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Graphene-based RRAM devices
for neural computing

Rajalekshmi T. R, Rinku Rani Das, Chithra Reghuvaran and

Alex James*

Digital University, Thiruvananthapuram, Kerala, India

Resistive random access memory is very well known for its potential application

in in-memory and neural computing. However, they often have di�erent types

of device-to-device and cycle-to-cycle variability. This makes it harder to build

highly accurate crossbar arrays. Traditional RRAM designs make use of various

filament-based oxide materials for creating a channel that is sandwiched between

two electrodes to form a two-terminal structure. They are often subjected

to mechanical and electrical stress over repeated read-and-write cycles. The

behavior of these devices often varies in practice across wafer arrays over these

stresses when fabricated. The use of emerging 2Dmaterials is explored to improve

electrical endurance, long retention time, high switching speed, and fewer

power losses. This study provides an in-depth exploration of neuro-memristive

computing and its potential applications, focusing specifically on the utilization of

graphene and 2D materials in RRAM for neural computing. The study presents a

comprehensive analysis of the structural and design aspects of graphene-based

RRAM, alongwith a thorough examination of commercially available RRAMmodels

and their fabrication techniques. Furthermore, the study investigates the diverse

range of applications that can benefit from graphene-based RRAM devices.

KEYWORDS
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1. Introduction

Graphene-based resistive random access memory (RRAM) devices have gained

significant attention in recent years for their potential applications in neural computing.

Graphene, a two-dimensional carbon material, has exceptional electrical and mechanical

properties, making it an attractive candidate for RRAM devices. RRAM is considered one

of the most promising emerging non-volatile memory, a potentially universal memory

device that comes under the broad category of memristive systems (Meena et al., 2014). The

advantage of RRAM is attributed to the ease of fabrication of a two-terminal structure that

can be used to create efficient crossbar arrays, high read speeds, and low area overheads. The

RRAMs in the crossbar can emulate multiply and accumulate (MAC) computations that are

universal operations essential for implementing neural computations.

RRAM is a memory based on a resistive switching mechanism where the conducting

filament is created and broken due to a change of external voltage (Yu et al., 2011a). The

binary RRAMs operate in two states: low resistance state (LRS) and high resistance state

(HRS). Various types of electrodes and metal oxides can be used for RRAM structure.

Titanium, hafnium, silicon, germanium, and nickel are the most common oxide materials,

whereas silicon, silver, indium, and tantalum are familiar electrode materials used in RRAM

memory devices.
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Unfortunately, RRAMmemory devices face various limitations

with the aforementioned electrode and oxide materials (Zhu et al.,

2015). For accomplishing the resistive switching property, the

electrode, and conducting filament can be modified with a wide

variety of materials. The electrode materials used for RRAM are

divided into the following five categories: (i) elementary substance

electrodes, (ii) silicon-based electrodes, (iii) alloy electrodes, (iv)

oxide electrodes, and (v) nitride-based electrodes (Zahoor et al.,

2020). Depending on the electrode material, the number of possible

states in the RRAM varies (Prakash and Hwang, 2019). As the

number of states increases, the device finds application as an analog

data storage device.

In RRAM, the graphene-related materials have been

incorporated to increase the switching speed, retention time,

endurance, and power consumption to improve the performance

as a non-volatile memory (Rehman et al., 2020). Graphene

provides additional properties such as transparency, flexibility,

enhanced heat dissipation due to the high thermal conductivity

of graphene, and chemical stability. Other than these properties,

as a two-dimensional system, graphene can provide more than

two states for the memristive device in implementing synapses

for neuromorphic computing. It is reported that till now more

than 16 states are possible with graphene in the memristive system

(Schranghamer et al., 2020). Building more than two stable states

in RRAMs to form analog computing systems or using them for

analog storage is a open problem in RRAM-based systems.

With graphene-enabled RRAMs, it is expected that the higher

number of states can improve the storage density and improve the

reliability of the device. Graphene-enhanced RRAM exhibits faster

switching speeds and enduring performance due to high carrier

mobility, and the unique two-dimensional structure minimizes

filament variability, ensuring stable set/reset processes in RRAM

devices. Exceptional thermal and mechanical stability of graphene

boosts RRAM features by optimizing performance across varying

conditions (Galashev and Rakhmanova, 2014; Pan et al., 2017;

Rehman et al., 2020). It is reported that RRAM devices offer

a switching speed of less than 10 ns, power losses of about 10

pJ, lower threshold voltage of less than 1V, long retention time

of greater than 10 years, high electrical endurance with more

than 108 voltage cycles, and extended mechanical robustness of

500 bending cycles. These advantages are complemented by its

ability to tolerate high-temperature variations. Graphene as an

interface layer acts as a resistive switching medium which help to

minimize power dissipation with low contact resistance. Graphene

helps to optimize the surface effect such as photodesorption and

chemisorption which are varied due to the increase and decrease of

the temperature.

This review starts with an overview of neuro-memristive

computing, graphene, and its synthesis techniques. Furthermore,

the RRAM, working principle, and the resistive switching

mechanism are discussed. The incorporation of graphene and

graphene oxide in RRAM as an electrode, and the middle layer is

elaborated in detail. The role of graphene in RRAM, to enhance

the properties such as endurance, and retention is analyzed, and

the enhancement in flexibility and transparency is discussed. The

progress of multilevel cell storage in RRAM is reviewed in detail.

Furthermore, the commercially available RRAM models and their

fabrication methods, complementary metal-oxide-semiconductor

(CMOS) compatibility with RRAM are also discussed.

2. Neuro-memristive computing

2.1. Memristive devices and neural
dynamics

Memristive devices have been studied for their potential to

create artificial neural networks that can learn and adapt in a

manner similar to biological neural networks (Huang et al., 2020).

These devices can be used to build artificial synapses that can

modify their strength based on the pattern of electrical signals

they receive. This is similar to how biological synapses modify

their strength in response to the timing and frequency of incoming

electrical signals (Zhang et al., 2023). Based on this, one potential

application of memristive devices in neural dynamics is in the

development of neuromorphic computing systems (Ma et al.,

2018). These systems are designed to mimic the way the brain

processes information, and memristive devices could provide a

way to build artificial neural networks that are more efficient and

flexible than traditional computing systems (Shehab et al., 2022).

This section will cover the details of different kinds of memristive

devices, their working, and their viability for application in

neuromorphic computing systems.

Memristor is one kind of two-terminal device, considered

a new-generation non-volatile memory (NVM) device. This

new computing system proposed by Sano et al. (2013) can

store information by changing the resistance of a material,

whereas conventional memory devices program data by change

of capacitance (Im et al., 2020). A pinched hysteresis loop is

a characteristic feature of a memristor. The loop represents the

behavior of the memristor as the voltage or current applied to

it is varied as shown in Figure 1. The pinched hysteresis loop

is a distinctive characteristic of memristors and distinguishes

them from other electronic devices such as resistors, capacitors,

and inductors. The pinched hysteresis loop arises due to the

inherent properties of the memristor’s material and structure,

which allow it to exhibit memory and resistance variations based

on the history of applied voltage or current. The exact shape and

characteristics of the loop depend on the specific properties of

the memristor, including its materials, fabrication methods, and

operating conditions. The pinched hysteresis loop of a memristor

has significant implications for applications in areas such as

memory devices, neuromorphic computing, and analog signal

processing. It enables the memristor to store information based

on its resistance state and offers unique opportunities for non-

volatile memory and computing architectures. The conventional

memristor model and its symbol are shown in Figures 2A, B.

These devices offer several advantages over conventional

memory technologies such as flash, dynamic random access

memory (DRAM), and static random access memory (SRAM),

including high density, low power consumption, and fast switching

speeds (Yang and Williams, 2013). The combination of metal

electrodes and insulators constructs a memristor configuration.

The schematic diagram of the cross-point device, showing metallic
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FIGURE 1

Example of pinched hysteresis loop of memristor.

FIGURE 2

(A) Memristor model according to Strukov et al. (2008). (B)

Traditional symbol, p-type and n-type memristors (copyright Starzyk

et al., 2014).

top and bottom electrodes and switching oxide is shown in Figure 3.

Resistive switching, phase change, spintronics ferroelectric, etc.

are the various kinds of properties of memristor devices that

are contributing to the development of emerging electronic

technologies. Among them, a resistive switching memristor

(RSM) is the most common memristive device which has low

power consumption, high endurance, and potential for use in

neuromorphic computing (Prodromakis and Toumazou, 2010;

Yu et al., 2018). The applied voltage to the electrodes in the

RSM device creates an electric field across the metal oxide layer,

causing a change in the oxidation state of the material. This

oxidation state changes the resistance of the material which can

be detected and used to store data. Phase change element based

phase change memory (PCM) is another type of memristive

device that uses a material to change its physical state between a

crystalline phase (low resistance) and an amorphous phase (high

resistance) in response to heat or electric current. Spintronics

memristors are a new type of magnetic RAM (MRAM) that works

on magnetic tunnel junction (MTJ) (Xue et al., 2011) and offers

high speed and high endurance performance. The resistance value

has changed due to the spin of the electron and the storage of

the data. Two ferromagnetic layers (FM) of these devices are

separated by a non-magnetic (NM) layer. When an electric current

is applied to the device, the spin of electrons in the magnetic

FIGURE 3

Schematic of the cross-point device, showing metallic top and

bottom electrodes, and switching oxide (Yang and Williams, 2013).

layers is affected, causing a change in the resistance of the device.

Ferroelectric tunnel junction (FTJ) (Ambriz-Vargas et al., 2017) is

the most significant ferroelectric memory device for neuromorphic

computation, having an insulating layer in between two metal

electrodes. This ferroic nanostructure is comprised of an ultra-

thin ferroelectric barrier, and its dominant mechanism is quantum

electron tunneling. In this structure, electrons are able to penetrate

through the potential barrier of the ultra-thin insulator. As research

in this field continues to progress, memristive devices are expected

to play an increasingly important role in the development of

advanced computing and memory technologies.

