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Domain knowledge-assisted
multi-objective evolutionary
algorithm for channel selection in
brain-computer interface systems

Tianyu Liu* and An Ye

School of Information Engineering, Shanghai Maritime University, Shanghai, China

Background: For non-invasive brain-computer interface systems (BCIs) with

multiple electroencephalogram (EEG) channels, the key factor limiting their

convenient application in the real world is how to perform reasonable

channel selection while ensuring task accuracy, which can be modeled as a

multi-objective optimization problem. Therefore, this paper proposed a two-

objective problem model for the channel selection problem and introduced a

domain knowledge-assisted multi-objective optimization algorithm (DK-MOEA)

to solve the aforementioned problem.

Methods: The multi-objective optimization problem model was designed based

on the channel connectivity matrix and comprises two objectives: one is the

task accuracy and the other one can sensitively indicate the removal status of

channels in BCIs. The proposed DK-MOEA adopted a two-space framework,

consisting of the population space and the knowledge space. Furthermore, a

knowledge-assisted update operator was introduced to enhance the search

e�ciency of the population space by leveraging the domain knowledge stored

in the knowledge space.

Results: The proposed two-objective problem model and DK-MOEA were

tested on a fatigue detection task and four state-of-the-art multi-objective

evolutionary algorithms were used for comparison. The experimental results

indicated that the proposed algorithm achieved the best results among all the

comparative algorithms for most cases by the Wilcoxon rank sum test at a

significance level of 0.05. DK-MOEA was also compared with a version without

the utilization of domain knowledge and the experimental results validated

the e�ectiveness of the knowledge-assisted mutation operator. Moreover, the

comparison between DK-MOEA and a traditional classification algorithm using

all channels demonstrated that DK-MOEA can strike the balance between task

accuracy and the number of selected channels.

Conclusion: The formulated two-objective optimization model enabled the

selection of a minimal number of channels without compromising classification

accuracy. The utilization of domain knowledge improved the performance of DK-

MOEA. By adopting the proposed two-objective problem model and DK-MOEA,

a balance can be achieved between the number of the selected channels and

the accuracy of the fatigue detection task. The methods proposed in this paper

can reduce the complexity of subsequent data processing and enhance the

convenience of practical applications.

KEYWORDS

channel selection, brain-computer interface systems, multi-objective optimization, two-

objective problemmodel, domain knowledge
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1. Introduction

Brain-computer interface (BCI) systems establish a connection

between the brain and external devices by acquiring brain signals

to control external devices (Khan et al., 2020). Therefore, BCIs

have provided great convenience for helping paralyzed patients

or controlling games. According to the different signal acquisition

methods, BCIs can be divided into invasive (Rapeaux and

Constandinou, 2021) and non-invasive (Jo and Choi, 2018; Zhuang

et al., 2020). In non-invasive BCIs, electroencephalography (EEG)

signals are acquired by external sensors with multiple channels

(Carneiro et al., 2020; Singh et al., 2021). In EEG systems, the

greater number of the channels, the more comprehensive the

signal obtained. Lots of researchers use multi-channel EEG signals

(usually 32-channel, 62-channel, or more channels’ EEG signals of

the entire brain) for emotion recognition to improve classification

accuracy (Yu and Yu, 2021). However, many EEG channels

contain noise or redundancy, which is detrimental to emotion

recognition in practice (Wosiak and Dura, 2020; Al-Saegh et al.,

2021). Furthermore, the large number of EEG channels makes data

acquisition difficult and increases the computational complexity of

data processing. Therefore, it is necessary and important to choose

appropriate channels in BCIs.

In recent years, many efficient channel selection algorithms

have emerged, such as correlation-based methods, machine-

learning-based methods, wrapper-based methods, heuristic-

searching-based methods, and so on. Correlation-based method

(Park and Chung, 2020; Liu T. et al., 2021; Tiwari and Chaturvedi,

2021) goes through the EEG signals obtained from each channel

and uses various information-theoretic concepts to evaluate the

correlated channels for each feature and to select these channels.

So far, some information theoretic concepts, such as normalized

mutual information (NMI) (Yang et al., 2021), entropy (Ghembaza

and Djebbari, 2022), correlation coefficient (Jin et al., 2019; Moon

et al., 2020), and chi-squared statistics (Baig et al., 2020), have been

used to assess the correlation of channels. Machine-learning-based

methods (Siddiqui et al., 2020) generally select proper channels

by training on the features extracted from the obtained EEG

signals with the help of classic machine-learning techniques like

the neural network. Wrapper-based methods (Liu Q. et al., 2021;

Yavandhasani and Ghaderi, 2021) usually adopt predictors to solve

the channel selection problem and tune wrappers according to the

specific interaction between classifiers and datasets. As an efficient

way to solve NP-compete problems, heuristic-searching-based

methods have been adopted to solve channel selection problems

successfully. Some commonly used heuristic algorithms are genetic

algorithms (Moctezuma and Molinas, 2020), particle swarm

optimization (Qi et al., 2020), simulated annealing (Yang, 2020),

ant colony optimization (Miao et al., 2020), differential evolution

(Hajizamani et al., 2020), and so on.

However, most of the above-mentioned algorithms focus

on optimizing the numbers of the selected channels.The goal

of the channel selection problem is to trade off a balance

between reducing the number of channels and improving the

accuracy of classification tasks. In this case, multi-objective

evolutionary algorithms (MOEAs), which can balance multiple

optimization objectives at the same time, have been introduced

to solve channel selection problems in recent years. Some classic

MOEAs, such as multi-objective evolutionary algorithm based

on decomposition (MOEA/D), multi-objective particle swarm

optimization (MOPSO), and non-dominated sorting genetic

algorithm (NSGA-II) have been successfully applied for channel

selection in the task of single modality based BCIs (Al-Qazzaz et al.,

2019; Nandy et al., 2019; Baysal et al., 2021; Li et al., 2022). Few of

the existing multi-objective channel selection algorithms consider

problem domain-related knowledge in the design of key operators.

Existing research has proved that knowledge related to the problem

domain can help algorithms find high-quality solutions (Luong

et al., 2015). This paper proposes a domain knowledge-assisted

multi-objective evolutionary algorithm, called DK-MOEA, to solve

channel selection problems in BCIs. DK-MOEA contains two

spaces, namely knowledge space and population space. In DK-

MOEA, the problem domain-related knowledge stored in the

knowledge space is adopted to guide the evolution process of the

population space.

