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Age-related hearing loss, or presbycusis, is a common cause of hearing loss in 
elderly people worldwide. It typically presents as progressive, irreversible, and 
usually affects the high frequencies of hearing, with a tremendous impact on 
the quality of life. Presbycusis is a complex multidimensional disorder, in addition 
to aging, multiple factors including exposure to noise, or ototoxic agents, 
genetic susceptibility, metabolic diseases and lifestyle can influence the onset 
and severity of presbycusis. With the aging of the body, its ability to clean up 
deleterious substances produced in the metabolic process is weakened, and the 
self-protection and repair function of the body is reduced, which in turn leads 
to irreversible damage to the cochlear tissue, resulting in the occurrence of 
presbycusis. Presently, oxidative stress (OS), mitochondrial DNA damage, low-
grade inflammation, decreased immune function and stem cell depletion have 
been demonstrated to play a critical role in developing presbycusis. The purpose 
of this review is to illuminate the various mechanisms underlying this age-related 
hearing loss, with the goal of advancing our understanding, prevention, and 
treatment of presbycusis.
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Introduction

Age-related hearing loss (ARHL), or presbycusis, is the most common sensory deficit 
affecting aging adults (Agrawal et al., 2008). ARHL typically presents as a progressive, irreversible 
sensorineural hearing loss that increases with age, mainly involving high frequency hearing, and 
gradually spreads to low frequency hearing (Wang and Puel, 2020). Presbycusis is not only 
associated with damage to the cochlear organs but is often accompanied by central nervous 
system dysfunction that reduces the ability to process auditory information (Basner et al., 2014). 
Therefore, while auditory sensitivity decreased, patients may also experience reduced 
understanding of speech in noisy environments, as well as slowed central processing of acoustic 
information and impaired localization of sound sources (Boettcher, 2002; Bielefeld et al., 2010; 
Fetoni et al., 2011).

According to a 2012 estimate by the World Health Organization, about 164.5 million people 
over the age of 65 suffer from hearing impairment worldwide, accounting for about 33% 
worldwide in adults older than 65 years (Sheffield and Smith, 2019). The prevalence of hearing 
loss increases with age, and it can reach 84.3% among people over 80 years old (Yamasoba et al., 
2013). With the aggravation of population aging and the extension of life expectancy, it is 
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estimated that more than 500 million individuals over the age of 60 
will affected by presbycusis by 2025 (Wang and Puel, 2020). 
Presbycusis often presents with communication difficulties, reduced 
quality of life, and social isolation (Kay et al., 1964). In recent years, 
some studies have shown that presbycusis can lead to cognitive decline 
and is an independent risk factor for a series of neuropsychiatric 
diseases such as depression, dementia and Alzheimer’s disease (Lin 
et al., 2011, 2013). Those creates a large socioeconomic burden.

Presbycusis is a complex chronic aging disease that results from 
the gradual accumulation of deleterious biological lesions and 
auditory system dysfunction (Eckert et al., 2021). With the aging of 
the body, a series of changes occur in the auditory organs. For 
example, the irreversible degeneration of the cochlear stria vascularis, 
spiral ligament, hair cells, and auditory nerve fibers can lead to 
blockage of ion and signal transmission, the exhaustion of stem cells 
weakens the regenerative repair ability of fibroblasts in the spiral 
ligament, and the decline of immune function leads to persistence of 
chronic inflammation, reduced enzyme activity can weaken the body’s 
ability to remove toxic substances and ultimately leading to hearing 
loss (Seidman et al., 2002; Lang et al., 2006; Watson et al., 2017; Tawfik 
et al., 2020; Eckert et al., 2021). However, the age of onset and the 
degree of hearing loss vary greatly among individuals. Presbycusis is 
influenced by multiple factors and represent the interaction of 
numerous intrinsic and extrinsic factors. In addition to aging, many 
factors such as exposure to noise, or ototoxic agents, genetic 
susceptibility, metabolic diseases and lifestyle can all contribute to the 
development of presbycusis alone or in combination (Keithley, 2020; 
Wang and Puel, 2020). Those factors mainly lead to the occurrence of 
hearing loss through the mechanism of oxidative stress (OS), 
mitochondrial DNA damage, low-grade inflammation and reduced 
vascularisation in the cochlea (Seidman et al., 2002; Watson et al., 
2017). The purpose of this review is to illuminate the 
pathophysiological features, etiology and pathogenesis of presbycusis, 
with the goal of advancing our understanding, prevention, and 
treatment of presbycusis.

