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A general dual-pathway network 
for EEG denoising
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Faculty of Computing, Harbin Institute of Technology, Harbin, China

Introduction: Scalp electroencephalogram (EEG) analysis and interpretation 
are crucial for tracking and analyzing brain activity. The collected scalp EEG 
signals, however, are weak and frequently tainted with various sorts of artifacts. 
The models based on deep learning provide comparable performance with that 
of traditional techniques. However, current deep learning networks applied to 
scalp EEG noise reduction are large in scale and suffer from overfitting.

Methods: Here, we propose a dual-pathway autoencoder modeling framework 
named DPAE for scalp EEG signal denoising and demonstrate the superiority of 
the model on multi-layer perceptron (MLP), convolutional neural network (CNN) 
and recurrent neural network (RNN), respectively. We validate the denoising 
performance on benchmark scalp EEG artifact datasets.

Results: The experimental results show that our model architecture not only 
significantly reduces the computational effort but also outperforms existing 
deep learning denoising algorithms in root relative mean square error (RRMSE)
metrics, both in the time and frequency domains.

Discussion: The DPAE architecture does not require a priori knowledge of the 
noise distribution nor is it limited by the network layer structure, which is a 
general network model oriented toward blind source separation.
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1 Introduction

Scalp electroencephalogram (EEG) is a time-varying non-linear and non-stationary 
physiological signal with weak amplitude and is highly susceptible to contamination by 
extraneous noise, resulting in various artifacts (Sanei and Chambers, 2013). The effective 
removal of artifacts in scalp EEG and the preservation of the pristine scalp EEG information 
are of great significance for brain science research and clinical applications (Wolpaw et al., 
1991; Oberman et al., 2005; Cai et al., 2020). Artifacts can be classified into two categories: 
physiological artifacts and non-physiological artifacts (Urigüen and Garcia-Zapirain, 2015). 
Physiological artifacts are usually caused by the activity of body parts close to the head, such 
as the eyes (Croft and Barry, 2000), muscles (Muthukumaraswamy, 2013), and heart (Dirlich 
et al., 1997). In addition, the relative motion of the subject’s head and the electrode cap can 
produce physiological artifacts (Oliveira et al., 2016). Non-physiological artifacts are usually 
caused by environmental and equipment factors, such as whether the electrodes are in good 
contact with the scalp, whether the acquisition equipment is in good operation, and utility 
interference. Non-physiological artifacts can be reduced by acquiring in a shielded room, 
filtering, and subject self-suppression of the head and other body movements. In contrast, the 
physiological artifacts of electrooculogram (EOG) and electromyogram (EMG) are difficult 
to remove by simple filtering methods due to the irregularity of their movements and the 
frequency band overlap with the commonly used scalp EEG rhythm signals and need to 
be processed by suitable artifact removal algorithms.
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Classical artifact removal methods include independent 
component analysis (ICA) (Jung et al., 2000; Ullsperger and Debener, 
2010), wavelet transform (WT) (Hamaneh et al., 2014; Zhao et al., 
2014), empirical mode decomposition (EMD) (Huang et al., 1998; 
Patel et al., 2016), and common average reference (CAR) (Ludwig 
et al., 2009). Among them, the hybrid optimization method is a newer 
research hotspot for scalp EEG denoising, which mainly focuses on 
EEG noise reduction by combining the classical algorithms mentioned 
above to extract different artifact component features. Mahajan and 
Morshed (2015) combined blind source separation and wavelet 
transform, which avoids distortion in reconstructing scalp EEG 
signals due to the removal of useful EEG information. Bono et al. 
(2014) proposed the WPT-EMD and WPT-ICA algorithms by 
combining the concepts of wavelet packet transform (WPT), EMD, 
and ICA, which has a significant increase in artifact removal ability 
using signal-to-noise ratio as a measure. Chen et al. (2014) combined 
the ensemble empirical mode decomposition (EEMD) and the joint 
blind source separation (JBSS) for muscular artifact cancelation in 
single-channel EEG recordings, which demonstrated the performance 
of these single-channel solutions. Islam et  al. (2020) proposed an 
approach based on ICA to remove motion-related artifacts in the 
context of epilepsy and succeeded in improving the accuracy of 
epilepsy detection and prediction.