In BCIs, the processing of EEG signals is also a crucial factor

affecting the performance of algorithms. The majority of the

traditional studies of EEG signal processing have been conducted

on raw data (Mak et al., 2013; Tong et al., 2018; Ganguly and

Singla, 2019). Few of these approaches take into account the

relationship between different brain regions. Brain connectivity is

now actively used in neuroscience research, and the effectiveness

of brain connectivity features in identifying emotional states has

been demonstrated (Gaur et al., 2021). Therefore, the EEG signal

connection information has been adopted for classification tasks

in recent years (Chen et al., 2015; Moon et al., 2018, 2020).

Studies have shown that using the EEG connectivitymatrix between

EEG channels, which describes the connectivity information of

different EEG channels, can improve the accuracy of classification

tasks (Moon et al., 2020). However, the direct use of the EEG

connectivity matrix data does not account for the redundant and

invalid information in the connectivity matrix. Therefore, this

paper adopts a threshold matrix to filter the EEG connectivity

matrix and then determine whether a channel can be deleted.

In DK-MOEA, The evolution of the threshold matrix is carried

out with the help of the knowledge space, which contains the

knowledge including the physical distance between channels and

the location of the channels. The main contributions of this paper

are listed below:

• A two-objective channel selection problem based on channel

connectivity matrix has been formulated.

• A two-space framework, which consists of the population space

and knowledge space, is introduced. The knowledge space

stores the domain-related information, namely the locations of

channels and the distance matrix between channels.

• A knowledge-assisted update operator is proposed to guide the

evolution process of the population space with the help of the

knowledge space.

2. Materials and methods

2.1. Data acquisition and processing

Nine volunteers, which ranged in age from 21 to 30, were

asked to perform a fatigue detection task in an electromagnetically

shielded room in the Brain Cognition and Intelligent Computing
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Laboratory at Tongji University, China. In this task, the volunteers

experienced a wake-sleep-wake physiological process after lunch,

since most people experience symptoms of fatigue at this time of

day. To ensure the validity of the experiment, all volunteers awoke

before 8:30 a.m. and were free of alcohol and drugs. The volunteers

first lay on the bed with their eyes closed, and then opened their

eyes after hearing the instructions in the headset. One volunteer

was considered awake if he/she opened his/her eyes within 2 s,

otherwise, the volunteer was considered fatigued.

The 62 channels EEG and 2 channels EOG signals were

recorded using an ESI-64 channels high-Resolution system

(SynAmps2, Neuroscan) (Cao et al., 2010). The 62 electrodes were

put following the international 10-20 standard to obtain EEG

signals, as shown in Figure 1. The contact impedance of the cortex

was calibrated to be less than 5 k�. The sampling frequency was

1,000 Hz, which was down-sampled to 250 Hz subsequently for

ease of data processing. The recording signal was then filtered

between 0 and 40 Hz for further processing. After that, the raw EEG

signal is intercepted every 5 s with a sample window and a sliding

window of 5 s to convert the analog signal to a digital signal. As

shown in Figure 2, the EEG connectivity matrix can be obtained by

calculating the correlation coefficient between channels. Recently,

The pearson correlation coefficient (PCC) (Pearson, 1895), phase

locking value (PLV) (Lachaux et al., 1999), and transfer entropy

(TE) (Schreiber, 2000) have been widely adopted to calculate the

correlation coefficient in BCIs. PCCmeasures the linear correlation

between two signals. PCC takes values between −1 and 1. PCC = 0

indicates that the corresponding signals are linearly uncorrelated.

PCC = −1 and PCC = 1 respectively, represent negative and

positive linear relationships between signals, respectively. Suppose

Xi = {x1i , x
2
i , ..., x

T
i } is the EEG signal of the ith channel, T is the

length of the signal, µi and σi are the mean and standard deviation

of the ith signal, respectively. The PCC value of signals Xi and Xk

can be calculated as shown in Equation (1).

PCC(i, k) =
1
T

∑T
t=1(X

t
i − µi)(X

t
k
− µk)

σiσk
(1)

PLV, which can be calculated as Equation (2), describes the

phase synchronization between two signals by averaging the

absolute phase discrepancies. In Equation (2) , ϕt ∈ [0,1] is the

phase of the signal at time t, j is the the imaginary unit.

PLV(i, k) =
1

T

∣

∣

∣

∣

∣

T
∑

t=1

ej(ϕ
t
i−ϕt

t )

∣

∣

∣

∣

∣

(2)

TE measures the directed flow of information from signal Xi to

signal Xk, as shown in Equation (3). In other words, TE describes

the advantage of having Xi for predicting Xk. TE = 0 indicates that

no causal relationship exists between the two-time series.

TE(i → k) =
1

T − 1

T−1
∑

t=1

p(Xt
i ,X

t
k,X

t+1
k

) log
p(Xt+1

k
|Xt

k
,Xt

k
)

p(Xt+1
k

|Xt
k
)

(3)

Studies have shown TE performs relatively worse than PCC and

PLV, while PCC and PLV have comparable performances (Moon

FIGURE 1

Electrodes positions based on the standard international 10-20

system.

et al., 2020). Compared with PLV, the calculation of PCC is simpler

and faster. Therefore, the EEG connectivity matrix was obtained by

calculating the PCC values between channels in this paper. It can

be observed in Figure 2, c21 gives the PCC value of channel 2 and

channel 1.

2.2. Two-objective channel selection
problem formulation

This paper aims to reduce the number of the selected channels

as much as possible to achieve a balance between the number

of selected channels and the classification accuracy using the

connectivity matrix.

In this paper, the main framework of the channel selection

problem is shown in Figure 3. As shown in Figure 3, the core idea

is to filter the connectivity matrices of all samples D = {D1, ...,Dn}

with the help of the threshold matrix X, each individual, according

to the concept of population evolution, has an independent

threshold matrix. Then obtain the channels that can be deleted

by the filtered connectivity matrix B = {B1, ...,Bn}. The size of

threshold matrix is the same as that of the connectivity matrix and

n is the number of samples, the n is determined by the amount of

raw EEG signals data, the sample window, and sliding window sizes

as shown in Section 2.1. The final classification accuracy is obtained

according to the connectivity matrix C = {C1, ...,Cn} after deleting

part of the channels. To balance the number of the selected channels

and the classification accuracy, the channel selection problem is

formulated as a two-objective problem, as shown in Equation (4).

In Equation (4), f1(X) is the classification accuracy and f2(X) is

the degree to whichX filters the connectivity matrices of all samples

from D to C, and they are conflicting optimization objectives. Any

classifier can be used to obtain classification results [i.e., f1(X)]

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1251968
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu and Ye 10.3389/fnins.2023.1251968

FIGURE 2

EEG signal processing.