Pathophysiological features of presbycusis

The cochlea is a spiral-shaped cavity composed of three liquid-
filled compartments, scala media, scala tympani and scala vestibuli, 
which can convert the mechanical vibration caused by sound waves 
into electrical signals during sound transmission and is an important 
target organ for presbycusis. Scala media contains endolymph with 
high potassium and low sodium and is sandwiched by scala tympani 
and scala vestibuli containing perilymph with low potassium and high 
sodium. The endolymph in the scala media contains a positive voltage 
of +80 to +100 mV (endocochlear potential: EP), which is generated 
by the potential difference between the endolymph in scala media and 
the perilymph in scala tympani (Hibino et al., 2010; Bazard et al., 
2021a). The stria vascularis and spiral ligaments located on the 
cochlear lateral wall have an intact ion channel transport system that 
transports potassium ions into the endolymph to maintain the high 
potassium status of the endolymph and the highly positive EP, which 
is essential for hair cell transmission (Wangemann, 2006).

Auditory information transmission is a complex process, and the 
cochlea is an important organ in this process. The shear motion 
caused by acoustic vibration causes the cilia of hair cells to bend or 

deflect, which in turn opens potassium channels at the top of hair 
cells, allowing potassium ions in the endolymph to flow into the hair 
cells to produce depolarization. Depolarization of hair cells causes 
calcium channels to open in cells and calcium ions to influx, which in 
turn prompts hair cells to release neurotransmitters into the synaptic 
cleft of the hair cells and auditory neurons (Bazard et al., 2021a). 
Damage to cells and tissues associated with auditory information 
conduction, as well as changes in the cochlear microenvironment, 
may contribute to the development of presbycusis (Noble et al., 2022).