Memristive devices are of great interest in the field of

neuromorphic computing because they can be used to emulate the

synaptic connections between neurons in the brain. The neural

dynamics of memristive devices refers to the behavior of these

devices when they are used to implement neural networks. When

memristive devices are used as synapses in a neural network, their

resistance values change over time in response to the input signals

that they receive (Boybat et al., 2018). This behavior can be used to

implement learning in the neural network, allowing it to adapt to

new inputs and improve its performance over time. The dynamics

of memristive devices in neural networks are highly non-linear and

can be difficult to predict (Brivio et al., 2021). However, researchers

have developed models and simulations to study the behavior of

these devices in neural networks.

2.2. Memristors in crossbar

Memristors in crossbar arrays are a type of non-volatile

memory technology that holds promise for high-density, low-

power, and high-speed computing applications (Xia and Yang,

2019). In a crossbar array, memristors are arranged in a grid

pattern, with one set of wires running vertically and another set

of wires running horizontally, forming a series of intersecting

points. At each cross-point, a memristor can be programmed to

either a high or low resistance state, representing a binary 1 or 0,

respectively. By applying voltage to the appropriate sets of wires, the

resistance state of the memristor can be read or written. This allows

for parallel access to multiple memory cells, making crossbar arrays
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a potential solution for memory-intensive tasks such as machine

learning and artificial intelligence.

A single memristor or one-transistor/one-resistor (1T, 1R)

memristor array typically refers to a configuration where

memristors are organized in a regular grid pattern. The purpose of a

single memristor array is to enable the simultaneous operation and

interconnection of multiple memristors (Xu et al., 2021). In a 1T,

1Rmemristor array, each memristor is paired with a transistor. The

transistor serves as the access device or switch, allowing individual

memristors within the array to be addressed and read or written

to Kim et al. (2012). The key advantage of a 1T, 1R memristor

array is its high density and potential for low-power operation.

By combining the storage element (memristor) and the access

device (transistor) into a single unit, the overall footprint of the

memory array can be reduced. There are various ways to arrange

the memristors, depending on the desired application and circuit

design (Lu et al., 2022). The two-memristor crossbar array is a

grid-like structure where the two memristors are positioned at the

intersection of a row and a column. The rows and columns are

connected to input and output nodes or other circuit elements. This

configuration is commonly used in memristive crossbar arrays,

where the resistance states of the memristors can be manipulated

to enable or disable the connections between rows and columns

(Vourkas et al., 2016). Crossbar arrays are particularly relevant

in applications such as memory arrays, neural networks, and

digital logic circuits (Li et al., 2021). In a bridge memristive

crossbar array, two memristors are connected in series between

two nodes, forming a bridge structure. The nodes can represent

inputs, outputs, or intermediate connections in a larger circuit. The

bridge configuration allows for specific control over the flow of

current or signals through the array. By adjusting the resistance

states of the individual memristors in the bridge, it is possible to

selectively enable or disable the connection between the two nodes.

This can be achieved by applying appropriate voltage or current

across the bridge.

Memristors in crossbar arrays also have the potential for

use in neuromorphic computing, which seeks to emulate the

structure and function of the human brain (Xia and Yang,

2019). Memristor-based crossbar arrays can potentially perform

tasks such as pattern recognition and decision-making in a

highly efficient and parallelized manner. Starzyk et al. (2014)

developed a novel neural network architecture that utilizes

a compact crossbar layout of memristors, which allows us

to preserve a high density of synaptic connections. Yakopcic

et al. (2019) studied a memristor-based neuromorphic system

for ex-situ training of multi-layer perceptron algorithms. This

technique facilitates the direct translation of neural algorithm

weights onto the resistive grid of a memristor crossbar. It

is observed that a parallel crossbar improves the speed and

power dissipation. Hu et al. (2012b) proposed a memristive

crossbar array for high-speed image processing. It exhibits

automatic memory, continuous output, and high-speed parallel

computation, making it well suited for implementation in VLSI

(very large-scale integration) technology. Huang et al. (2021)

developed a vertical crossbar MIM (metal insulator metal)

RRAM device for neuromorphic computing that is based on

the 2D material ReSe2. This design has been shown to exhibit

FIGURE 4

ITIM configuration for implementing DNN neural network.

improved accuracy when used in brain-inspired neuromorphic

computing systems.

2.3. Neuro-memristive architectures

The memristive circuits and computing architectures are

one of the promising solutions for implementing neuromorphic

computing. The memristor implementations provide various

advantages such as scalability, on-chip area and power

reduction, efficiency, and adaptability, especially for device

scale-up architectures. There are existing different memristive

neuromorphic architectures in the literature used for edge

computing applications. The section reviews the most popular

neural architectures for edge computing applications.

2.3.1. Deep neural network (DNN)
The DNN is implemented using memristor crossbar arrays.

Each DNN layer is implemented using one transistor/memristor

(1T 1M) configuration as in Figure 4. Each layer consists ofM word

lines (WLs) and N bit lines (BLs). The transistor switch enables or

disables the column-wise memristor nodes. In Figure 4, v1, v2, ...

vn from the inputs, conductance gi,j of memristors as weights and

columns current i1, i2, ... im as outputs, where i, j are the coordinates

of the crossbar node. The output currents indicate the weighted

summation of input voltages. The bias is included as an additional

input line.

2.3.2. Convolutional neural network (CNN)
There are several analog memristive crossbar implementations

of CNN architecture (R et al., 2022). Figure 5 shows the hardware
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FIGURE 5

CNN implementation using memristor crossbar arrays (R et al., 2022).

implementation of CNN consisting of a convolution layer, mean

pooling layer, and dense layers. The convolution filters are realized

as memristive crossbars. The conductance of memristive devices is

the trained weights of the convolutional filter (CF). The number

of memristors in each layer is determined by the required feature

maps. The features are then fed to the pooling layer circuit. The

pooling layer reduces the dimensionality by performing mean-

pooling operation (R et al., 2022). The output of the mean-

pool operation is flattened and is connected to dense layers for

classification. The current-to-voltage (IV) converter block is used

to convert currents to corresponding voltages. The activation

functions used are ReLU (rectified linear unit) and softmax.

2.3.3. Cellular neural network (CeNN)
The CeNN is developed by Chua and Yang by mimicking the

features of neural networks and cellular automata finds applications

in the area of image processing (Chua and Yang, 1988a,b). The

CeNN network in Figure 6 consists of I × J cells. Each cell is

connected only to its neighboring cells. The connections from each

cellC(i, j) to its neighbors is defined by cloning templates,A(i, j; k, l)

and B(i, j; k, l), for feedback and feedforward connections (Chua

and Yang, 1988b; Duan et al., 2015). The input signalU is connected

to C(i, j) through the feedforward weights B(i, j; k, l). The output of

the cell yk,l is fed to C(i, j) through the feedback weights A(i, j; k, l).

The state equation can be mathematically expressed as Chua and

Yang (1988b).

dxi,j

dt
= −xi,j +

∑

ck,l

A(i, j; k, l)yk,l +
∑

ck,l

B(i, j; k, l)uk,l + Ib, (1)

where Ib is the bias current, xi,j is the cell state, and

yi,j is the output, respectively. There are various memristive

implementations of CeNN in the literature (Duan et al., 2015;

Hu et al., 2016). In Figure 6, the feedback and feedforward

connections in the CeNN network are implemented using

memristor crossbar arrays.

2.3.4. Recurrent neural network (RNN)
The recurrent neural networks-based methods demonstrated

outstanding ability in prediction tasks using time-series data by

combining large dynamical memory and adaptable computational

capabilities. Long short-term memory (LSTM), the special

configuration of RNN, is aimed at overcoming the vanishing

gradient problems in conventional RNN (Adam et al., 2018). The

memristive hardware implementation is presented in Figure 7A

(Adam et al., 2018). The input data to the network is the

concatenation of input data xt , data from previous cell ht−1 and

bt . The input is multiplied by a weight matrix which is the

programmed conductance value of the memristor crossbar array.

The crossbar outputs are the input to the activation functions

(either sigmoid or hyperbolic tangent) to get the gate values. ft is

the output value of forget gate, i(t) is the output of input/update

gate, o(t) denotes the output from the output gate, and c(t) denotes

the cell state.

The calculation time in LSTM is very heavy and time-

consuming. Echo state network (ESN), a reservoir computing

architecture, has emerged as an alternative to the gradient descent

training method for RNN (Yu et al., 2022). ESN consists of an

input layer where the inputs are associated with a weight matrix

win, followed by a recurrent and sparsely connected reservoir

using weight matrix wres and finally, a readout layer associated

with a weight matrix wout . The memristive architecture of the

ESN reservoir layer is shown in Figure 7B. In ESN, the output

readout layer is only trained, and the input and reservoir weight

matrices are randomly generated and fixed throughout. The input

weights are sampled from a uniform distribution u(−a, a), using a

scaling factor a and not trained. The weights of the reservoir are

sampled from u(−1, 1). Hence, the ESNs are conceptually simple

and practically easy to implement.

2.3.5. Spiking neural network (SNN)
The main advantage of SNN hardware implementation is

reduced power dissipation in comparison with the pulse-based
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FIGURE 6

(A) Structure of CeNN and (B) CeNN implementation using memristor crossbar array (Hu et al., 2016).

FIGURE 7

(a) Memristive crossbar LSTM architecture (Adam et al., 2018), (b) ESN architecture.

systems. The data signals are transmitted as spikes in SNN.