FIGURE 3

Channel selection problem.

and the classic SVM is adopted in this paper. The grid search

method and the five-fold cross-validation are adopted to obtain

the classification accuracy of SVM. Specifically, the grid search

method first determines the parameter grid of the possible values

for each hyperparameter to obtain all combinations of the possible

values for all hyperparameters. Then, the five-fold cross-validation

method is used for each set of hyperparameter combinations to

select the hyperparameter combination with the best performance

for SVM. This paper emphasizes on the investigation of reducing

the selected channels while trade-off the classification accuracy by

evolving the threshold matrix X to filter the EEG connectivity

matrices. Therefore, the classifier is not the focus of this paper.

In f2,
zero(C)
NC

represents the proportion of the zero elements in

C = {C1, ...,Cn}, where zero(C) is the number of zero elements

and NC is the total number of elements in C = {C1, ...,Cn}.
NCchannel
NChannel

is the average proportion of the deleted channels, NCchannel

is the average of the deleted channels for all samples and NChannel

is the total number of channels. The reason for not using
NCchannel
NChannel

as f1 directly is that
NCchannel
NChannel

may remain unchanged

for a long time and cannot provide sufficient guidance for the

evolution process.

Maximum F(X) = (f1(X), f2(X))

f1(X) = Classifier(D,X)

f2(X) = 0.5 ∗
zero(C)

NC
+ 0.5 ∗

NCchannel

Nchannel

(4)

µt =

{

m− 1 t = 10

µ(t−1) − 1 mod(t, 5)=0 and t > 10
(5)

The detailed procedure of how to get B and C is shown in

Algorithm 1. In Algorithm 1, Bk (k ∈ 1, ..., n) can be obtained by

comparing the values in Dk (k ∈ 1, ..., n) with the corresponding

values in X = {x1, x2, ..., xγ }, respectively. Therefore, Bk is the

connectivity matrix after filtering for the kth sample of D. If

Bk(i, j) = 0 (i 6= j), then the correlation coefficient between the

ith channel and the jth channel is 0 (Lines 2–7 in Algorithm 1). For

each column j in Bk, count the number of zero values in this column

and denote it as zj. If zj > µ, then the jth channel is considered to
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Require:

Number of all channels m;

Number of samples n;

Connection Matrix of all samples D = {D1, ...,Dn}

Threshold Matrix X;

Ensure:

Filtered connection matrix B = {B1, ...,Bn};

connection matrix after deleting part of

channels C = {C1, ...,Cn};

1: For k = 1 : n % For each sample;

2: Bk = Dk;

3: For i = 1 : m % For each row in

Bk

4: For j = 1 : m % For each column

in Bk

5: if Bk (i, j) < x(i, j), then Bk (i, j) = 0;

% Filter for each member in Bk

6: End For

7: End For

8: Deletedcount = 0;

9: For j = 1:m % For column row in Bk

10: Count the number of zero values in this

column and denote it as zj.

11: If zj > µ ,then the jth channel is

considered to be deleted for the kth sample,

and DeletedCountj = DeletedCountj + 1;

12: End For

13: End For

14: For k = 1 : n

15: Ck = Bk;

16: For j = 1 :m

17: If DeletedCountj = n,then the jth row and

jth column in Ck will be set to zero values;

18: End For

19: End For

Algorithm 1. The detailed procedure of obtaining the connection matrix

after filtering and deleting.

be deleted for the kth sample (Lines 8–12 in Algorithm 1). In this

paper, µ, which can be obtained according to Equation (6), is set

to be constantly changing as the algorithm runs rather than a fixed

value. In Equation (6), m is the number of channels and t is the

number of generations. In the early stage of the algorithm, µ is

set to a relatively large value to avoid deleting too many channels

prematurely. In the late stage of the algorithm, µ is set to be a

relatively small value to help increase the population diversity and

improve the search ability. Each stage’s non-dominated solutions

are stored for subsequent data processing. If the jth channel can

be deleted for all samples, then C1, ...,Cn can be obtained by

replacing all elements in the jth row and column of B1, ...,Bn with

0, respectively (Lines 14-19 in Algorithm 1).

2.3. Proposed DK-MOEA

For ease of understanding, this section starts with the basic

knowledge of multi-objective optimization problems (MOPs) and

MOEAs, then the general framework and the key operators in the

proposed DK-MOEA are given.

2.3.1. Background on MOPs and MOEAs
Many real word problems have multiple conflicting objectives,

which are called multi-objective optimization problems (MOPs)

(Deb, 2014). Taking the maximization problem as an example, a

unconstrained MOP can be expressed as shown in Equation (6).

Where X = {x1, ..., xn} is a candidate solution and � is the search

space, n andM are the dimensions of the search space and objective

space, respectively.

Maximum F(X) = (f1(X), f2(X), ..., fM(X))T

x ∈ �
(6)

For MOPs, it is usually impossible to find an optimal

solution that can optimize all objectives simultaneously. Suppose

a maximized MOP, solution x dominate y (x ≻ y), if and only

if x is not worse than y for all objectives and x is better than

for at least one objective. In this case, x and y have a Pareto

dominance relationship. If solution x∗ cannot be dominated by

any other solutions, then x∗ is regarded as a Pareto-optimal

solution. For MOPs, algorithms need to find a Pareto-optimal set,

which contains a set of Pareto-optimal solutions (non-dominated

solutions), rather than a single optimal solution. MOEAs have been

widely adopted in solving MOPs since they can obtain a set of

solutions in one run. The existing MOEAs can be mainly divided

into the following categories: Pareto-dominance-based MOEAs,

indicator-based MOEAs, and decomposition-based MOEAs. The

basic idea of the Pareto-dominance-based MOEAs is to evolve

the individual population with the help of Pareto-dominance-

based strategies, such as selection and fitness assignment. Typical

algorithms are NSGA-II (Deb et al., 2000), NPGA (Erickson et al.,

2002), SPEA2 (Zitzler et al., 2001), MGAMOO (Coello Coello and

Pulido, 2001), and so on. Pareto-dominance-based MOEAs have

shown good performance in solving a variety of MOPs. However,

researchers have found that the performance of this type of MOEAs

may degrade when dealing with some MOPs, such as MOPs with

many objectives (Falcón-Cardona et al., 2019). This is because

the selection pressure decreases dramatically as the number of

targets increases in Pareto-dominance-based MOEAs. Indicator-

based MOEAs use different performance metrics to guide the

search process of algorithms. Various metrics have been proposed,

including InvertedGenerational Distance (IGD) (Zhou et al., 2006),

Hypervolume (HV) (While et al., 2006), and enhanced inverted

generational distance (IGD-NS) (Tian et al., 2016), and so on.