The advantages of applying the classical scalp EEG signal 
denoising methods mentioned above include high interpretability and 
good removal of specific artifacts, but the computational complexity 
is large and the generalization and robustness of the methods are not 
strong. The advantages of the generalization and robustness of deep 
learning are rapidly making it become a new development direction 
for scalp EEG noise reduction methods (Mumtaz et al., 2021). Yang 
et al. (2018) proposed a shallow multilayer perceptron (MLP) network 
for removing scalp EEG artifacts, which applies to the automatic 
removal of online scalp EEG by training the network offline, with the 
advantage of channel-independence and strong generalization ability. 
Anon Hanrahan (2019) used the one-dimensional convolutional 
neural network (CNN) to reduce noise in scalp EEG signals. Based on 
the signal-to-noise ratio (SNR) before and after denoising, this 
method has successfully surpassed principal component analysis 
(PCA). The complex CNN network structure of EEGdenoiseNet 
proposed by Zhang et al. (2020) outperformed the EMD algorithm in 
denoising the standardized EEG artifact dataset constructed by them. 
Sun et al. (2020) used a one-dimensional residual convolutional neural 
network (1D-ResCNN) model for denoising the raw time-domain 
waveforms of scalp EEG, which was effective in removing ocular 
artifacts but ineffective for myogenic artifacts. Zhang et al. (2021) 
proposed a new CNN network structure combining progressively 
increasing feature dimensions and downsampling for EMG denoising. 
The results show that structure design can help avoid overfitting and 
perform better.

In general, the removal of scalp EEG artifacts by deep learning is 
not controlled by the number of electrodes and does not require a 
priori knowledge of physiological artifact reference channels or some 
artifact signals, but due to the complexity and multiple sources of 
artifact signals, achieving good results for both ocular and myogenic 
artifacts using existing deep learning methods is difficult. These deep 
learning network models are complex and computationally intensive. 
In light of the recent explosion in portable BCI (brain-computer 
interfaces) (Guneysu and Akin, 2013; Nakanishi et al., 2017; Zhang 
et al., 2019; Wang et al., 2023), we suggested a lightweight scalp EEG 

noise reduction network model based on autoencoders. Autoencoders 
were first introduced by Hinton and Salakhutdinov (2006) as neural 
network trainers to reconstruct its input and are widely used in 
computer vision (Sinha et al., 2018), audio processing (Leglaive et al., 
2020), and natural language processing (Lebret and Collobert, 2015). 
To alleviate the problem that the classic autoencoder tends to 
be  overfitted, Vincent et  al. (2010) proposed the denoising 
autoencoder. The denoising autoencoder uses data corrupted by noise 
to reconstruct the original data, which makes the abstract features 
more robust. Here, we  modify the encoder module of the noise-
reducing self-encoder. Instead of stacked encoding layers, we design 
parallel dual-pathway network layers with different neuron shrinkage 
ratios and combine them with a symmetry fusion block module. In 
this way, we construct a robust feature extraction encoder to remove 
the non-linear and multi-source scalp EEG artifact noise features and 
obtain a high-level representation of clean EEG. Key contributions of 
this work are summarized by:

 • A general dual-pathway network structure separately was built 
using MLP, CNN, and RNN for automatic scalp EEG artifact 
removal and we  demonstrate that it outperforms other deep 
learning methods.

 • Modeling of scalp EEG contaminated with artifacts based on 
coupled systems.

 • Blind source separation without a priori knowledge of the 
source signal.