The SNN is based on the emulation of brain processing

using particular spike events represented by spike-timing-

dependent plasticity (STDP). STDP is based on presynaptic and

postsynaptic impulses. The implementation of SNN architectures

with STDP using memristive crossbar arrays is presented in

Figure 8. The architecture consists of presynaptic and postsynaptic

neurons connected through memristor crossbar arrays. Most

cases use a winner-takes-all (WTA) approach for implementation

(Wu et al., 2015b). Recent studies introduce stochasticity

by adding noise to WTA architecture (Bill and Legenstein,

2014; Krestinskaya et al., 2020). Stochasticity introduces the

biological concept of the probabilistic behavior of neurons in

the brain.

As discussed in the section, the field of neuromorphic

computing using memristor crossbar arrays is advancing and

the exploration of novel materials and devices for in-memory

computing is required to improve efficiency and scalability.

The RRAM devices are promising candidates for synapses and

neurons in neuromorphic circuits. The analog tunable capability

of RRAM devices enables novel computing functions for the

realization of neuromorphic computing. The material class for

RRAM devices is from magnetic alloys, metal oxides, 2D materials,

and organic materials. Existing studies in the literature report
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FIGURE 8

Memristive spiking neural network (Wu et al., 2015b).

that 2D material-based RRAM devices have better properties

compared to conventional electrode materials which enhances the

characteristics of RRAM in such a way to improve its application

in neural computing. The coming section reviews the mechanism

of the working principle of RRAM and the use of 2D materials for

enhancing the properties are discussed in detail.

3. Graphene and 2D materials based
RRAM for neural computing

Graphene and other 2D materials have the potential to

revolutionize neural computing due to their unique electrical,

mechanical, and optical properties. Graphene is a single layer of

carbon atoms arranged in a hexagonal lattice, and it is a highly

conductive and transparent material. Other 2D materials, such

as transition metal dichalcogenides (TMDs) and hexagonal boron

nitride (h-BN), also exhibit interesting properties that make them

promising for use in neural computing (Zhang et al., 2022).

TMDs have gained significant attention in recent years due

to their unique properties and potential applications in various

fields, including neural computing. TMDs are a class of materials

composed of transition metals (such as molybdenum or tungsten)

and chalcogen elements (such as sulfur or selenium). TMDs can

be used to create synaptic devices, which are fundamental building

blocks of artificial neural networks (Cao et al., 2021). TMDs exhibit

excellent electrochemical properties, allowing them to function

as efficient and reliable synapses. By controlling the electrical

current through TMD-based synaptic devices, the strength of

synaptic connections can be modulated, mimicking the synaptic

plasticity observed in biological neural networks (Sung et al., 2022).

TMDs can also be utilized in the development of neuromorphic

computing systems. These systems offer advantages such as parallel

processing, low power consumption, and efficient data processing

(Lu et al., 2023). TMD-based devices can be integrated into

neuromorphic architectures to perform tasks such as pattern

recognition, data analysis, and decision-making (Ko et al., 2020).

Another 2D material suitable for neural computing is h-BN

(Xie et al., 2022). h-BN is a two-dimensional material, similar

to graphene, but with insulating properties. It can serve as a

platform for fabricating electronic components, such as transistors,

interconnects, resistive memory, and sensors, with potential

applications in neural computing. h-BN has been explored as a

material for developing neuromorphic devices that can emulate the

behavior of biological neurons. The two-dimensional nature of h-

BN allows for the integration of multiple components into compact

and efficient architectures.

Graphene-based electrodes have been shown to be

biocompatible and capable of recording neural signals with

high resolution and sensitivity. Additionally, graphene-based

transistors have demonstrated fast switching speeds and low

power consumption, making them suitable for use in neural signal

processing. Another potential application is in the development

of neuromorphic computing, which aims to mimic the structure

and function of the human brain (Schranghamer et al., 2020).

Graphene and other 2D materials can be used to create artificial

synapses, which are the connections between neurons that allow

them to communicate with each other. The details of fabrication

techniques and applications of 2D materials are shown in Table 1.

Overall, graphene and other 2D materials and their

combinations hold a great promise for advancing the field of

neural computing and could lead to the development of more

efficient and powerful neural interfaces and neuromorphic

computing systems. Among the 2D materials, the present review

focuses mainly on the role of graphene and graphene oxide for

RRAM for application in neural computing. There are still many

challenges to overcome, such as improving the scalability and

reproducibility of these materials and devices, before they can

be widely adopted in practical applications (Lin et al., 2016). In

this section, the importance and synthesis methods of graphene

are discussed in brief and a detailed analysis on the structure and

working principles of RRAM is included for a better understanding

of the applications of graphene-based RRAM in neural computing.

3.1. Properties of graphene and the
di�erent methods for its synthesis

Graphene is a 2D material made up of a single layer of sp2

hybridized carbon atoms, arranged in a hexagonal lattice. The one

atomic layer thickness makes graphene lightweight and flexible.

The strong atomic bonding with the nearest carbon atoms provides

high mechanical strength to the system, greater than that of steel.

Many of these properties vary based on the quality of graphene

synthesized. Figure 9 shows the classification of graphene synthesis

methods prevalent today. The most popular approaches include

those as follows:
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TABLE 1 Review on 2D materials for neuromorphic computing applications.

Sl no. References 2D Material Fabrication
method

Target application switching
voltage

1 Schranghamer et al.

(2020)

Graphene Chemical vapor

deposition (CVD)

High precision neuromorphic

computing

5.5 V

2 Qian et al. (2016) h-BN CVD Resistive memory 0.72 V

3 Xu et al. (2019a) MoS2 MOCVD Synapse 0.2 V

4 Kumar et al. (2019) WS2 RF sputtering Memristors 1.6 V

5 Krishnaprasad et al.

(2019)

MoS2/ Graphene CVD Synapse 1V

6 Liu et al. (2012) MoS2/r-Graphene oxide Liquid exfoliation Resistive memory 3.5 V

1. Chemical vapor deposition (CVD) - The copper or nickel

substrate is heated in a reactor chamber while introducing a

hydrocarbon gas (such as methane) to the chamber. These

hydrocarbons react with the substrate to form graphene.

2. Epitaxial growth - Substrates similar to crystal structure of

graphene [e.g., silicon carbide (SiC) or hexagonal boron nitride

(h-BN)] can be used to grow graphene for obtaining epitaxial

growth via CVD process.

3. Mechanical exfoliation - The bulk crystal graphite consists of

multiple layers of graphene. These layers are peeled off using

tape or a sharp object.

4. Electrochemical exfoliation - The electrolyte solution is used to

exfoliate graphene from graphite.

5. Solvothermal synthesis - The exfoliation of graphene from a bulk

crystal of graphite is done in an autoclave having high pressure

and temperature.

6. Thermal reduction of graphene oxide - The repeated reduction

of graphene oxide by heating in a hydrogen gas environment can

result in graphene formation.

The discovery of graphene was through the mechanical

exfoliation (Novoselov et al., 2004) of graphite. Different exfoliation

techniques such as mechanical exfoliation, liquid-phase exfoliation

(Nicolosi et al., 2013; Farajian et al., 2019), and electrochemical

exfoliation (Chen et al., 2019; Ejigu et al., 2019) are used for

the synthesis of graphene. In the case of mechanical exfoliation

of graphene, highly ordered pyrolytic Graphite (HOPG) is used.

The simplest method to exfoliate is by using a scotch tape,

and the graphene layer is transferred to the required substrate

by sticking the tape on it. However, large-scale synthesis of

graphene through this approach is time-consuming, expensive,

and not practical. In practice, the use of CVD is more

commonly used to obtain high-quality graphene films (Fujita et al.,

2017). In the CVD process, the gaseous reactants combine to

produce the graphene layer on the substrate surface. Depending

on the substrate temperature, the formation process of the

sample can be controlled. With the CVD process, relatively

high-quality graphene can be produced. The modern CVD

techniques can be classified into LPCVD (low-pressure CVD)

and UHVCVD (ultrahigh vacuum CVD) (replace with PECVD,

hot wall, and cold wall) (Mueller et al., 2014; Sharma et al.,

2020).

In CVD, the deposition of a monolayer graphene on the

surface of a metal substrate is relatively easy and has a large

area scalability potential. Several other growth techniques have

been reported for graphene synthesis toward RRAM applications

including atomic layer deposition (ALD) (Zhang et al., 2014a),

solution deposition techniques (Zhong et al., 2015), plasma-

assisted techniques, reduction of graphene oxide (Kurian, 2021),

arc discharge (Li et al., 2011). Solution coating methods such as

spin coating (Long et al., 2019), dip coating (Kim et al., 2019),

and drop coating (Puah et al., 2020) offer attractive platforms

for obtaining high-quality graphene films due to their low-cost

and large area processability. Laser scribing technology can be

used to convert GO to rGO using laser, and RRAM realized

using laser scribed reduced graphene oxide was reported in Li

et al. (2016). CO2 laser-induced graphene (LIG) can be used for

the fabrication of RRAM, where the graphene is transferred to

polydimethylsiloxane (PDMS) from polyimide (PI) (Jung et al.,

2021) and SnO2 is deposited on it. This will provide a flexible

RRAM device. Graphene is the thinnest material discovered to

date, and properties such as transparency, and flexibility make this

suitable for various electronic device applications.

3.2. Features and working mechanisms of
RRAM

RRAM is a non-volatile memory that makes use of a

material sandwiched between two metal electrodes that have

resistive switching properties. The resistance of the RRAM changes

depending on the voltage applied across it.

The popular resistive switching material such as titanium

dioxide (TiO2) resistance can be changed by the application of

electrical current to the RRAM. The change in resistance to a high

or low resistance is mapped to binary states of “0” and “1”, thereby

allowing digital storage. By applying voltage pulses to the RRAM

electrode resistance of the TiO2 film can be changed. The change in

resistance is dependent on the frequency as well as the amplitude

of the pulses applied. The RRAM can be read by applying a small

voltage pulse and reading the output currents without disturbing

the resistance state.