Adopting indicators to estimate the fitness of solutions, indicator-

basedMOEAs need to spend more computational costs to calculate

the indicators. Decomposition-based MOEAs convert the original

MOP into a set of single-objective optimization problems according

to aggregation or scalarization functions. The representative

algorithms areMOEA/D: Amulti-objective evolutionary algorithm

based on decomposition (MOEA/D) (Zhang and Li, 2007) and

different variants of MOEA/D, such as based on MOEA/D

with correlative selection mechanism (MOEA/D-CSM) (Liu R.

et al., 2021), MOEA/D with adaptive weight vector adjustment

(MOEA/D-AWA) (Qi et al., 2014), a scheme to use both differential
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FIGURE 4

Framework of DK-MOEA.

evolution (DE) and covariance matrix adaptation in the MOEA/D

(MOEA/D-CMA) (Li et al., 2016), and so on. The performances

of the decomposition-based MOEAs are affected by the reference

points or weight vectors adopted in the algorithms directly. For

example, a set of uniformly distributed weight vectors may cause

MOEA/D to perform unsatisfactorily when dealing with MOPs

with irregular Pareto fronts.

2.3.2. Framework of DK-MOEA
In this paper, a domain knowledge-assisted multi-objective

evolutionary algorithm (DK-MOEA) is proposed to solve the

channel selection problem in BCIs. The framework of the proposed

DK-MOEA is shown in Figure 4. In Figure 4, DK-MOEA has two

spaces: the population space (Pspace) and the knowledge space

(Kspace). In population space, the individual population (POP)

contains a set of candidate solutions, while the repository space

(REP) stores the non-dominated solutions found by DK-MOEA

in the evolution process. The knowledge space in DK-MOEA

contains domain knowledge, including the physical distance

between channels and the location of the channels.

When the brain executes a specific task, not all channels provide

signals that are valid for that task. If the correlation coefficient

between a channel and all the other channels is 0, then this channel

may provide redundant information. Studies have shown that the

correlation between channels is related to their locations and the

distance from each other (van den Broek et al., 1998). Therefore, the

problem domain-related knowledge stored in the knowledge space

is adopted to guide the evolution process of the population space in

DK-MOEA.

The detailed procedure of DK-MOEA is given in Algorithm 2.

Where POPt and REPt , respectively, are the individual population

Require:

N (population size);

M(dimension of objective space);

NR (Maximum size of repository population);

GChannel (Positions of 62 electrodes according to

the international 10-20 standard)

Ensure:

REP in Pspace;

1: Initialize Pspace and Kspace;

2: While the termination condition is not met, then

3: Obtain the parent population by the tournament

selection method;

4: Get a random number r from (0,1);

5: If r is less than the preset crossover

probability, then

6: Get offsprings by SBX;

7: Otherwise

8: Get offsprings by the domain

knowledge-assisted update operator and GChannel;

9: End If

10: Obtain POP(t+1) from the offspring population

and POPt by selecting N solutions with better

non-dominate ranks and crowing distances.

11: Obtain REP(t+1) by selecting the non-dominated

solutions in POP(t+1) and REPt. If the size of

REP(t+1) is larger than NR, then deleted the

solutions with worse crowing distances. Each

stage’s non-dominated solutions are stored;

12: End While

Algorithm 2. The detailed procedure of DK-MOEA.

and repository population in Pspace at the tth generation. In DK-

MOEA, the tournament selection method (Osuna and Sudholt,

2022) and Simulated binary crossover (SBX) (Deb and Beyer, 2001)

are adopted as the selection and crossover operators respectively.

The detailed description of the two above-mentioned operators

is not given for brevity, since they are widely adopted in a large

number of MOEAs. It can be observed from Algorithm 2, DK-

MOEA has two key steps: the initialization of the population

and knowledge spaces (Line 1 in Algorithm 2) and the generation

of offspring individuals by domain knowledge-assisted update

operator (Line 8 in Algorithm 2). The detailed description of the

two key steps presented in the next subsection.

2.3.3. Initialization
As mentioned in Section 2.2, algorithms solve the channel

selection problem by optimizing the threshold matrix. Therefore,

POP containsN candidate threshold matrices, which have the same

size as the EEG connective matrix. Since this paper adopts a 62-

channel system, each individual in POP has their own 62 × 62

threshold matrix, whose elements take values between [−1,1]. The

threshold matrix is utilized to filter the EEG connective matrices

to determine whether one channel is linearly uncorrelated with

the other channels. It is generally known that the EEG connective

matrix is symmetric. As shown in Figure 2, both c2,1 and c1,2
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FIGURE 5

Illustration of a candidate solution.

indicate the correlation coefficient between channel 1 and channel

2. Therefore, only the threshold values of the lower or upper

triangular part are needed to filter the EEG connective matrix.

Furthermore, the threshold values on the diagonal are also not

needed, as the filtering process needs to determine whether the two

different channels are linearly independent. As shown in Figure 5,

this section adopts the lower triangular part of a 62× 62 threshold

matrix and then converts the lower triangular part into a long

vector as the decision variable X = {x1, x2, ..., x1891}, which has

1,891 elements. In this case, POP can be initialized as a N × 1891

matrix, in which each row is a candidate solution and each element

takes a value generated from [−1,1] randomly. For each candidate

solution in POP, every solution must process the connectivity

matrices D = {D1, ...,Dn}, the objective values can be calculated

for themselves as shown in Equation (4).

DM(k, l) =

√

√

√

√

V
∑

sdv=1

(GChannelk .sdv− GChannell .sdv)
2 (7)

For Kspace, the distance matrix of channels, denoted as DM,

can be initialized by calculating the Euclidean distance between

channels according to the corresponding position data information

of the channels in the Figure 1. Gchannel, which is given in

Additional Information to save space, stores information about

the locations of channels in the cerebral cortex. In Equation (7),

Gchannel.sdv means the spatial dimension value, i.e., the spatial

coordinates, of the kth Channel. The detailed information on

DM is shown in Equation (7), which demonstrates that the

Euclidean distance between channels ranges from 0 to 2. Where

V is the spatial dimension of channels on the brain, and sdv

is the value of the corresponding spatial dimension. In this

paper, the spatial location of the channel is two-dimensional, and

their corresponding position relationship is shown in Figure 1.