The rest of the paper is organized as follows. Section 2 presents the 
scalp EEG artifact coupled system model, the dual-pathway 
autoencoder network separately constructed using MLP, CNN, and 
RNN, and the benchmark scalp EEG artifact dataset. Section 3 
presents different evaluation metrics, whose results show that our 
approach outperforms other deep learning denoising methods. Also, 
we conducted ablation experiments for the proposed new network 
structure and validated the denoising performance on multichannel 
real EEG data. Concluding remarks follow in Section 4.

2 Methods and materials

2.1 The scalp EEG artifact hypothesis

As a time-varying non-linear and non-stationary signal, scalp EEG 
is susceptible to exogenous artifacts and physiological artifacts. 
Physiological artifacts are caused by a variety of internal body sources: 
EOG, EMG, electrocardiographic (ECG), etc. Traditional methods 
assume that the artifacts and scalp EEG signals are statistically 
independent of each other and that the signals we observe are composed 
of linear combinations of source signals as equation (1) (Parra et al., 
2005), where f  denotes the loss function of the transmission medium 
(skull) to the clean EEG signal and gi denotes the loss function of the 
transmission medium (skin surface) to each artifact signal.
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In reality, however, there is a bidirectional contamination between 
scalp EEG and artifacts, forming a coupled system (David and Friston, 
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2003). Exogenous artifacts can be removed by adjusting the acquisition 
environment and filtering. In contrast, endogenous artifacts and clean 
scalp EEG activity signals are interacting with each other during 
transmission through the scalp to the electrodes and are more difficult 
to remove. This can be modeled as equation (2):
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where artifactiendo denotes endogenous artifacts and artifact jexo 
denotes exogenous artifacts. giand g j represent the transmission loss 
functions for endogenous and exogenous artifacts of different 
transmission mediums, respectively. We  wished to construct a 
network structure that can simulate this mutual antagonism of the 
source signal during the scalp transmission process. The schematic 
diagram illustrating the coupling model framework of scalp 
electroencephalography can be  found in Figure  1. Therefore, 
we propose the following dual-pathway denoised autoencoder model. 
We fit the coupling between the two types of loss functions, by means 
of a multiscale dual-pathway structure and a fusion block to extract 
the feature coding of clean scalp EEG signals.

2.2 Network structure

Considering the coupled system, the clean scalp EEG signals and 
the artifact signals interfere and contaminate each other, which 
ultimately constitutes the observed scalp EEG signals composed of 
signals from multiple sources. In this paper, a dual-pathway 
autoencoder (DPAE) network architecture is designed for extracting 

the encoding of the target signal which is also the clean scalp 
EEG signal.

Firstly, at the time of extracting the primary features, the original 
input is mapped to subspaces of different dimensions to obtain feature 
representations at different scales. Secondly, through the fusion 
module, the joint representation features of different scales are 
compressed and reconstructed to obtain the scale-independent 
common feature information. Finally, the clean scalp EEG signal is 
reconstructed based on this common feature information. Notably, 
we associate the neural network layers at both ends of the fusion 
module through residual connections, i.e., the input and output layers 
of the fusion module are summed before feeding into the decoder. In 
view of the fact that the depth of the network structure increases with 
the addition of the fusion module, the residual connection can ensure 
that there is no gradient vanishing in the backpropagation (Drozdzal 
et  al., 2016). Furthermore, the residual connection is added to 
construct an identity mapping of the joint representation based on the 
residual connection, which is more conducive to the model learning 
the common feature information in the different scale features. This 
model structure has the advantage of automatically modeling the 
contamination relationship between multiple interference source 
signals. It also learns multiscale feature representations in a dual 
pathway format and uses the coding of the target source signals as its 
learning target. This helps the fusion module to obtain common 
feature representations at different scales that contain more 
information about the target source signals.