According to postmortem histopathological studies, a variety of 
pathological changes occur in the inner ear of patients with 
presbycusis, such as the atrophy of the stria vascularis (SV) and loss 
of fibrocytes of the spiral ligament (SL) in the lateral wall of the 
cochlea (strial presbycusis, also known as metabolic presbycusis), 
decrease of sensory hair cells (sensory presbycusis) and degeneration 
of the auditory nerve (neural presbycusis) (Ohlemiller, 2004; Bowl and 
Dawson, 2019). The cochlear lateral wall degeneration is an important 
pathological change in in aging. Even the quiet-aged gerbil that raised 
under strictly controlled experimental conditions will experience 
degeneration of the stria vascularis and spiral ligament at both ends 
of the cochlear duct with aging (Spicer and Schulte, 2002). 
Deterioration of the lateral wall of the cochlea reduces the number and 
function of the sodium-potassium pump (Na-K-2Cl cotransporter 
NKCC1 and Na+, K + -ATPase), resulting in impaired potassium 
circulation and reduced EP (Chen and Zhao, 2014; Bazard et  al., 
2021a). Hair cells (HCs), which transduce mechanical stimuli into 
electrical activity through the hair bundle on their apical surface, 
degenerate with age and are also susceptible to factors such as noise 
exposure and ototoxic drugs (Bazard et al., 2021a). HCs damage is 
predominantly outer hair cells (OHCs), and it begins both apical and 
basal ends of the cochlea and progresses throughout the length of the 
organ of Corti, while inner hair cells (IHCs) damage is less and 
restricted to the extreme basal end of the aging cochlea (Kujawa and 
Liberman, 2019). The EP and OHCs have the function of cochlear 
amplification, which can provide 50–70 dB of gain in the basal turn of 
the cochlea (high-frequency hearing threshold region), while the 
apical of the cochlea (low-frequency hearing threshold region) can 
only gain 20 dB (Lang et  al., 2010). This may explain the greater 
impairment of high-frequency hearing thresholds when the cochlear 
lateral wall and OHCs are damaged. IHCs are sensory receptors that 
transmit amplified information to the brain via spiral ganglion 
neurons and auditory nerve. Aging or noise-accumulating lesions can 
lead to degenerative changes in spiral ganglion neurons (SGNs), in 
which low-spontaneous rate (SR) fibers are more susceptible to 
damage and lesions usually involve both apical and basal ends of the 
cochlea (Lang et al., 2010). The low-SR fibers mainly contribute to 
encoding transient stimuli in the background of noise, while not 
threshold detection in quiet situations (Furman et al., 2013). Therefore, 
neural presbycusis is mainly manifested as reduced understanding of 
speech in noisy environments, while the hearing threshold nearly 
normal in quiet. With aging, the cochlear vascular also exhibits 
pathological changes, such as merged capillaries, reduced red blood 
cell velocity and vascular plasticity, and thickened basement 
membrane, resulting in weakened oxygen and nutrient delivery and 
waste elimination (Ohlemiller et  al., 2008; Eckert et  al., 2021). 
Secondly, the permeability of the strial microvasculature increases, 
allowing harmful substances to enter the cochlea (Seidman 
et al., 1996).
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However, in reality, affected by various pathogenic factors, 
presbycusis can cause lesions in multiple parts of the cochlea, showing 
a “mixed” pathology (Tawfik et al., 2020). In addition, presbycusis may 
have no obvious histopathological changes under light microscopy, 
but submicroscopic structural changes may occur, such as stereociliary 
lesions or reduced synapses between inner hair cells and afferent fibers 
(Sliwinska-Kowalska and Davis, 2012). Liu et al. found that aging 
mouse had loss of stereocilia and shrinkage of hair cell soma precede 
hair cell loss. After acoustic overstimulation, synaptic connections also 
disappear before hair cells in presbycusis (Liu et al., 2022).

Risk factors of presbycusis

Genetic susceptibility
Presbycusis is a disease with genetic susceptibility. According to 

twins studies and longitudinal studies of family cohorts, its heritability 
is small to moderate, with a heritability indices of between 0.35 and 
0.55 (Bowl and Dawson, 2019). Unlike the single-gene genetic 
pathogenic pattern of congenital deafness and early-onset deafness, it 
is generally believed that presbycusis involves multiple genetic 
variants, each of which has a small impact (Wells et al., 2020).

Genome-wide association study (GWAS) is widely used for 
genetic composition analysis of presbycusis, and many candidate 
genes have been found to be associated with presbycusis (Bowl and 
Dawson, 2019). These genes may play an important role in signaling 
and maintenance of the cochlear microenvironment. Several 
independent studies have reported that the gene encoding glutamate 
metabotropic receptor 7 (GRM7) is associated with presbycusis. 
Mutations in GRM7 may lead to the accumulation of neurotransmitters 
in synaptic connections, thereby altering the susceptibility to 
presbycusis (Van Laer et  al., 2010; Newman et al., 2012). Genetic 
polymorphisms in the genes coding detoxification enzymes are also 
linked to presbycusis, such as Uncoupling protein 2 (UCP2), 
Superoxide dismutase 2 (SOD2) and N-acetyltransferase 2 (NAT2) 
(Arsenijevic et  al., 2000; Unal et  al., 2005). Additionally, genetic 
variation may also contribute to increased susceptibility to presbycusis 
by environmental factors such as noise and ototoxic drugs (Prezant 
et al., 1993; Sliwinska-Kowalska and Pawelczyk, 2013).

Monogenic deafness-causing genes, especially those that cause 
delayed-onset deafness, may also be associated with presbycusis. Wells 
et al. (2019) performed GWAS for self-reported hearing loss adults in 
UK Biobank and reported 10 of the 44 associated loci included 
monogenic deafness genes. TMC1 variant was previously thought to 
be associated with progressive postlingual hearing loss and profound 
prelingual deafness. However, in a recent study, Boucher et al. (2020) 
demonstrated through in vitro transfection and in vivo animal models 
that the heterozygous pathogenic variants of TMC1 can cause 
presbycusis in a single-gene form, which updates our understanding 
of the inheritance pattern of presbycusis and provides a basis for 
potential inner ear treatments.