Moreover, this paper introduces a location index to indicate the

location of each channel, i.e., which hemisphere of the brain the

channel is located in. Locationi = 1 and Locationi = −1 represent

that the ith channel is located in the left and right hemispheres

of the brain, respectively. Furthermore, if the kth channel and the

lth channel locate in the junction area between the left and right

hemispheres of the brain, then the two channels are considered to

be in the same hemisphere, i.e., Locationk = Locationl.

Require:

X = (x1, x2, ..., xγ );

DM (distance matrix of channels stored in Kspace);

Ensure:

xnew (the updated individual);

1: For j = 1 : γ

2: Obtain the channel indexes k and l, whose

correlation coefficient is xj;

3: Get random number r, r1, r2 from (0,1);

4: If r <0.5+Cr(k, l)

5: 1=α*r1;

6: Else

7: 1=- α*r2;

8: End If

9: xnewj = xj + 1;

10: End If

Algorithm 3. The detailed procedure of domain knowledge-assisted

update operator.

2.3.4. Domain knowledge-assisted update
operator

In DK-MOEA, a domain knowledge-assisted update operator

is proposed to generate offspring individuals. Research has shown

that the EEG signals recorded from adjacent brain regions tend

to be similar due to the volume conduction effect in the brain

(van den Broek et al., 1998). Moreover, the asymmetry of the

left and right hemispheres of the brain is closely related to the

valence process of emotion (Coan and Allen, 2004; Reznik and

Allen, 2018). Therefore, the domain knowledge, i.e., the distances

between channels and the locations of channels, are adopted to

help to improve the search efficiency in this paper. As shown

in Algorithm 3, X = (x1, x2, ..., xγ ) is the individual’s decision

variables that need to be updated and γ is the dimension of

the search space, which is 1,891 as described in Section 2.3.3.

In Algorithm 3, α is the step factor (Lines 5 and 7), which

controls the step size. The convergence time will be prolonged

if α is too small. If α is set too high, the optimal solution may

be missed, and it takes the value of 0.15 empirically. It can be

observed that the update of X = (x1, x2, ..., xγ ) significantly

depends on the parameter Cr (Lines 4–9 in Algorithm 3),

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1251968
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu and Ye 10.3389/fnins.2023.1251968

TABLE 1 Parameter settings for algorithms.

Algorithm Parameter setting References

MOPSO Inertia weight w is 1; variation factor is 0.5; learning factor C1 and C2 are set to 1.49445. Shi and Eberhart, 1998; Clerc, 1999

DEMO Scaling factor F is 1.2; crossover parameter is 0.7. Storn and Price, 1997; Robič and Filipič,

2005

BIGA Probabilities of crossover and mutation are set to 0.5. Li et al., 2015

NSGA-II/SDR Probabilities of crossover and mutation are set to 0.5. Tian et al., 2018

MOEA/D Neighbor size is 20; probabilities of crossover and mutation are set to 0.5. Zhang and Li, 2007

DK-MOEA Distance radius R is set to 0.2; probabilities of crossover and mutation are set to 0.5.

TABLE 2 Statistical values of HV obtained by DK-MOEA and other MOEAs.

Subject MOPSO DEMO BIGA NSGA-II/SDR MOEA/D DK-MOEA

1 3.04E+ 00 (8.84E - 01) - 3.90E+ 00 (1.02E

+ 00) -

1.15E+ 00 (7.15E -

01) -

1.52E - 01 (3.38E -

03) -

3.77E+ 00 (1.45E -

02)

3.98E + 01 (5.51E + 00)

2 2.12E+ 00 (1.08E+ 00)

-

1.10E+ 00 (3.24E -

01) -

2.86E+ 01 (1.55E

+ 01) -

2.20E - 01 (1.69E -

03) -

2.98E+ 00 (2.43E -

03)

1.25E + 02 (4.10E + 00)

3 2.77E+ 00 (1.30E+ 00)

-

1.90E+ 00 (4.52E -

01) -

1.61E+ 00 (1.95E

+ 00) -

1.57E - 01 (3.72E -

03) -

7.32E+ 00 (4.21E -

01)

1.34E + 02 (4.68E + 00)

4 1.07E+ 00 (3.20E - 01) - 2.75E+ 00 (7.96E -

01) -

2.46E - 01 (9.10E -

02) -

3.56E - 02 (1.22E -

02) -

1.13E+ 00 (3.54E -

01)

1.07E + 02 (1.92E + 01)

5 3.51E + 01 (3.04E + 01)

≈

2.03E+ 00 (4.18E -

01) -

7.12E+ 00 (1.38E

+ 01)≈

1.50E - 01 (2.42E -

03) -

2.02E+ 00 (4.61E -

01)

2.67E+ 01 (4.98E+ 00)

6 5.08E+ 00 (1.09E+ 00)

-

1.00E+ 00 (3.47E -

01) -

3.46E + 01 (3.29E

+ 00) ≈

2.24E - 01 (8.45E -

02) -

1.05E+ 00 (3.74E -

01)

2.84E - 01 (1.48E+ 01)

7 3.70E+ 00 (2.47E - 01) - 1.81E+ 00 (4.50E -

01) -

8.71E - 01 (3.69E -

01) -

1.59E - 01 (6.28E -

02) -

5.01E+ 00 (2.62E -

01)

3.25E + 01 (6.63E + 00)

8 1.78E+ 00 (2.22E+ 00)

-

2.97E+ 00 (3.47E -

01) -

1.23E+ 00 (5.90E -

01) -

1.50E - 01 (5.06E -

03) -

2.81E+ 00 (3.41E -

01)

1.54E + 02 (4.15E + 00)

9 9.08E - 01 (4.19E - 01) - 9.87E - 01 (2.29E -

01) -

5.70E+ 00 (9.94E

+ 00) -

1.42E - 01 (4.09E -

03) -

7.42E - 01 (3.53E -

01)

1.02E + 02 (9.67E + 00)

+/-/≈ 0/8/1 0/9/0 0/7/2 0/9/0 0/9/0

which can be calculated according to the domain knowledge in

Kspace.

Cr(k, l) =
DM(k, l)− R

2(Max(DM)+ R)
(8)

In this section, two ways to get the value of Cr are presented.

The first way only uses the distance information of channels, while

the second way utilizes both distance and location information.

The first and second ways to obtain Cr are given in Equations (8,

9), respectively. In Equations (8, 9), R is the distance radius of

channels. Max(DM) is the maximum values in DM, which take

the values of 2 according to the description in Section 2.3.3. If

the DM(k, l) between channel k and channel l is less than R, it

indicates the EEG signals obtained by the two channels are likely

to be correlated in this case, the corresponding dimension in

X = (x1, x2, ..., xγ ) tends to take a smaller value (Lines 7 and 9 in

Algorithm 3). Conversely, DM(k, l) ≥ R indicates the EEG signals

obtained by channel k and channel l are likely to be uncorrelated.

