude points are within the 
normal assignment range and cannot be  arbitrarily eliminated. By 
circling some of the points with high amplitude, it can be observed that 
the Simple35 model fits the points with large amplitude better than 
Spherical. because the algorithm fits the points with large assignment 
poorly and the point amplitude of the MMI dataset is significantly 
larger than that of the TRCS dataset, which leads to a large difference 
in the error value of the model in the two datasets.

The reconstruction accuracy of the AMACW model is lower in 
the presence of one bad channel. We analyze that this could be due to 

the following two reasons. (1) The limited amount of training data 
may lead to insufficient training of the model (Alexandropoulos et al., 
2019; Song et al., 2022). The model has more learnable parameters, 
thus its capacity for fitting is greater. However, this also leads to an 
increase in the required training data and training time. (2) The 
training data is contaminated with excessive noise (Alexandropoulos 
et  al., 2019; Song et  al., 2022). In contrast to the data processing 
procedures employed by other deep learning models, the data 
processing approach in this study is relatively straightforward, lacking 
manual data filtering and denoising. Implementing a semi-automatic 
preprocessing step for EEG data would likely enhance data quality, 
offering more benefits for model training. But this increases the 
preparation time and training cost of model training.

The application of virtual EEG channel generation models is more 
biased toward large scale data generation (large ratio of generated data 
to original data), while the task of bad-channel interpolation belongs 
to small scale. For example, Up_CNN initial two models CN1,CN2 in 

TABLE 3 Error values in the MMI dataset.

Number of bad channels

Model name 1 2 3 4 5 Sum

AMACW
Simple 20 94.40 156.71 242.45 258.38 315.63 1067.57

Simple 35 90.87 126.26 130.67 172.28 208.07 728.15

EEGLAB
Spherical 94.13 131.02 215.26 204.29 291.05 935.75

Planar 292.53 402.59 548.37 664.73 679.42 2587.64

PCC 472.80 490.33 510.26 532.92 617.3 2623.61

ED_model 179.12 238.47 271.97 298.71 303.65 1291.92

Up_CNN 281.34 287.58 283.69 293.72 331.78 1478.11

IWGAN 233.29 273.52 263.52 306.83 313.81 1390.97

Bolded characters indicate the method with the lowest error value for that number of bad channels.

TABLE 4 Error values in the TRCS dataset.

Number of bad channels

Model name 1 2 3 4 5 Sum

AMACW
Simple 20 5.75 6.59 8.62 9.08 10.51 40.55

Simple 35 4.55 4.23 5.73 6.27 7.62 28.40

EEGLAB
Spherical 1.52 5.18 7.15 9.93 10.04 33.82

Planar 23.08 18.18 19.46 18.66 18.25 97.63

PCC 24.04 25.75 25.30 26.63 26.79 128.51

ED_model 7.02 8.09 8.65 8.28 9.55 41.59

Up_CNN 10.33 11.32 11.24 12.40 12.76 58.05

IWGAN 11.48 12.07 12.90 12.26 13.89 62.60

Bolded characters indicate the method with the lowest error value for that number of bad channels.

TABLE 5 Error values when the AMACW model is used as a special model.

Number of bad channels

Model name 1 2 3 4 5 Sum

AMACW
Simple 20 19.71 24.63 25.52 37.63 47.87 155.36

Simple 35 17.58 23.76 25.02 27.95 29.79 124.10

EEGLAB
Spherical + location 11.66 17.49 25.53 37.65 40.54 132.87

Planar + location 65.63 51.65 56.21 52.79 53.18 279.46

EEGLAB’s algorithm is reconstructed after obtaining information on the electrode positions. Bolded characters indicate the method with the lowest error value for that number of bad channels.
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the original paper used 4 channels to generate 14 channels (425%) and 
14 channels to generate 7 channels (50%), respectively. This explains 
the lower accuracy of Up_CNN and IWGAN at 1–3 bad channels and 
the insensitivity of the error value to the number of bad channels.

The parameters that can be  learned remain fixed after model 
training, and the distribution of model weights is visually represented 
(Figure  8). The weight distribution does not exhibit excessive 
concentration and encompasses both positive and negative values. This 
demonstrates that the Simple function assists the model in effectively 
utilizing negatively correlated channel data, enabling the model to use 
more channels when interpolating. The more dispersed attention of the 

Simple 35 (Figure 8B) compared to the Simple 25 (Figure 8A) indicates 
that the increased dimensionality of the channel coding vectors facilitates 
the model to discover more channel information. There is a difference 
between the two in the positive and negative weights assigned to some 
of the weakly interrelated channel combinations, but the absolute value 
of the weights is very small so it has little effect on the output results.

The weight distribution in the PCC model is highly dispersed 
(Figure 8C). This is attributed to its lack of suppressive capability in 
representing channels with weak associations. The disadvantage of 
weight dispersion is that data from weakly correlated channels are 
used even if the strongly correlated channel is the good channel is. In 

FIGURE 7

Interpolation results for Simple 35 and Spherical when FZ is bad channel. (A) is the MMI dataset and (B) is the TRCS dataset.
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such cases, channels with weak correlations contribute noisy data. 
However, the advantage of weight dispersion is that it allows 
interpolation from a wider range of data sources and reduces the 
dependence on a single channel. This also explains the phenomenon 
that the PCC model does not show a significant decrease in accuracy 
when the number of bad channels increases.

5. Conclusion

The utilization of interpolation for channel data reconstruction 
presents an effective approach to alleviate the adverse effects caused 
by defective channels during subsequent analysis. The proposed 
AMACW algorithm in this study enables reconstruction without 
requiring electrode positional information. This addresses the issue 
of being unable to reconstruct bad channels with unknown electrode 
positions in certain open-source datasets. Furthermore, when 
positional information is available, the AMACW model trained on a 
small amount of data exhibits higher reconstruction accuracy for data 
containing multiple bad channels compared to the Spherical method 
in EEGLAB.

If more datasets can be collected and more computing power can 
be obtained, a general EEG bad channel reconstruction model can 
be  established with a standard lead system. Diversified data for 
training will further improve the generalization performance and 
reconstruction accuracy of the model. In cases where unknown 
locations of bad channels occur during certain experiments, fine-
tuning the model would be sufficient to reconstruct those channels.

We aspire for channel-embedding to serve as a foundation for 
various EEG related tasks, akin to word-embedding in NLP, thereby 
furnishing feature information of channels for the analysis models of 
EEG signals.
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FIGURE 8

Weight distribution of the model. The diagonal line represents the weight distribution between the channel and itself, the interpolation will not do the 
weight distribution by itself, so it is represented by zero. The colors represent the weights for the channels, with red representing positive weights, gray 
representing zero, and blue representing negative weights. (A) Simple_20 model, (B) Simple_35 model and (C) PCC model.
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