The MIM layer format is used to create the structure of

RRAM as shown in Figure 10. The resistive switching mechanism
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FIGURE 9

Schematic representation of di�erent methods of graphene synthesis.

is enabled with applications of voltage across the two terminals

of RRAM to define the resistive state. The HRS is considered the

OFF state, and the LRS is regarded as the ON state. The switching

mechanism from HRS to LRS happens through the application of

external voltage. Some of the materials which exhibit this switching

include the oxides of hafnium (Long et al., 2013; Zhao et al.,

2014b; Feng et al., 2016), titanium (Yang et al., 2009; Bousoulas

et al., 2016), tantalum (Chiu et al., 2012; Prakash et al., 2015;

Huang et al., 2016), zinc, nickel (Lee et al., 2008b), manganese

(Zhang et al., 2009), magnesium (Chiu et al., 2012), aluminum

(Wu et al., 2010), and zirconium (Lin et al., 2007; Wang et al.,

2009). In RRAM, the choice of electrode material is critical since

it affects the switching property of the system. A small read voltage

is applied to understand the system’s current state (either ON or

OFF) without disturbing the system’s state. Since RRAM is a non-

volatile memory, it will preserve the state even after removing the

external voltage.

RRAM can be classified into two types depending on the voltage

polarity to unipolar and bipolar resistive switching. The RRAM is

unipolar when the used voltage polarity is the same, and it is called

bipolar if reverse voltage polarity is used for switching between the

different resistance states (LRS and HRS).

The insulating and conductingmechanisms in the RRAMoccur

from the breakdown and growth of the filament on the application

of an external voltage. Depending on the resistive mechanism,

RRAM can be classified into (i) metal ion-based RRAM and

(ii) oxygen vacancies filament-based RRAM. In metal ion-based

RRAM, the switching mechanism happens by the migration of

metal ions in the filament and the oxidation and reduction

mechanism. The steps followed in the process of transitioning of

conducting state to the insulating state are depicted in Figure 11.

This type of mechanism happens in the case of metal electrodes

such as Au, Ni, or Cu at the top-level electrode. The migration of

metal ions occurs through the dielectric layer, and the subsequent

reduction or oxidation happens at the bottom. This will create

a metal filament between the two metal electrodes through the

dielectric barrier. This metal filament formation possesses the LRS

state, and the disappearance of the same enables the HRS state. In

Figure 11, the Ag/a-ZnO/Pt RRAM cells demonstrate the resistive

FIGURE 10

Schematic structure of RRAM with metal-insulator-metal layer

structure.

switching mechanism. In this case, the Ag electrode is the active

element that takes part in the filament formation mechanism, and

the Pt electrode is inert. The state of the RRAM devise in the

absence of an external electric field is shown in Figure 11A. On

applying an external voltage, the oxidation of silver takes place,

and it starts to get deposited on the dielectric layer. The bottom

electrode, having a negative polarity, will attract these ions, and the

ions get deposited on the bottom layer. The formation of metal

filament through this process puts the device in the LRS state, as

shown in Figures 11B–D. The device can be switched to the HRS

state by applying the voltage in the reverse direction, as shown in

Figure 11E. We can use graphene as a top/bottom electrode as well

as an active insulating layer instead of other materials, as discussed

in the following section.

In the case of oxygen vacancies-based RRAM, the resistance-

switching mechanism occurs with the creation of oxygen vacancies.

The reaction of oxygen ions with the anode material will create the

conducting filament. The properties of RRAM will depend on the

type of materials present in the top electrode, bottom electrode,

and middle layer. Different substitutions of the top and bottom

electrodes and middle layers with different materials can enhance
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FIGURE 11

Schematic of the switching mechanism of conductive bridge RRAM. (A) The pristine state of the RRAM device. (B, C) Oxidation of Ag and migration of

Ag+ cations toward the cathode and their reduction. (D) Accumulating Ag atoms and Pt electrodes leads to the growth of highly conductive

filaments. (E) Filament dissolution takes place by applying a voltage of opposite polarity (Zahoor et al., 2020).

the properties of RRAM. The use of 2D materials has shown an

enhancement in endurance, switching speed, threshold voltage,

retention time, etc. The graphene-based RRAM shows promising

results in the modification of RRAM toward better performance

and for making the system a multilevel cell storage device for the

application of MAC computing.

Different parameters will affect the performance of the RRAM

device. This study mainly focuses on the variability-averse multi-

level cell storage in the graphene-based RRAM system. The RRAM

devices have shown a large variability due to the stochastic nature

of the switching process.

4. Graphene-based RRAM

Improving the reliability, scalability, and cost-effectiveness of

the RRAM device is an essential requirement for practically

realizing in-memory and neural computing applications.

Graphene-based RRAMs (GRRAM) have different characteristics:

low power consumption, higher density, transparency, and

homogeneity. GRRAM can be divided into two sub-parts:

graphene RRAM and graphene oxide (GO) /reduced graphene

oxide (rGO) RRAM. In graphene RRAM, graphene is used as an

electrode, whereas in graphene oxide/reduced graphene oxide

RRAM, GO or rGO can either be used as a dielectric layer or

electrode to enhance the device’s performance.

4.1. Graphene as the electrode in RRAM

The main property of RRAM is the resistive switching

mechanism which has various difficulties related to the selection

of electrodes and the dielectric layer. The high conductivity and

high surface area-to-volume ratio of graphene makes it suitable

for electrodes. The power consumption is significantly less in

graphene-based electrodes in RRAM compared to conventional

metal electrodes in RRAM memory devices. Graphene as

an electrode offers various advantages over traditional metal

electrodes. The greater mechanical scalability, higher conductivity,

and ultrathin nature of graphene help to design non-volatile

RRAM memory devices. The mechanical properties of graphene,

including exceptional strength, flexibility, and elasticity, make it

an ideal candidate for use in RRAM devices. These properties

enable the fabrication of ultrathin memory cells and provide

the potential for integrating RRAM into complex, multi-layered

device architectures (Novoselov et al., 2005; Zhang, 2015). The

mechanical scalability of graphene allows for the creation of densely

packed memory arrays, contributing to higher storage capacities

and improved device performance (Papageorgiou et al., 2017).

Furthermore, graphene exhibits exceptional electrical conductivity

due to its unique electronic band structure (Yung et al., 2013). The

switching mechanism in RRAM involves the controlled migration

of ions within the memory cell, leading to changes in resistive

states. Graphene’s high conductivity facilitates efficient charge

transport during these switching processes, resulting in fast and

reliable switching. The high conductivity of graphene also helps

reduce power consumption and enables high-speed read and write

operations in RRAM devices.

Lee et al. (2010) report a detailed study on resistive

switching characteristics of non-volatile memory devices with

nano-materials. 2D material and nanomaterial are the extreme

candidates in the nano industry where organic channels and

metal electrodes decrease the transmittance value (transmittance

decrease of 25%) of the memory devices (Lee et al., 2010).

Graphene is used as electrodes, and single-wall carbon nano-tube

(SW CNT) is assumed as active layers between metals in non-

volatile memory devices. They implemented this memory device

with ozone treatment as graphene and oxygen atoms are bonded

together. The fabricated memory device revealed that it provides an

acceptable transmittance value. Graphene as an electrode provides
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FIGURE 12

Schematic structure of memristor nanostructures on metal and

graphene electrodes by a block copolymer self-assembly process.

a minimum decrease of transmittance of 3.6 %, which is 11.4 % and

25 % in Au and Al. They discovered that the non-volatile memory

device with graphene electrodes exhibits better conduction with

high mobility of 44cm2V−1s−1 and a switching speed of 100 ns.

The graphene-based memory device performs better than metallic

electrodes such as Au, Al, and Ag. The graphene SWCNT memory

device improves switching characteristics enhanced by 2× 102 (Yu

et al., 2011b).

Ji et al. (2011) approached a design to integrate an 8 × 8

crossbar array of organic memory devices with graphene. This

multi-layer graphene is an intermediate layer between insulating

polyamide (IP) layers. A fabrication process integrates this device

with the help of PET (polyethylene terephthalate) substrate. This

device offers a high switching ratio current of 106 with write-

once-read-many (WORM) characteristics. The bending cycle is 10

orders larger (Lee et al., 2010) and exhibits excellent cell-to-cell

uniformity. The retention time of the memory device has been

controlled in the order of 104. Their approach hasmaintained stable

and reliable device characteristics without degrading the current

performance. The WORM-type devices store the data permanently

without losing any unintended data.

Park et al. (2012) demonstrated a detailed fabrication

and characterization of high-density memristor nanodots with

platinum and graphene electrodes by a block copolymer self-

assembly process. Graphene is used as the bottom electrode, and

Pt is a top electrode, where silicon dioxide (SiO2) is considered

an active layer for resistive switches where the memory device

has been fabricated with a minimum process cost and less

complexity. The fabricated device exhibits a switching ratio of

102, an endurance of 80 voltage sweeps, and a unipolar switching

mechanism independent of the supply voltage. The formation of a

memristor on a graphene electrode is shown in Figure 12.

As transparent electronics devices are in high demand for the

electronics industry. Yao et al. (2012) have configured a transparent

non-volatile memory device based on SiOx active layer, indium

tin oxide, and graphene as bottom and top electrodes with the

glass substrate. Studies on the various device sizes are pursued

to enhance the reliability of non-volatile memory. Their study

revealed that the conduction filament generated in SiO2 active

layer maintains the constant current as the device size increases

or decreases. The switching ratio (105) and electrical endurance

(300 voltage sweeps) have improved compared to Park et al.

FIGURE 13

Schematic diagram of graphene-SiOx -indium tin oxide (ITO) device.

(2012). They have also explored how the proposed device with

graphene electrode offers better transparency characteristics and

low retention time would be beneficial for device application.

Figure 13 shows the graphene-SiOx-indium tin oxide (ITO) device.