Noise exposure
Noise is the second most common cause of hearing loss other than 

old age, and noise-induced hearing loss (NIHL) is considered a 
common occupational disease, with a high incidence in occupational 
workers who have been exposed to noise for a long time, such as 
workers in textile, mining, and heavy engineering industries (Nandi 

and Dhatrak, 2008; Natarajan et al., 2023). Both aging and acoustic 
trauma can lead to loss of hair cells at the base end of the cochlea. 
Aged animals raised in quiet environments show did not lose hair cells 
until well past the middle of the lifespan, and the loss was small, 
whereas human temporal bone specimens have found stable and large 
loss of hair cells throughout the life (Kujawa and Liberman, 2019). 
This suggest that noise exposure synergizes with aging in the 
development of presbycusis.

Noise damage to the auditory system is affected by intensity and 
duration of noise exposure and can cause permanent threshold shifts 
(PTS) or temporary threshold shift (TTS) (Natarajan et al., 2023). 
Both long-term high-intensity noise exposure and one-time exposure 
to hazardous noise levels can lead to PTS (Liberman, 2016; Ryan et al., 
2016). Due to the repair function of the stereocilia tip links, moderate 
noise damage often leads to temporary hearing loss, which recovers 
within 24–48 h (Gerhardt et  al., 1987; Jia et  al., 2009). Although 
low-intensity noise stimulation does not directly cause hair cell loss, 
it may causes permanent damage to the stereocilia bundles on the hair 
cells and to the synaptic connections between the auditory nerve fibers 
(ANF) and the IHC, which results in a blockage of auditory signal 
transmission and decreased ability to distinguish speech in noisy 
background (Kujawa and Liberman, 2019). Therefore, noise exposure 
has a cumulative effect on damage to the auditory system, prolonged 
exposure to 70 dB of noise may also cause hearing damage, and long-
term lower noise and short-term louder noise have the same effect on 
hearing (Natarajan et al., 2023).

Ototoxic agents
Aminoglycoside antibiotics and chemotherapy drugs such as 

cisplatin and carboplatin can cause degenerative changes in the 
cochlea and hearing loss (Jiang et al., 2017). Additionally, through a 
large longitudinal cohort study lasting 10 years, Joo et al. (2020) found 
that loop diuretics and nonsteroidal anti-inflammatory drugs were 
associated with risk of progressive hearing loss, and may contributor 
to the incidence and severity of age-related hearing loss.

Metabolic diseases
Metabolic diseases are a cluster of diseases or disorders that 

disrupt normal metabolism, including high blood sugar 
(hyperglycemia), increased blood pressure (hypertension), excess fat 
around the waist (obesity), and abnormal levels of cholesterol or 
triglycerides (dyslipidemia). In recent years, under the influence of 
unhealthy diet and lifestyle, the incidence of metabolic diseases and 
its components are on the rise, and it is most common in the elderly 
(Saklayen, 2018). Presbycusis and metabolic diseases are both chronic 
diseases with a high prevalence, and many older people suffer from 
them at the same time (Guo et al., 2022). In a large cohort study of 
94,223 people in Korea, Rim et  al. (2021) reported that obesity, 
hypertension, hyperglycemia and dyslipidemia were all strongly 
associated with hearing loss, and the number of components of the 
metabolic diseases is positively correlated with the rate of 
sensorineural hearing loss. In two cohort studies in Europe and Korea, 
high body mass index (BMI) and low BMI were found to be associated 
with hearing loss, respectively (Fransen et al., 2008; Lee et al., 2015). 
Furthermore, Nguyen et al. (2022) found that the mouse model of 
diabetes and dyslipidemia had higher hearing impairment and 
degeneration of the cochlear spiral ganglion and stria vascularis. Some 
studies have found mitochondrial dysfunction occurs in both 
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metabolic diseases and presbycusis, and Guo et al. (2022) suggested 
that metabolic diseases may increase susceptibility to presbycusis by 
causing mitochondrial dysfunction.