Therefore, the corresponding dimension in X = (x1, x2, ..., xγ )

tends to take a larger value (Lines 5 and 9 in Algorithm 3) to make

the correlation coefficient between channel k and channel l more

likely to be 0 after filtering by the threshold matrix, the threshold

matrix and X can convert each other, according to Figure 5. It can

be observed from Equation (9), the second way to get Cr takes

into consideration both the distance and location information of

channels. If channel k and channel l locate in the same cerebral

hemisphere, i.e., Locationk = Locationl, then the calculation of

Cr is the same as that in the first way as shown in Equation

(8). If Locationk 6= Locationl, Cr will always take positive values

in order to maintain a treatment to take a large value for the

corresponding dimension in X. Cr in the case of DM(k, l) < R is

less than that in the case of DM(k, l) ≥ R, since the latter’s signals,

obtained by two channels, are more likely to be uncorrelated

when the distance between the two channels is larger than the

distance radius.

Cr(k, l) =



































DM(k,l)−R
2(Max(DM)+R)

if Locationk = Locationl
DM(k,l)

2(Max(DM)+R)
if Locationk 6= Locationl

and DM(k, l) < R
DM(k,l)+R

2(Max(DM)+R)
if Locationk 6= Locationl and

DM(k, l) ≥ R

(9)
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FIGURE 6

Convergence of 5 algorithms on 9 subjects. (A) Subject 1. (B) Subject 2. (C) Subject 3. (D) Subject 4. (E) Subject 5. (F) Subject 6. (G) Subject 7. (H)

Subject 8. (I) Subject 9.

3. Results

3.1. Experiment settings

To evaluate the performance of the proposed algorithm, DK-

MOEA is compared to four well-performing and widely utilized

algorithms, namely MOPSO (Coello and Lechuga, 2002), DEMO

(Robič and Filipič, 2005), BIGA (Li et al., 2015), NSGA-II/SDR

(Tian et al., 2018), and MOEA/D (Zhang and Li, 2007).

For a fair comparison, all algorithms have the same

termination conditions and population sizes, i.e., the maximum

number of function evaluations is set to 30,000, and the

population size N is set to 200 for all algorithms. To ensure

that ideal experimental results can be obtained, the parameter

settings of each compared algorithm refer to the corresponding

references. The parameter settings and references are shown in

Table 1.

In this paper, the Hypervolume (HV) (Zitzler and Thiele, 1999)

is used to evaluate the performance of algorithms. HV measures

both the convergence and diversity of an algorithm by calculating

the area of the hypercube, which is constructed by a reference

point and the non-dominated solutions found by the algorithm.

The larger the value of HV, the better the performance of the

evaluated algorithm.
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FIGURE 7

Pareto fronts of all algorithms on subject 2. (A) MOPSO. (B) DEMO. (C) BIGA. (D) NSGA-II/SDR. (E) MOEA/D. (F) DK-MOEA.

3.2. Comparison of DK-MOEA and other
MOEAs on multi-objective channel
selection problem

Table 2 presents the statistical results of all 6 algorithms over 30

independent runs on the multi-objective channel selection problem

proposed in Section 2.2 in terms of HV. In Table 2, the best average

HV values are shown in bold. The symbol “+”, “-”, and “≈”

indicate the performance of the compared algorithm proposed DK-

MOEA is significantly better than, worse than, and similar to that

of the proposed DK-MOEA according to Wilcoxon rank-sum test

(Yaman et al., 2021) with a significance level of 5%, respectively.

As Table 2 shows, DK-MOEA obtains the best HV results for

7 out of 9 subjects. The main difference between the proposed

DK-MOEA and the other comparative algorithms is that DK-

MOEA adopts a two-space framework, in which domain-related

knowledge is utilized to guide the evolution process. Therefore,

the statistical results in Table 2 indicate the effectiveness of the

proposed two-space framework. NSGA-II/SDR performs worse

than the other algorithms relatively. This may be because NSGA-

II/SDR adopts a strengthened dominance relation (SDR), which

tends to choose solutions with better convergence properties, to

get the next individual population. In this case, the non-dominated

solutions found by NSGA-II/SDR are likely to concentrate on

partial areas of the true Pareto fronts. For Subject 5 and Subject

6, MOPSO and BIGA achieve the best results in terms of HV,

respectively. DK-MOEA obtains the second-best HV results for

both Subject 5 and Subject 6. In MOPSO, the personal and global

best positions can help the algorithm strike a balance between

exploration and exploitation. In BIGA, the bi-goal evolution

strategy, which considers both proximity and diversity, helps the

algorithm get the best performance for some subjects in the

channel selection problem. MOEA/D decomposes the original

multi-objective optimization problem into a set of simple single-

objective problems to obtain a Pareto-optimal set with better

distribution. However, the channel selection problem employed in

this paper is a large-scale multi-objective optimization problem

with 1,891 decision variables. Without using any prior knowledge,

it is easy to make the algorithm fall into local optima. The

experimental results in Table 2 show that the MOEA/D does not

show significant advantages for the channel selection problems.

Figure 6 demonstrates the average HV value obtained by all

6 comparative algorithms as the function evaluation number

increases. It can be observed from Figure 6, DK-MOEA gets good

HV results faster than the other algorithms for most subjects.

Therefore, the results in Figure 6 verify the effectiveness of the

proposed two-space frameworks and indicate that utilizing the

useful knowledge extracted from the problem domain can enhance

the search efficiency of the algorithm.

To better display the comparison results, the Pareto fronts

of DK-MOEA and all other compared algorithms are given in

Figure 7. In Figure 7, f1(X) and f2(X) are the two objectives,
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FIGURE 8

Convergence of DK-MOEA and SVM on 9 subjects. (A) Subject 1. (B) Subject 2. (C) Subject 3. (D) Subject 4. (E) Subject 5. (F) Subject 6. (G) Subject 7.

(H) Subject 8. (I) Subject 9.

which has been described in Section 2.2, of the obtained

Pareto-optimal solutions (denoted as X). Specifically, f1(X) is

the classification accuracy, and f2(X) indicates the degree of

channel deletion of X. It can be observed from Figure 7 that

some algorithms, i.e., BIGA, NSGA-II/SDR, and MOEA/D,

obtain relatively few solutions on the Pareto front. This means

that the above two algorithms have relatively weak search

capabilities. MOPSO, DEMO, and DK-MOEA have obtained

more solutions on the Pareto front. However, the objective

values of MOPSO and DEMO concentrate in a small range,

which means MOPSO and DEMO is easily trapped into local

optima. The Pareto-optimal solutions obtained by DK-MOEA

show a good distribution on the Pareto front, which means

that the proposed algorithm performs better in solving channel

selection problems.