A glass platform is a suitable choice for constructing

transparent memory devices. The RRAM is constructed with

indium tin oxide as the top electrode, alumina as the functional

oxide layer, and graphene as the bottom electrode. The non-volatile

memory device of this composition has a high transmittance of

82% in the visible region. It is stable and has non-symmetrical

bipolar switching properties with low set and reset voltages (less

than 1 volt). With its vertical two-terminal configuration, the

device has good resistive switching performance and a high

on-off ratio (switching ratio) (5×103) (Dugu et al., 2018). The

figure representing the device structure is shown in Figure 14.

Furthermore, transparent materials can be integrated with other

optical components to manipulate and direct light within the

sensing system. This integration enhances the functionality and

performance of optical sensors. Transparent RRAM devices could

be integrated with optical sensors, enabling direct interaction

between optical input data and neural network processing. This

could find applications in fields such as image recognition or

computer vision (Zhou et al., 2019; Kalaga et al., 2020).

A graphene-based memristive device (GMD) has been

proposed by Qian et al. (2014) and presented a comparative

analysis of output performance with a Pt-based memristive device

(PtmD). The schematic structure for PtMD and GMDs is shown

in Figure 15. The graphene electrode is integrated into TiOx by the

CVD fabrication method to obtain ultra-low switching power and

non-linearity. Unlike Yao et al. (2012), they have used graphene as

the bottom electrode, whereas Ti/Pt is used as the top electrode. The

GMD is fabricated on polyethylene naphthalate (PEN) and offers

excellent retention against mechanical bending. They discovered

that GMDs have less switching power compared to PtMDs, which

helps to protect the device from any thermal damage. Tunable,

ultralow-power switching in memristive devices are enabled by a

heterogeneous graphene oxide interface. The summary of RRAM

devices graphene as top and bottom electrode along with typical

characteristics are listed in Table 2.

Similar to Qian et al. (2014), Lee et al. (2015) fabricated a

graphene SET electrode-RRAM (GS-RRAM ) memory device and

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1253075
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


R et al. 10.3389/fnins.2023.1253075

FIGURE 14

Schematic structure of the Ti/ZrO2/Pt RRAM device (Dugu et al., 2018).

compared it with a Pt-RRAM memory device. In this study, a thin

monolayer graphene that serves as a SET electrode is considered

to make a thin memory cell structure. The graphene SET electrode

helps to store (SET) and restore (RESET) oxygen ions during the

programming process. They revealed that the proposed model with

a graphene edge electrode has a lower SET compliance current,

low RESET current, and low programming voltages, where the

Pt-RRAM device cannot deal with low programming voltage or

current due to degradation issues of the memory window. The

efficient ion-storing capability of graphene helps reduce the power

consumption 300 times more in Pt-RRAM. Metal oxide-resistive

memory using graphene-edge electrodes (Chakrabarti et al., 2014)

explored the performance of RRAM, where graphene is used as

top and bottom electrodes. The TiOx/Al2O3/TiO2 dielectric layer

is sandwiched between the top and bottom electrodes. The device

exhibits forming-free switching characteristics where the device

transitions between different resistance states (HRS/LRS) without

requiring a separate “forming” process.The forming-free behavior

reduces the device complexity and faster the switching process.

The proposed device has increases the non-linearity of the current-

voltage characteristic with a reduced value of current compliance.

When the device exhibits increased non-linearity, the relationship

between voltage and current is not linear and more complex

and may involve various mechanisms, such as threshold effects,

hysteresis, or other non-linear behaviors. This non-linearity can

be influenced by factors such as the material properties of the

dielectric layer and the electrodes as well as the specific design

and operating conditions of the device. A stable retention time

of 104s, a switching ratio of 104, and a greater endurance value

(> 200 cycles) have been obtained for the graphene-insulator-

graphene (G-I-G) based RRAM configuration. Sohn et al. reported

a graphene-based 3D RRAM structure where the oxygen ions

originating from HfOx migrate toward the graphene layer, where

they aggregate to create a conductive filament (Sohn et al., 2015).

This filamentary layer exhibits exceptional thinness, primarily

attributed to the atomic-thick nature of graphene. This aligns

with the switching mechanism observed in HfO2 RRAM devices

FIGURE 15

Schematic structure for (A) platinum-based memristors devices

(PtMDs) and (B) graphene-based memristors devices (GMDs).

utilizing a top electrode composed of TiN in conjunction with a

passive bottom electrode (Yu et al., 2012).

4.2. Graphene as the middle layer in RRAM

Other than electrodes, graphene can also be used as a middle

layer in GRRAM for optimizing the switching properties. The

incorporation of graphene in the middle layer helps the filament

growth by generating a local internal field and acts as a trapping

site in the RRAM. The graphene middle layer is usually used for

multilevel switching. It is reported that graphene flakes when used

as a middle layer help trap charge and act as a storage medium.

Doh and Yi (2010) proposed few-layer graphene (FLG) as

an active layer in field-effect devices/ferroelectric devices. They

studied the effect of the graphene thickness variation to observe

the electrical performance. They discovered that the device has

bistable resistance characteristics with long retention time. The

resistance difference ratio has decreased with the increased value

of graphene film thickness. They also demonstrated that power

consumption is high due to the high value of operational voltage

(VG > 30V). He et al. (2012) proposed nanographene (NG) which

acted as an active layer fabricated on a SiO2 substrate. Various
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TABLE 2 Graphene as the top and bottom electrode.

References Bottom
electrode

Top electrode Active layer Substrate Switching ratio Endurance Retention ratio

Yu et al. (2011b) Graphene Graphene SWCNT PET 103 - 102

Ji et al. (2011) Al Graphene polyimide and

6-phenyl-C61 butyric

acid methyl ester

(PI:PCBM)

PET 106 - 104

Park et al. (2012) Graphene Pt SiO2 Si 102 80 -

Yao et al. (2012) ITO Graphene SiOx Glass 105 300 -

Dugu et al. (2018) ITO Graphene Alumina Glass > 103 - -

Chakrabarti et al. (2014) Graphene Graphene TiO-x/Al2O3/TiO2 - 104 > 200 104

Ji et al. (2011) Graphene Graphene SWCNT PET 103 102 103

Ji et al. (2011) Graphene Graphene ZnO Si 103 50 -

Chakrabarti et al. (2014) Graphene Graphene TiO-x/Al2O3/TiO2 - 104 102 104

Yao et al. (2012) Graphene Graphene SiOx Plastic 106 102

Park et al. (2012) Graphene SiOx Pt Si 102 80 104

Ying-Chih Lai et al.

(2013)

Graphene Al PMMA:P3BT PET 105 107 104
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FIGURE 16

Fabrication flowchart for nanographene (NG).

multi-level switching mechanisms have been observed, such as

unipolar, bipolar, and non-polar characteristics. Nanographene as

an active layer in RRAM has several advantages, such as tunable

conductivity and an easy fabrication process, unlike othermaterials.

This research has shown a better endurance value of 104 cycles, a

faster-switching speed of 500 ns, and a longer retention time of 105

cycles. The fabrication flow chart is shown in Figure 16.

Shindome et al. (2013) experimented with single and multi-

layer graphene nanoribbon RRAM device characteristics. The

drain current performance has been obtained for changing metal

electrodes. They revealed that drain current is more for multi-

layer graphene RRAM devices than single-layer graphene RRAM.

The research also exhibits lower switching energy with a decreased

value of channel width, which increases the packing density of the

device. Graphene nanoribbon RRAM can possibly scale down to

30nm. Shin et al. (2010) proposed the charging and discharging

effect (CDE) to study the bistable switching effects in graphene

devices. They also demonstrate bandgap engineering to improve

the switching ratio of the device. Two different charge carriers, p-

type and n-type, have been considered for this study. The proposed

study revealed that the current hysteresis of p-type graphene is

inverted into n-type graphene, which increases the stability of the

device. The summary of RRAM devices with graphene as an active

layer along with typical characteristics are listed in Table 3.

5. Graphene oxide (GO)/reduced
graphene oxide (rGO) RRAM

Graphene as a two-dimensional crystal has received more

attention from researchers in the semiconductor industry due to

its ultrahigh mobility, high thermal conductivity, and transparency

characteristics. Graphene oxide is a layered structure consisting of

a monolayer of graphene bound to oxygen in carboxyl, hydroxyl,

or epoxy groups. Having a high energy band-gap of graphene

oxide is possible to reduce the energy band-gap by removing

the C-O bonds and offers high solubility. Graphene oxide and

reduced graphene oxide are the two important carbon materials

mainly used in bioelectrochemical systems (BESs). Graphene oxide

offers a large hydrophilic surface area with oxygen-containing

functional groups, facilitating microbial attachment and tailored

electrochemical reactions on its electrode surface (Singh et al.,

2018). On the other hand, rGO, obtained from GO through

reduction processes, provides enhanced electrical conductivity,

improved biocompatibility, and potential catalytic activity, making

it an ideal candidate for efficient electron transfer and biofilm

formation in BES systems (Wu et al., 2019). Graphene oxide can

be deposited on any substrate due to its flexible nature. Nowadays,

GO is a good insulating and semiconductor material compared to

other materials and is highly used for RRAM devices. Graphene

oxide-based RRAM devices have various pros compared to other

materials. The RRAM device with GO can be scaled down in nano-

regime and increases the packing density due to the easy fabrication

process. Hu et al. studied graphene oxide (GO) based RRAM

device flexible non-volatile memory. For the purpose of this study,

aluminum (Al) has been chosen as the top and bottom electrodes,

while GO functions as the active layer. When a negative voltage

is applied, it induces an electric field that prompts the migration

of oxygen ions within the GO layer. This migration leads to the

formation of localized conductive filaments (CFs), consequently

causing the device to switch to a LRS. Notably, at the LRS, ohmic

conduction is not observed due to the transformation of the GO

film into a sp3-bonded state in the absence of CFs (Jeong et al.,

2010). During the forming process, a positive voltage bias applied

to the Al layer initiates the creation of a highly resistive region in

proximity to the tunneling electrode (TE). In the presence of an

external electric field, oxygen ions present in the dielectric layer

migrate toward the electrode. This migration fosters the continuous

development of an sp3 hybridization layer between the Al electrode

and the GO layers that have undergone structural modifications,

leading to the high-resistance state (HRS). Subsequently, when a

negative voltage bias is applied to the TE Al layer, the reverse

diffusion of oxygen ions occurs, resulting in the formation of CFs

that lead to the low-resistance state (LRS) near the contact interface,

driven by the influence of a negative electric field (Panin et al.,

2011). In 2009, He et al. (2009) first explored the RRAMdevice with

graphene oxide (GO) thin films, which are processed by the vacuum

filtration method. They found that the device has a low switching

voltage and offers a low switching ratio, which is improved later

by many researchers (Kim et al., 2011; Yi et al., 2014). Jeong

et al. (2010) fabricated a GO-based RRAM device prepared by

the spin casting method at room temperature and found to be

more reliable and flexible. This study has increased the retention

and endurance of the device, which would be helpful for memory

applications.