Lifestyle
Lifestyle effects on hearing are diverse, with studies showing that 

both smoking and passive smoking increase the risk of hearing loss, 
while moderate alcohol consumption has a protective effect on 
hearing (Dawes et al., 2014). Diet and exercise may also play a role in 
aging and hearing. A high antioxidant diet can reduce mitochondrial 
dysfunction, thereby decreasing the magnitude of the vascular atrophy 
and cochlear auditory nerve degeneration (Le and Keithley, 2007). 
Han et al. (2016) found that increasing exercise in mice was effective 
in attenuating cochlear degeneration and hearing loss.

Age-related changes and pathogenesis of 
presbycusis

Age-related reactive oxygen species 
accumulation and mitochondrial DNA damage

Reactive oxygen species (ROS) are highly reactive chemicals 
produced during mitochondrial respiration or cellular response to 
endogenous and exogenous factors, mainly including superoxide 
anion (O2-), hydrogen peroxide (H2O2), hydroxyl radical (OH-) and 
nitric oxide (NO-) (Pizzino et al., 2017). ROS can serve as critical 
signaling molecules in cell proliferation and survival, but their 
excessive production and accumulation can lead to oxidative stress 
(OS), which in turn leads to macromolecular damage, promoting 
diseases such as presbycusis, aging and cancer (Ray et al., 2012). In the 
cochlea, ROS can damage DNA, break down lipid and protein 
molecules, and lead to cochlear cell apoptosis (Paplou et al., 2021). 
Increased plasma levels of ROS in humans are associated with hearing 
loss, while a high antioxidant diet can reduce cochlear degeneration 
and hearing loss (Le and Keithley, 2007; Lasisi and Fehintola, 2011). 
In fact, there are antioxidant enzymes in the body that can remove 
ROS, such as glutathione reductase (GSR), superoxide dismutase 
(SOD), catalase (CAT) and methionine sulfoxide reductase (MSR). 
The balance of the body’s antioxidant enzymes and ROS can avoid 
damage to cells and tissues caused by OS (Seidman et al., 2002; Paplou 
et al., 2021).

The cochlea is an energy-intensive organ in which mitochondria 
provide energy for their sodium-potassium pump activity and ion 
transport through oxidative phosphorylation, while producing large 
quantities of ROS. The aggregation of ROS in the cochlea can lead to 
mutations in the mitochondrial genome, resulting in mitochondrial 
DNA (mtDNA) damage (Seidman et al., 2002). Mitochondrial DNA 
mutation is an important component of auditory system damage, and 
its characteristic 4,977 bp deletion occurs frequently in temporal bone 
tissue samples from patients with presbycusis (Zhong et al., 2011). In 
addition, postmortem analysis of the temporal bones of patients with 
presbycusis revealed defects in the expression of mitochondrial 
aerobic metabolism-related enzymes (Markaryan et al., 2009). For the 
damaged mitochondria, cells can clear and renew them through the 
autophagy and mitochondrial dynamics (fission and fusion events) 
(Wang and Puel, 2018).

However, as the body ages, the production and function of 
antioxidant enzymes decrease, and ischemic and hypoxic damage 

from local vascular lesions in the cochlea leads to increased production 
of ROS (Ray et al., 2012). As a result, the original balance is broken, 
and OS will cause cumulative damage to mitochondria and cochlear 
cells. In addition, mitochondrial biogenesis in the elderly is weakened, 
autophagy and mitochondrial dynamics are reduced, so that 
mitochondria are constantly depleted, so that normal cells and 
cochlear function cannot be maintained (Seidman et al., 2002; Wang 
and Puel, 2020; Figure 1).