3.3. Comparison of DK-MOEA and
traditional classification algorithm with all
channels

In this section, the traditional algorithm, which uses all

channels rather than selecting a part of channels, is adopted.
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Similar to DK-MOEA and the other MOEAs in Section 3.2, the

traditional algorithm chooses SVM as the classifier and adopts

connectivity matrices as the input feature. In Figure 8, the red

lines demonstrate the average classification accuracy with different

numbers of channels in the Pareto-optimal solution sets obtained

by DK-MOEA over 30 independent runs. The black lines give the

classification accuracy obtained by SVM adopting all 62 channels.

As Figure 8 shows, with the increase in the number of selected

channels, the classification accuracy achieved by DK-MOEA also

increases. It also can be observed from Figure 8, the classification

accuracy of DK-MOEAwith a part of channels is better than that of

SVM with all channels. For example, the classification accuracy of

DK-MOEA with 36 channels is better than that of SVM with all 62

channels. This phenomenon reveals the significance of this work,

which tries to use as few channels as possible without reducing

the classification accuracy. With all 62 channels, DK-MOEA gets

FIGURE 9

Investigation of the distance radius R.

better results than SVM for most subjects. This is because the

connectivity matrix adopted in DK-MOEA has been filtered and

reduced some redundant information compared to the original

connectivity matrix. Therefore, the results in Figure 8 demonstrate

the EEG signals collected from all 62 channels contain redundant

information, which may cause the degradation of the classification

accuracy.

4. Discussion

4.1. Investigation of the distance radius R

In DK-MOEA, the distance radius R plays an important

role in the proposed domain knowledge-assisted update

operator. If the distance between two channels is larger

than R, then the two channels will tend to be regarded as

uncorrelated, as shown in Algorithm 1. Therefore, if R is too

large, then too many channels will be considered unrelated to

each other. In this case, too many channels may be deleted

and thus resulting in the reduction of the classification

accuracy. In this section, 5 subjects, including subject 1,

subject 3, subject 5, subject 7, and subject 9, are selected to

investigate the influence of different R values on the channel

selection problem formulated in Section 3. Figure 9 gives the

average HV values of DK-MOEA with different R over 30

independent runs. R ranges from 0.2 to 1.8 since the maximum

distance between two channels is 2. It can be observed from

Figure 9, R = 0.2 achieves the best performance for most of

the tested subjects. For subject 7, DK-MOEA gets the best

and second-best HV values when R is set to 0.3 and 0.2,

respectively. Therefore, the distance radius R is set to 0.2 in

this paper.

4.2. Investigation of the domain knowledge
assisted update operator

In DK-MOEA, the key operator is the domain knowledge-

assisted update operator, which improves the search efficiency of

FIGURE 10

Investigation of the e�ectiveness of the domain knowledge-assisted update operator. (A) Subject 1. (B) Subject 4. (C) Subject 7.
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DK-MOEA by utilizing domain-related knowledge, namely the

locations of channels and the distance matrix between channels.

In this section, Subject 1, Subject 4, and Subject 7 are taken as

examples and HV is used to evaluate the effectiveness of algorithms

in terms of convergence and diversity. As shown in Figure 10, DK-

MOEA without Location and Distance performs the worst for all

three subjects, which means the location and distance information

extracted from the problem domain helps enhance the ability to

solve the channel selection problem. It can be observed from

Figure 10, DK-MOEA achieves better performance and converges

faster than DK-MOEA without Location. This indicates that, in

addition to the location information of channels, the distance

matrix between channels also provides great help for channel

selection problems.

5. Conclusions and future work

In this paper, the channel selection problem in BCIs is

formulated as a two-objective optimization problem to achieve

the balance between number of channels and classification

accuracy. After that, a domain knowledge-assisted multi-objective

evolutionary algorithm (DK-MOEA) is proposed to solve the

formulated multi-objective channel selection problem. DK-MOEA

adopts a two-space framework, which contains two spaces, namely

population space, and knowledge space. The knowledge space

stores the locations of channels and the distance matrix between

channels, which can be adopted to guide the evolution process

of DK-MOEA. The proposed algorithm has been evaluated on

a fatigue detection task with 9 volunteers and compared with

4 state-of-the-art MOEAs. The experimental results demonstrate

the proposed algorithm can achieve better performance for the

fatigue detection task. This indicates that the knowledge extracted

from the problem domain can improve the performance of the

algorithm. Moreover, the comparison of DK-MOEA and SVM

with All Channels demonstrates that a larger number of channels

will not always lead to better classification results. Therefore, it is

possible to select as few electrodes as possible without reducing the

classification accuracy. This paper aims to make a balance between

number of channels and the accuracy of the fatigue detection task,

which can not only reduce the complexity of subsequent data

processing but alsomake the practical applicationmore convenient.

As shown in Section 2.3.3, each individual in DK-MOEA is a

threshold matrix and the matrix will be converted to a long vector

that has 1,891 members. So, the channel selection problem can

be regarded as a large-scale multi-objective problem. Moreover,

many elements in a candidate solution are set to 0 after filtering.

In this case, the optimization problem in this paper can be further

regarded as a sparse large-scale optimization problem. Therefore,

how to combine the characteristics of sparse large-scale problems in

the evolution process to improve the performance of the algorithm

is one of the future works of this paper.
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Robič, T., and Filipič, B. (2005). “Differential evolution for multiobjective
optimization,” in International Conference on Evolutionary Multi-Criterion
Optimization (Berlin: Springer), 520–533.

Schreiber, T. (2000). Measuring information transfer. Phys. Rev. Lett. 85, 461.
doi: 10.1103/PhysRevLett.85.461

Shi, Y., and Eberhart, R. (1998). “A modified particle swarm optimizer,” in 1998
IEEE International Conference on Evolutionary Computation Proceedings (Anchorage,
AK: IEEE), 69–73.

Siddiqui, M. K., Morales-Menendez, R., Huang, X., and Hussain, N. (2020). A
review of epileptic seizure detection using machine learning classifiers. Brain Inform. 7,
1–18. doi: 10.1186/s40708-020-00105-1

Singh, A., Hussain, A. A., Lal, S., and Guesgen, H. W. (2021). A
comprehensive review on critical issues and possible solutions of motor imagery
based electroencephalography brain-computer interface. Sensors 21, 2173.
doi: 10.3390/s21062173

Storn, R., and Price, K. (1997). Differential evolution–a simple and efficient heuristic
for global optimization over continuous spaces. J. Global Opt. 11, 341–359.