Graphene oxide (GO) can be used for non-volatile and

bistable memory devices for its high optical transparency and

flexibility. Vasu et al. (2011) studied the unipolar switching effect
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TABLE 3 Graphene as an active layer.

Reference Bottom
electrode

Top
electrode

Active layer Substrate Switch ing
ratio

Endurance Retention
time

He et al. (2012) Ti/Tu SiO2 NanoGraphene p-doped Si - 104 105

Shin et al. (2010) Cr/Au Al Graphene SiO2 - 102 -

Shindome et al.

(2013)

Ti/Au Ti/Au Graphene SiO2 103 104 105

Wu et al. (2012) ITO ITO Graphene Glass 106 - 104

He et al. (2013) Ti/Au Ti/Au Graphene Si/ SiO2 105 - -

Shindome et al.

(2013)

Ti/Cr/Au Ti/Cr/Au Graphene

nanoribbon

Si/ SiO2 106 102 103

on reduced graphene oxide (rGO) with the glass substrate to

obtain a high switching ratio and switching speed. The obtained

results exhibit a switching ratio of 105 and switching speed

of 10 µs.

Rani et al. (2012) implemented a cost-effective non-volatile

memory behavior in rGO memory devices for extracting better

endurance and retention time. It is found that the rGO memory

device exhibited an endurance value of 102 and a retention time of

105. Ho et al. (2014) demonstrated a comparative analysis between

rGO and GO RRAM devices for impedance spectroscopy and

current-voltage analysis. The impedance spectroscopy and current-

voltage analysis have been studied to determine the possible

physical mechanism for resistive switching behavior. It is observed

that switching behavior can be noticed in rGO-based RRAM

devices due to its oxidation and reduction at the top electrode.

The obtained results for rGO were better with the retention

time of 106s. However, the rGO memory device provides a large

value of the operating voltage of 4V, which increases the power

consumption.

Pradhan et al. (2016) proposed a non-volatile rGO-based

RRAM memory device to reduce the threshold voltage, which

solves the power losses problem of the device more than

Ho et al. (2014). Pradhan et al. (2016) proposed an rGO

RRAM device which exhibits a threshold value of less than

1V where 4V was achieved by Ho et al. (2014). They also

checked the variability of device size, film thickness, and

scan votlage.

Kim et al. (2014) demonstrated a transparent memory cell,

where reduced graphene is placed between two ITO electrodes

to observe the multi-level resistive switching purpose. This

memory device offers 80% optical transmittance where the

amplitude of applied pulse voltage was varied from 2 to

7V.

Lin et al. (2015) developed a ZnO RRAM device with a

capping rGO layer to study the resistive switching behavior. They

concluded that introducing the rGO layer increases the stability

of the ZnO memory device with a switching ratio of 105. The

rGO layer acts as an oxygen reservoir in the ZnO memory

device where ions are transit easily. On the other hand, oxygen

vacancies of the rGO layer oppose reacting with Al electrodes. They

also mentioned that ZnO RRAM device offers a great value of

endurance of 108. The summary of RRAM devices with graphene

oxide and reduced graphene oxide as an active layer is listed in

Table 4.

6. Comparison of the properties of
graphene-based materials with other
2D materials

In sections 4 and 5, the details of graphene, graphene oxide,

and reduced graphene oxide base RRAM and its characteristics

are discussed. There are other 2D materials such as transition

metal dichalcogenides (TMDs) (molybdenum disulfide (MoS2) and

tungsten diselenide (WSe2) etc.), which offer a diverse range of

electronic properties as discussed in section 3. TMDS based RRAM

is an emerging technology in the field of non-volatile memory

and nanoelectronics (Zhu et al., 2019). In TMD-based RRAM,

a thin layer of TMD material is used as the switching medium

between two electrodes. The resistance of this TMD layer can be

altered by applying an electric field, which changes the oxidation

state or defects in the TMD material (Zhang et al., 2018; Jian

et al., 2022). However, there are also challenges to overcome, such

as ensuring stable and reliable switching behavior, understanding

the underlying mechanisms that control resistance switching, and

developing scalable manufacturing processes (Zhang et al., 2018).

Table 5 presents the comparative study of different properties

of graphene and TMDs based RRAM. TMDs can form stable

heterostructures with graphene, combining the strengths of both

materials for various functionalities.

Metal oxides such as hafnium oxide (HfO2) and titanium

dioxide (TiO2) provide unique electronic properties suitable for

different device applications (Meyer et al., 2012). Along with

memory, they are used in optoelectronic devices, catalysis, and

sensing applications. Metal oxides exhibit resistive switching

behavior, which makes them suitable for RRAM applications,

where the metal oxide layer acts as the switching medium

(Sawa, 2008). When a voltage is applied across the electrodes,

localized changes in the metal oxide’s resistance state occur due

to various mechanisms, such as the formation and dissolution of

conductive filaments or changes in oxygen vacancy concentration

(Kumar et al., 2017). One advantage of metal oxide-based

RRAM is the potential for high memory cell density, HfO2

based systems provide multilevel cell storage capabilities (Qi
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TABLE 4 Graphene oxide and reduced graphene oxide as an active layer.

Reference Bottom
electrode

Top
electrode

Active
layer

Substrate Switching
ratio

Endurance Retention
time

Wu et al. (2014) Pt Cu GO Ti/SiO2/Si 20 102 104

Hong et al. (2010) ITO Al GO Glass 103 102 109

Jeong et al. (2010) Al Al GO PET 102 102 105

Wang et al. (2012a) ITO Al GO Glass 103 102

Hu et al. (2012a) Pt Pt GO SiO2 /Si 104 102 105

Liu et al. (2013) GO GO GO PET 102 103 103

Wang et al. (2012b) Pt Al GO Si 104 102 103

Venugopal and Kim

(2012)

Ag Ag GO SiO2 10 - 103

Wang et al. (2012a) ITO Al GO PET 102 102 104

Pradhan et al. (2016) Al Al GO Glass 102 102 104

Banerjee et al. (2015) ITO Au GO Glass 10 102 -

Wu et al. (2015a) ITO ITO GO PES 10 - 105

Nagareddy et al. (2017) Ti/Pt Ti/Pt GO Si/ SiO2 103 104 105

Kim et al. (2018) Pt Pt rGO Si/SiO2 105 - -

Saini et al. (2018) ITO Al/Au GO Glass 105 - –

Han et al. (2014) Ag Au rGO PET 104 102 105

Kim et al. (2014) ITO ITO rGO Glass 103 105 107

et al., 2018; Milo et al., 2019). Achieving stable and repeatable

resistive switching behavior is crucial for reliable memory

operation. Uniformity of switching characteristics across large

arrays of memory cells is also important for commercial

viability (Guan et al., 2012). Table 6 presents the comparative

study of different properties of graphene and metal oxide-based

RRAM devices.

7. RRAM for multi-level cell storage

Multilevel cell storage in RRAM helps to increase the storage

density of the memory cell without reducing its size of. In the

normal method, the cell size needs to be reduced to increase

the density, which requires complex patterning techniques. In

the case of multilevel cell storage, the number of bits stored

per cell can be increased to n (any integer above 2), increasing

the density to n times with 2n number of available states in

the cell. Among the different memory devices such as Spin

Transfer Torque RAM (STTRAM) and phase change memory.

RRAM shows excellent scalability beyond the 10 nm technology

node. The resistive switching mechanism in RRAM helps to

attain different intermediate levels by varying the programming

current. The size of the conducting filament in an RRAM device

depends directly on the applied current. Thus, by adjusting the

value of the current, different resistance states can be attained in

the system.

Themultilevel cell storage can be attained via different methods

such as (i) varying compliance current, (ii) adjusting reset voltage,

and (iii) changing the pulse width of program/erase operation

(Prakash and Hwang, 2016). The most common method among

these is the controlling of compliance current to obtain multi-

level cell storage. The effect of compliance current on the switching

mechanism of the Ti/ZrO2/Pt is studied by Lei et al. (2014), and

the device structure is as shown in Figure 17. In the Ti/ZrO2/Pt

device architecture, the multilevel cell storage is achieved by

controlling the magnitude of the compliance current. The observed

multilevel cell storage is explained using the voltage divider rule

in a series circuit model. By varying the compliance current, the

number of traps in the device is controlled; hence, the conductance

is varied. A low voltage four-level cell storage is attained in

Ta2O5/TiO2 system by controlling the RL and RS state of the

device (Terai et al., 2010). They found that multilevel cell storage

can be achieved by varying the reset voltage as well. In this

study, Ru et al. is used as the top and bottom electrode, and

the combination of Ta2O5/TiO2 is used as the middle layer. This

device achieved a 2-bit/cell storage by multi RH level operation.