Inflammaging and decreased immune function
Inflammaging is chronic and low-grade inflammation of 

tissues and organs that occurs during aging and can lead to 
conditions as diverse as cardiovascular disease, diabetes, and 
neurodegenerative diseases (Bazard et al., 2021b; Kociszewska and 
Vlajkovic, 2022). Various stimuli, including cellular debris, 
nutrients and pathogens, can drive sterile inflammation 
(Franceschi et al., 2018). The body’s immune function declines 
with age, mainly manifested by shift in T-cell subpopulation 
distribution (the number of naive T cells (especially CD8+) 
decreases and homeostatically proliferate into memory T cells), 
impaired calcium-mediated signaling and thymic atrophy, resulting 
in weakened immune surveillance and clearance of pathogens 
(Goronzy and Weyand, 2013; Yousefzadeh et al., 2021). In turn, it 
leads to the accumulation of inflammatory stimuli, which 
continuously stimulates the body to produce chronic inflammatory 
responses. The cochlea is not an immune-privileged organ. 
Systemic inflammation is associated with presbycusis, and changes 
in the morphology and number of macrophages can occur in the 
aging cochlea (Watson et al., 2017).

Macrophages are a key part of the innate immune system, 
presented in the cochlear spiral ligament, the auditory nerve, and the 
organ of Corti. Activated macrophages transform from highly 
branched morphology to amoeboid shape and can phagocytose 
cellular debris or pathogens, which are critical for maintaining the 
homeostasis of the cochlear microenvironment (Noble et al., 2022). In 
addition, the vascularization function of macrophages can regulate the 
permeability of the blood-labyrinth barrier (BLB) of the strial 
microvasculature (Noble et  al., 2022). Noise trauma activates 
macrophages, causing changes in their shape and number (Presta 
et al., 2018). Analysis of temporal bone specimens of different ages 
revealed that aging cochlear macrophages were highly activated 
(Noble et al., 2019). The inflammatory response driven by macrophage 
activation plays an important role in the development of presbycusis 
by leading to cochlear degeneration and increased stria vascular 
permeability (Noble et al., 2022).

The intestinal tract contains a large number of microorganisms 
and their genetic material, and gut dysbiosis may also contribute to 
inflammaging. In addition to the high-fat diet can lead to the 
development of cochlear inflammation (Kociszewska et al., 2021). As 
the body ages, a series of changes occur in the intestinal tract, such 
as the reduced microbiota diversity, more pro-inflammatory 
microbiota such as LPS-producing Gram-negative bacteria, and the 
permeability of the intestinal barriers increases (Ragonnaud and 
Biragyn, 2021). Therefore, pathogens and metabolites of intestinal 
microorganisms can be  transported to the cochlea through the 
systemic circulation, leading to chronic inflammation of the cochlea 
and the occurrence of presbycusis (Kociszewska and Vlajkovic, 2022; 
Figure 1).
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Fibrocyte regeneration and stem cell depletion
The spiral ligament is a component of the potassium ion transport 

system in the lateral wall of the cochlea, which contains five types of 
fibrocytes, and its normal function is crucial for the maintenance of 
the EP (Spicer and Schulte, 1991; Lang et al., 2003; Eckert et al., 2021). 
Unlike sensory hair cells and neurons, which do not regenerate, spiral 
ligament fibrocytes typically recover rapidly after ototoxic drug and 
noise damage (Roberson and Rubel, 1994; Lang et al., 2003). The 
regenerative repair ability of fibrocytes relies on bone marrow-derived 
stem cells (Lang et al., 2006). However, as the body ages, stem cells are 
continuously depleted and their differentiation potential and 
proliferation rate decrease (Fehrer and Lepperdinger, 2005). Therefore, 
the renewal and repair ability of fibrocytes in the elderly is weakened, 
the spiral ligament atrophies, and metabolic presbycusis occurs 
(Eckert et al., 2021; Figure 1).