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1251968
https://doi.org/10.1007/s10462-019-09694-8
https://doi.org/10.1016/j.eswa.2020.113907
https://doi.org/10.1109/JSEN.2020.3009629
https://doi.org/10.1016/j.biopsycho.2004.03.002
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1162/106365601750190406
https://doi.org/10.1016/S0309-1708(01)00020-3
https://doi.org/10.1016/j.bspc.2021.102574
https://doi.org/10.1016/j.neunet.2019.07.008
https://doi.org/10.1016/j.compbiomed.2020.103843
https://doi.org/10.1109/TCYB.2015.2507366
https://doi.org/10.1016/j.artint.2015.06.007
https://doi.org/10.1016/j.compbiomed.2021.105080
https://doi.org/10.3390/e23040457
https://doi.org/10.1162/evco_a_00279
https://doi.org/10.1016/j.bspc.2020.101994
https://doi.org/10.1038/s41598-020-72051-1
https://doi.org/10.1016/j.neunet.2020.08.009
https://doi.org/10.1162/evco_a_00292
https://doi.org/10.1109/ACCESS.2020.3003056
https://doi.org/10.1155/2020/8890477
https://doi.org/10.1162/EVCO_a_00109
https://doi.org/10.1016/j.copbio.2021.10.001
https://doi.org/10.1111/psyp.12965
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1186/s40708-020-00105-1
https://doi.org/10.3390/s21062173
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu and Ye 10.3389/fnins.2023.1251968

Tian, Y., Cheng, R., Zhang, X., Su, Y., and Jin, Y. (2018). A strengthened
dominance relation considering convergence and diversity for evolutionary
many-objective optimization. IEEE Trans. Evol. Comput. 23, 331–345.
doi: 10.1109/TEVC.2018.2866854

Tian, Y., Zhang, X., Cheng, R., and Jin, Y. (2016). “A multi-objective evolutionary
algorithm based on an enhanced inverted generational distance metric,” in
2016 IEEE Congress on Evolutionary Computation (CEC) (Vancouver, BC: IEEE),
5222–5229.

Tiwari, A., and Chaturvedi, A. (2021). A novel channel selection method for
BCI classification using dynamic channel relevance. IEEE Access 9, 126698–126716.
doi: 10.1109/ACCESS.2021.3110882

Tong, L., Zhao, J., and Fu, W. (2018). “Emotion recognition and channel selection
based on EEG signal,” in 2018 11th International Conference on Intelligent Computation
Technology and Automation (ICICTA) (Changsha: IEEE), 101–105.

van den Broek, S. P., Reinders, F., Donderwinkel, M., and Peters, M. (1998). Volume
conduction effects in EEG and MEG. Electroencephalogr. Clin. Neurophysiol. 106,
522–534.

While, L., Hingston, P., Barone, L., and Huband, S. (2006). A faster
algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10, 29–38.
doi: 10.1109/TEVC.2005.851275

Wosiak, A., and Dura, A. (2020). Hybrid method of automated EEG signals’
selection using reversed correlation algorithm for improved classification of emotions.
Sensors 20, 7083. doi: 10.3390/s20247083

Yaman, A., Iacca, G., Mocanu, D. C., Coler, M., Fletcher, G., and Pechenizkiy, M.
(2021). Evolving plasticity for autonomous learning under changing environmental
conditions. Evol. Comput. 29, 391–414. doi: 10.1162/evco_a_00286

Yang, L., Chen, Q., Zhang, Q., and Chao, S. (2021). “Intelligent feature selection for
EEG emotion classification,” in 2021 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM) (Houston, TX: IEEE), 3681–3688.

Yang, X.-S. (2020). Nature-Inspired Optimization Algorithms. Academic Press.

Yavandhasani, M., and Ghaderi, F. (2021). Visual object recognition from single-
trial EEG signals usingmachine learning wrapper techniques. IEEE Trans. Biomed. Eng.
69, 2176–2183. doi: 10.1109/TBME.2021.3138157

Yu, J., and Yu, Z. L. (2021). Cross-correlation based discriminant criterion
for channel selection in motor imagery BCI systems. J. Neural Eng. 18, 046083.
doi: 10.1088/1741-2552/ac0583

Zhang, Q., and Li, H. (2007). MOEA/D: a multiobjective evolutionary
algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731.
doi: 10.1109/TEVC.2007.892759

Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., and Tsang, E. (2006). “Combining
model-based and genetics-based offspring generation for multi-objective optimization
using a convergence criterion,” in 2006 IEEE International Conference on Evolutionary
Computation (Vancouver, BC: IEEE), 892–899.

Zhuang, M., Wu, Q., Wan, F., and Hu, Y. (2020). State-of-the-art non-invasive
brain–computer interface for neural rehabilitation: a review. J. Neurorestoratol. 8,
12–25. doi: 10.26599/JNR.2020.9040001

Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. TIK-report, ETH Zurich, Computer Engineering and
Networks Laboratory.

Zitzler, E., and Thiele, L. (1999). Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput.
3, 257–271.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1251968
https://doi.org/10.1109/TEVC.2018.2866854
https://doi.org/10.1109/ACCESS.2021.3110882
https://doi.org/10.1109/TEVC.2005.851275
https://doi.org/10.3390/s20247083
https://doi.org/10.1162/evco_a_00286
https://doi.org/10.1109/TBME.2021.3138157
https://doi.org/10.1088/1741-2552/ac0583
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.26599/JNR.2020.9040001
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Domain knowledge-assisted multi-objective evolutionary algorithm for channel selection in brain-computer interface systems
	1. Introduction
	2. Materials and methods
	2.1. Data acquisition and processing
	2.2. Two-objective channel selection problem formulation
	2.3. Proposed DK-MOEA
	2.3.1. Background on MOPs and MOEAs
	2.3.2. Framework of DK-MOEA
	2.3.3. Initialization
	2.3.4. Domain knowledge-assisted update operator


	3. Results
	3.1. Experiment settings
	3.2. Comparison of DK-MOEA and other MOEAs on multi-objective channel selection problem
	3.3. Comparison of DK-MOEA and traditional classification algorithm with all channels

	4. Discussion
	4.1.  Investigation of the distance radius R
	4.2. Investigation of the domain knowledge assisted update operator

	5. Conclusions and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