In another study of the HfO2-based RRAM system, the multilevel

cell storage is achieved by controlling either Iset or Vstop (Lee et al.,

2008a).

In order to obtain the stable states in the multilevel cell

storage system, it is important to distinguish the reference states

from one another. The factors affecting the stability of resistance

states are cycle-to-cycle variability, device-to-device variability,
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TABLE 5 Comparative analysis of graphene-based RRAM and 2D TMDCmaterials-based RRAM devices.

Device
name

Reference Bottom
electrode

Top
electrode

Active
layer
material

Substrate Switching
speed

Endurance Retention
time

Graphene

oxide based

RRAM

Wu et al.

(2014)

Pt Cu GO Ti/SiO2 /Si 20 102 104

Liu et al.

(2013)

ITO GO GO PET 102 103 103

Nagareddy

et al. (2017)

Ti/Pt Ti/Pt GO Si/SiO2 103 104 105

Wang et al.

(2012b)

Pt Al GO Si 102 102 103

Sun et al.

(2015)

FTO Ag MoS2 Glass 103 - 102

2D TMDs

based RRAM

(MoS2 , WS2 ,

MoSe2 based)

Zhou et al.

(2017)

ITO Ag MoS2 Glass 104 102 103

Das et al.

(2019)

ITO Al MoS2 Glass 102 104 107

Kumar et al.

(2018)

Ni-Mn-In Cu MoS2 Si 102 102 103

Rehman et al.

(2017)

Ag Ag Ws2 PET 103 102 105

Zhou et al.

(2016)

Ag Ag MoS2 SiO2 102 102 103

TABLE 6 Comparative analysis of graphene-based RRAM and metal-based RRAM devices.

Device
name

Reference Bottom
electrode

Top
electrode

Active layer
material

Switching
speed

Endurance Retention
time

Graphene

Oxide based

RRAM

Wang et al.

(2012b)

Pt Al GO 104 102 103

Pradhan et al.

(2016)

Al Al GO 102 102 103

Wang et al.

(2012a)

ITO Al GO 102 102 104

Metal

oxide-based

RRAM

Park et al. (2012) Graphene Pt SiOx 102 80 103

Yao et al. (2012) ITO Graphene SiOx 105 102 105

Tsigkourakos

et al. (2017)

TiN/Ti Au TiO2−x - >50 cycles 105

Wu et al. (2018) Pd TiN HfOx /Ag/NPs - - 104

Chen et al.

(2017)

Al Al HfOx 104 - -

operation temperature, random telegraph noise, and interstate

switching variability. The study of the retention characteristics

and endurance of the device will help to understand the

reliability of the multiple resistance levels. It is observed that

the retention time for the low resistance state highly depends

on the operating current of the device (Ninomiya et al., 2013).

With the incorporation of graphene, it is expected to obtain

multiple states in the RRAM system. The property of this

multi-level cell storage will enable the graphene-based systems

to act as a synapse for neuromorphic computing and many

other applications.

8. Commercially available RRAM
models and its fabrication

For several years, researchers have demonstrated the potential

of memristive devices in laboratory experiments. As a result, there
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FIGURE 17

Schematic structure of the Ti/ZrO2/Pt RRAM device (Lei et al., 2014).

have been successful demonstrations of these devices in commercial

applications, with RRAM devices being particularly noteworthy

in solid-state drives (SSDs) and Internet of Things (IoT) devices.

Li et al. (2017) proposed a memory-centric computing approach

based on RRAM that leverages on-chip non-volatile memories

to perform local information processing in a highly energy-

efficient manner. Three in-memory operation schemes using

3D RRAM has been developed and experimented to ensure

their effectiveness and reliability, allowing for enhanced local

information processing that is highly efficient and optimized

for memory-centric computing systems. Wang et al. (2018)

demonstrated the integration of 1-transistor/1-resistor (1T1R)

memory cells using monolayer MoS2 transistors and few-layer

hBN RRAMs, creating a two-level stacked 3Dmonolithic structure.

The fabrication process was conducted at temperatures below 150
◦C. It is observed that this configuration exhibits forming-free

(at < 1V) gradual set and reset, where the filament formation

process in RRAM is not required for achieving the resistance

states and which is particularly advantageous for linear weight

updating in neuromorphic computing. However, some renowned

company has developed various kind of RRAM devices. Adesto

Technologies has recently launched a new chip family called

Moneta, which utilizes CBRAM (Conductive Bridging Random

Access Memory) technology. The Moneta family offers ultra-low

power memory solutions that are designed to significantly reduce

the overall energy consumption of connected devices. The chips

demonstrate read and write operations at 50-100 times lower power

compared to competitive solutions. The company has already

begun shipping samples of the Moneta family in four different

densities, including 32 Kbit, 64 Kbit, 128 Kbit, and 256 Kbit. Fujitsu

recently developed RRAM product which offers 1.5 times higher

memory density compared to the existing 8 Mbit RRAM. Other

renowned foundries such as Intel, Panasonic, and Samsung have

been developing RRAM technology. These companies have been

investing heavily in RRAM research and development to improve

the performance, reliability, and scalability of this promising

memory technology.

9. Graphene-based RRAM applications

The researchers are investigating using graphene or graphene

oxide (GO) as electrodes or switching material of RRAM targeting

in-memory computing for neuromorphic behavior (Izam et al.,

2016; Liu et al., 2018; Yan et al., 2018; Abunahla et al., 2020a).

The control of resistance for multiple states by memorizing the

previous state enables to mimic of biological synapses in the

human brain neural network (Sparvoli and Marma, 2018; Xu et al.,

2019b; Schranghamer et al., 2020; Kireev et al., 2022). With the

large development in memristive materials, an excessive amount

of work is being conducted in 2D materials-based memristors for

neuromorphic computing (Abunahla et al., 2020a,b; Alimkhanuly

et al., 2021). The graphene crossbar variability can be used to build

a unique physical unclonable function (PUF), which can be used for

various applications. Table 7 presents the review on graphene/GO

RRAM for neuromorphic computing.

9.1. Memory

The characteristic features of RRAM such as simple structure,

non-volatile, scalability, low power, and fast operation speed makes

it a prominent place for future memory devices. In comparison

with other materials, the 2D materials-based RRAM devices offer

better transparency and flexibility. The incorporation of graphene

will provide more feasible and effective methods to increase the

capacity of storage devices. The SET current/voltage, Iset/ Vset ,

RESET current/voltage, Ireset/ Vreset , resistance ratio ROFF/ RON ,

programming speed, power, and retention time are the parameters

for the evaluation of memory devices. Table 8 shows the list of

RRAMarchitecture in the literature with the evaluation parameters.

Zhao et al. (2014a) experimentally demonstrated that the

graphene electrode layer provides high built-in series resistance

to exhibit good device-to-device uniformity. This exhibits narrow

resistance/voltage variations in both ON and OFF states. The

switching characteristics of ITO/Al2O3/Graphene RRAM is

compared with ITO/Al2O3/Pt RRAM devices in Dugu et al. (2018).

The results in Dugu et al. (2018) show that graphene shows a

low SET/RESET current/voltage in comparison with conventional

RRAM electrodes such as Pt. A perceptron model is experimentally

in Sparvoli and Marma (2018).

Lu et al. (2022) have developed a two-terminal

memristor synapse based on a silicon-argon composite

film. In the case of the biological synapse, the weight

is varied by the release of neurotransmitters from the

preneuron induced by spikes. Thus, similar to that,

this memristive synapse varies its conductance by the

migration of the ions upon an external electrical signal

or stimuli.

9.2. Neural networks

The RRAM crossbar in-memory computing is considered

to be a potential solution for implementing power-efficient

neural network architectures (Li et al., 2018; Mehonic et al.,

2020). The analog/digital feature of RRAM, with the ability to

memorize, can be used to build artificial neural networks for

neuromorphic computation (Mehonic et al., 2020). Figure 18

shows crossbar architecture using RRAM devices for realizing the
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TABLE 7 A review on graphene RRAM for neuromorphic computing.

Sl no. Reference Graphene application No. of
conductance

states

Target
application

1 Abunahla et al. (2020a,b) Au/ partially redued graphene oxide (prGO)/Au 7 ANN of size 5× 4

and 4× 4

2 Alimkhanuly et al. (2021) electrode of 3D vertical RRAM 64 XNOR

3 Sparvoli and Marma (2018) RRAM fabrication with doped graphene oxide with silver 2 RRAM bridge

synapse

4 Schranghamer et al. (2020) Graphene field effect transistor 16 RRAM synapse

5 Xu et al. (2019b) Al2O3/graphene quantum dots/Al2O3 2 Synapse

6 Kireev et al. (2022) Bilayer Graphene-based Artificial Synaptic Transistors (BLAST) 100 Synapse transistor

TABLE 8 Di�erent RRAM architectures.

RRAM structure Iset/ Vset Ireset/ Vreset ROFF/RON Ratio SET/R ESET speed Power

MLG/Dy2O3/ITO (Zhao et al., 2014a) 1 µA/0.4V 20 µA /0.2V > 105 60 ns 4.4 µW

Unipolar

ITO/Al2O3/ Graphene (Dugu et al., 2018) 2.1 µA/0.8V 1.55mA/-0.65V ∼ 3.5× 103 NA ∼ 1mW

Bipolar

Al2O3/GQD/Al2O3 (Xu et al., 2019b) < 5nA/1.2V < 5nA/-1.2V NA NA NA

ITO/GO+0.1 % Ag/Al (Sparvoli and Marma, 2018) < 4.78mA/0.8V 2 pA/0.25V 7.5× 108 10µs NA

Unipolar

G/SiOx/ITO (Yao et al., 2012) 2 µA/4.26V 2mA/10V 104 50ns 20mW

Unipolar

Au/prGO/Au (Abunahla et al., 2020a,b) 25mA/3V 10mA/-6.5V 10 10s NA

Unipolar

TiN/HfOx/ Graphene (Alimkhanuly et al., 2021) < 1µ A/1.27V < 10µA/ -1.37V > 10X 500 ns NA

bipolar

MLG, multi-layer graphene; ITO, indium tinoOxide; GQD, graphene quantum dots; NA, not available.