Prevention and treatment of presbycusis

Prevention of presbycusis
The management of presbycusis should first focus on prevention 

and avoid exposure to risk factors. While we cannot prevent aging, nor 
can we  change our genetic background, we  can minimize noise 
exposure, wear earplugs in noisy environments, and avoid ototoxic 
medications (He et al., 2019). Elderly patients should actively treat 
metabolic diseases and ear infections to avoid damage to their hearing 
(Guo et al., 2022). A good lifestyle is also essential for the prevention 
of presbycusis, and a reduced intake of fatty foods and a diet high in 
antioxidants can reduce hearing loss (Le and Keithley, 2007; 

Kociszewska et  al., 2021). In addition, proper exercise not only 
strengthens immune function, but also reduces free radicals in the 
body. Studies have shown that long-term exercise can delay the 
progression of presbycusis by reducing age-related capillary loss 
associated with inflammation (Han et al., 2016).

Treatment of presbycusis
Treatment of presbycusis still relies clinically on hearing 

amplification and cochlear implantation. Air conduction hearing aids 
are commonly worn in patients with mild to moderate hearing loss, 
active middle ear implants can be used in patients with moderate to 
severe hearing loss, and cochlear implants should be considered in 
patients with severe to profound hearing loss (Seidman et al., 2019). 
However, it is estimated that only 15% of eligible patients use them 
due to multiple factors including cost, appearance, discomfort, and 
lack of perceived benefit (Chien and Lin, 2012; Mahboubi et al., 2018).

In recent years, some researchers have begun to explore the 
treatment of presbycusis with antioxidants, anti-inflammatories, 
neurotrophins and other drugs (Wang and Puel, 2020). Studies by 
Benkafadar et al. (2019) show that EUK-207, a synthetic superoxide 
dismutase/catalase mimetic, reduced hair cell degeneration and 
age-related hearing loss in senescence-accelerated mouse-prone 8 
(SAMP8) mice. Serra et  al. (2022) believe that although the 
antioxidant melatonin cannot completely prevent presbycusis, it can 
delay its occurrence. Aspirin displays anti-inflammatory and 
antioxidant properties, and studies have shown that it can effectively 
reduce hearing loss in aged mice (Cazals, 2000). An ongoing clinical 
trial is attempting to assess its potential therapeutic effect on 
presbycusis in humans (Lowthian, et  al., 2016). Cassinotti et  al. 

FIGURE 1

The pathogenesis and pathological changes of age-related hearing loss (ARHL).
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(2022) overexpressed neurotrophin-3 (Ntf3) in mouse cochlea 
starting at middle age, thereby preventing age-related inner hair cell 
synaptopathy and slowing age-related hearing loss. Oral treatment 
with selegiline, a neuroprotective antiparkinsonian drug, significantly 
alleviated hearing loss at higher frequencies in mice with moderate 
hearing loss, but not in mice with rapid progressive hearing loss 
(Szepesy et  al., 2021). We  believe that the drug treatment of 
presbycusis has broad prospects, but the current application is still 
concentrated in animal models and clinical trials, and its clinical 
application still needs to solve problems such as efficacy, safety, 
administration route and dosage. In addition, gene therapy and stem 
cell transplantation also have potential treatment for presbycusis, 
which still need further research (Chen et  al., 2012; Davidsohn 
et al., 2019).

Conclusion

Presbycusis is a common chronic disease occurring in the process 
of aging, which is the result of the interaction of various extrinsic and 
intrinsic factors under the genetic background. With the aging of the 
body, the function or number of immune functions, antioxidant 
enzymes and self-repairing stem cells that are closely related to the 
body’s self-protection decline, resulting in the accumulation of 
inflammatory cytokines, reactive oxygen species and tissue cell 
damage in the body. Therefore, under the action of chronic 
inflammation and oxidative stress, irreversible damage occurs to the 
cochlear stria vascularis, spiral ligament, sensory hair cells and 
auditory nerve fibers, and then lead to the occurrence of presbycusis.

Mitigating exposure to risk factors is essential for the prevention of 
presbycusis. The clinical treatment of presbycusis is still mainly based on 
wearing hearing aids and cochlear implants, but various drugs launched 
according to its pathogenesis are also undergoing clinical research. The 
in-depth exploration of the pathogenesis of presbycusis provides a 
reference for potential drug treatment and clinical intervention.
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