FIGURE 18

3D RRAM crossbar array.
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neuromorphic computations. The weights of neural computations

are programmed onto the RRAM devices during the write

mode. Only a few studies have been reported in the literature

using graphene/GO-based RRAM for neuromorphic computing

(Abunahla et al., 2020a,b; Alimkhanuly et al., 2021). Both 2D

and 3D crossbar architecture with RRAM have been discussed

in the literature for neuromorphic computing. HebaAbunahla

et al. presented a novel planar analog memristor crossbar with

partially reduced graphene oxide (prGO) thin film (Abunahla

et al., 2020a,b). In Abunahla et al. (2020a,b), the crossbar

array has been fabricated and tested using the Iris dataset with

an accuracy of 96.67%. 5 × 4 and 4 × 4 crossbar arrays

have been fabricated, which is then used to classify the iris

flower based on its petal and sepal length and width into

different classes.

Alimkhanuly et al. (2021) demonstrated a 3D vertical

RRAM (VRRAM) by replacing the metal-based interconnects

with graphene due to the remarkable electronic and thermal

conductivities. In Alimkhanuly et al. (2021), the authors

fabricated a 416 × 224 × 8 size 3D array system. The

recognition performance of the fabricated 3D graphene

RRAM (Gr-RRAM) has been tested for the MNIST dataset.

The network size is 400 input, 200 hidden, and 10 output

neurons. The performance accuracy of Gr-RRAM is compared

with platinum RRAM (Pt-RRAM), and the results show that

the overall accuracy levels degrade for Pt-RRAM due to high

read inaccuracy.

9.3. Logic gates

The logic computing is yet another application of memristor

crossbar structure. The XOR operation-focused 3D VRRAM array

architecture is demonstrated in Alimkhanuly et al. (2021). The

XOR architecture using graphene-based VRRAM arrays have the

potential of a highly stackable nature for parallel processing

of multiple layers (Alimkhanuly et al., 2021). An XNOR logic-

inspired architecture is designed to integrate 1-bit ternary precision

synaptic weights into graphene-based VRRAM is presented

in Alimkhanuly et al. (2021). However, robustness to device

variability by using graphene-based RRAM in logic computing

is not yet investigated in the literature and still remains an

open problem.

9.4. Cryptography

The memristor crossbar arrays is also applied for cryptography

applications (Cai et al., 2022; Yu et al., 2023). An in-memory

hyperdimensional encryption using a memristor crossbar array

is presented in Cai et al. (2022). The robustness of binary

hypervectors against memristor crossbar non-ideality helps to

control the impact of noise generated by the memristor crossbar for

encryption. A 4D memristive hopfield neural network (MHNN) is

proposed in Yu et al. (2023) for image encryption applications. The

majority of memory-based cryptographic techniques for hardware

security are based on physical unclonable functions (PUFs) (James,

2019). A large number of memory-crossbar-based PUFs have been

proposed in the literature, for example, metal-oxide memristor-

based or RRAM (Rose and Meade, 2015; Yansong et al., 2015;

Uddin et al., 2017; Khan et al., 2021; Kim et al., 2021) etc. The

PUFmethods use variations in device parameters such as resistance

state, switching time, and threshold voltages. These unpredictable

probabilistic characteristics of memristor crossbars form the basis

for PUF applications. The variations in device parameters and

process variations affect the current flow through the device.

Any temporal or spatial variations affect all aspects of resistive

switching. The variation in PUF characteristics with the properties

of graphene has not been explored yet in the literature.

The stochasticity in graphene-RRAM device response has not

been extensively studied in the existing literature. The repeatability

of fabricated Gr-RRAM devices are experimentally evaluated in

the literature. The SET voltage varies for cycle-cycle variations for

Gr-RRAM was found to be 6.4% in Alimkhanuly et al. (2021).

As discussed in Kim et al. (2021), the SET voltage variations in

Gr-RRAM crossbar array can also be used for PUF generation

in cryptographic applications. The other device variations such as

resistance state, switching time, and threshold voltages have not

been considered for analysis with device-to-device and cycle-to-

cycle variations. The stochasticity in graphene-RRAM variation for

cryptography or PUF characteristics has not been explored yet in

the literature and is an open problem.

10. CMOS compatibility

CMOS technology faces various unwanted problems due to

the scaling of device attributes. The semiconductor industry is

planning to replace the silicon material with graphene material.

Since graphene is a conducting material and no energy band

gap is present in it, it is very difficult to use graphene for

digital device applications due to high-off state leakage and non-

saturating drive currents. However, graphene-based devices are

more acceptable for low-noise amplifiers and radio-frequency (RF)

in analog device applications (Banerjee et al., 2010). Rodriguez

et al. (2012) compared the RF behavior between graphene-based

field effect transistor (GFET) and Si-based metal oxide field effect

transistor (MOSFET). It is observed that the GFET device is

more acceptable for the narrow range of drain voltage and drain

current compared to Si-MOSFET. Cisneros-Fernández et al. (2019)

proposed frequency domain multiplexing of liquid-gate GFET

sensor for micro electrocorticogram (ECoG) recording purpose.

The proposed work also allows hybrid integration.

Nowadays, graphene with Si CMOS circuits can also be

constructed together for making heterogeneous devices. The

demonstration of graphene and Si CMOS hybrid circuits has

reduced barriers to entry of graphene in electronics. Huang

et al. (2014) constructed a low-temperature hybrid integrated

circuit where graphene devices and Si-CMOS circuits integrated

together. Gilardi et al. (2019) designed relaxation oscillators

using a GFET, Si CMOS D latch, and timing RC circuit. It is

observed that the introduction of graphene material in the Si-

CMOS logic circuit has improved the circuit complexity and

also added other device functionality. One of the truly unique

electronic properties of graphene not exhibited by conventional
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semiconductors is ambipolarity. The ambipolarity of graphene

helps to simplify the circuit and provide additional functionality.

Graphene’s ambipolarity eliminates the need for separate electron

and hole transistors, reducing the overall transistor count and

circuit complexity (Jabeur et al., 2010). The integration of graphene

into Si CMOS logic circuits could offer a feasible approach for both

simplification and enhanced functionality. Zhang et al. (2014b)

proposed CMOS-compatible all-metal-nitride RRAM based on

aluminum nitride (AlN). It is observed that the proposed device

provides a lower operation current of 100 A, retention time 3x105,

and endurance value of 105 Hz. AlN has high thermal stability,

allowing it to withstand the elevated temperatures used in CMOS

processes. This makes it possible to integrate AlN-based RRAM

fabrication steps into standard CMOS processes without causing

significant damage to the underlying circuitry (Jackson et al., 2013).

AlN can be deposited using various techniques that are already

employed in CMOSmanufacturing, such as PVD and CVD (Perez-

Campos et al., 2015). PVD and CVD methods allow for conformal

deposition of thin AlN films over complex three-dimensional

structures, including the intricate features found in modern CMOS

circuits (Cansizoglu et al., 2015). This conformal deposition

capability is crucial for integrating RRAM cells within the existing

CMOS architecture. The temperature requirements and chemical

interactions during AlN deposition are generally more manageable

compared to some graphene synthesis methods. Graphene-based

RRAM, on the other hand, could face more integration challenges

due to the specialized processes required for graphene synthesis and

transfer. Graphene synthesis and transfer techniques involve high-

temperature processes and chemical treatments that could affect the

performance of the graphene itself (Choi et al., 2022). Achieving

high-quality, defect-free graphene layers on a large scale while

maintaining CMOS compatibility remains a significant hurdle

(Moon and Gaskill, 2011). Yeh and Wong (2015) proposed a cost-

competitive One-Transistor-N-RRAM (1TNR) array architecture

for advanced CMOS technology where one committed transistor

controls the access of one RRAM. It is observed that the 1TNR

array architecture provides less leakage current than the cross-point

array. Therefore, there is the possibility that graphene-based RRAM

memory devices can be considered in CMOS technology soon.

11. Challenges and future scope

Due to its unique and interesting features, graphene has

surpassed all other nanomaterials in terms of its use in electronic

devices. Additionally, it was shown that graphene’s greater

mobility, less light absorption, and excellent mechanical qualities

enhance the functionality of transparent flexible electronic devices.

The difficulty is that the cost of manufacturing graphene will

increase the overall price of the device. The transfer of graphene

from one substrate to another without causing any damage

is a tedious process, which requires the need of sophisticated

instruments. Efficient methods need to be implemented to

overcome these drawbacks.

The past several years have seen a substantial increase in

research into new memory technologies, and numerous prototype

RRAM products have been created to show the potential for high-

speed and low-power applications. The CMOS compatibility and

ability to fabricate in smaller dimensionsmake the RRAMa suitable

candidate for device applications. A high endurance is reported

in graphene-based RRAM devices. To date, in a single RRAM

device, no technology has reported fast switching, low power,

and stable operation simultaneously. In a graphene-based RRAM

device, the properties need to be enhanced for better performance

of the device.

12. Conclusion

This review article offers an insightful look into the topic

of developing graphene-based RRAM devices in terms of neural

computing by giving a concise overview of the development of

memory architecture, the current trends, and the constraints. The

importance of graphene based RRAM, as well as its structure,

operation, and classification, have all been highlighted in a

thorough discussion. The methodology and a detailed investigation

on the MLC capabilities of RRAM have been presented. It is

proposed that the graphene-based RRAMcan be used formultilevel

cell storage. This modified memory device, with 2Dmaterial can be

used as a synapse. Along with this, the implementation of graphene

based RRAM for various important applications such as hardware

security and neuromorphic computing have been highlighted.
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