In addition, to better illustrate the generalization of the network 
frame, the dual-pathway autoencoder network architectures based on 
MLP, CNN, and RNN are constructed in this paper, respectively. 
Specifically, taking CNN as an example, we  construct two sets of 
convolutional layer pathways with different sizes of convolutional 
kernels (1×3 vs. 1×5) and different steps (1×2 vs. 1×4) on the input 
layer of the network, respectively. In contrast to MLP, two sets of fully 

FIGURE 1

The coupled system model of scalp EEG contaminated by artifacts. The endogenous signals contain clean scalp EEG signals and physiological artifacts 
dominated by electrooculogram (EOG), electromyogram (EMG), and electrocardiographic (ECG). The endogenous signals antagonize each other and 
are co-transmitted through the skull to the scalp electrodes to be acquired. The exogenous signals, which contain physiological artifacts dominated by 
industrial frequency interference and motion artifacts, are transmitted via the scalp to the scalp electrodes, and together with the endogenous signals, 
constitute the observed scalp EEG. The exogenous signals comprised primarily of industrial frequency interference and motion artifacts are conveyed 
through the scalp to the scalp electrodes. These signals, in conjunction with the endogenous signals, collectively form the observable scalp EEG.
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connected layer pathways are constructed with different neuron 
shrinkage ratios (0.45 vs. 0.75). Compared to RNN, two sets of GRU 
(gate recurrent unit) pathways are constructed with different unit 
shrinkage ratios (0.45 vs. 0.75). The two hidden layer pathways are 
followed by the fusion module. The fusion module is constructed 
based on a fully connected layer, which constructs the joint 
representation based on the two hidden layer pathways, and 
reconstructs the joint representation by compression coding first and 
then reconstructing the joint representation. The whole fusion module 
is a symmetric structure, as shown in Figure 2. The reconstructed joint 
representation is further compression coded by combining the 
residual connections after the fusion module. Finally, decoding is 
performed based on the decoder to synthesize clean scalp EEG signals. 
In addition, we added a batch normalization (Santurkar et al., 2018) 

layer after the joint representation layer every time, which is to 
regularize the features from two pathways to a uniform interval, 
reduce the degree of data divergence, and construct independently 
and identically distributed recombination features.

In terms of parameter details, if we take the number of neurons at 
the input as 512, the specific parameters of the DPAE network model 
based on MLP are shown in Table 1. Additionally, it should be noted 
that the number of neurons in the high-dimensional layer is 682 
(512/0.75) and the number of neurons in the low-dimensional layer is 
230 (512*0.45). This is to map the input data to the low and high 
dimensional spaces, respectively, and thus ensure feature variability 
extracted by the subsequent dual-pathway structure. After that, the 
shrinkage ratio of the two pathway network layers stacked is always set 
to 0.45 and 0.75, respectively, so the shape of each network layer can 

FIGURE 2

The dual-pathway denoising autoencoder (DPAE) structure diagram. The DPAE model first extracts multiscale abstract features by stacking network 
layers of varying scales. Subsequently, it simulates the coupling of multiple source signals through the fusion block. Following this, it employs residual 
connection structures to extract scale-independent generic encoding features of the target source signals. Finally, it reconstructs the target source 
signals based on the decoder. It is worth noting that to make the network structure look more intuitive, we ignore the joint representation layer. FN 
denotes a fully connected hidden neural layer, BN denotes a batch normalization layer, and the widths of the individual layers indicate the relative 
proportions of the layer neuron sizes. The encoder layers can be replaced by MLP, CNN, and RNN layers.
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be calculated in turn. In other words, our pathway with the high ratio 
is the first to carry out an expansion operation to upgrade 
dimensionality and a few contraction operations to reduce 
dimensionality. This is intended to improve the features’ expressiveness. 
In contrast, in the low ratio pathway, it is all shrinkage operations. In 
the decoder, the two-path network layers are concatenated together, 
then one layer of the network layers is stacked and output directly.

We propose a training strategy to facilitate the learning of the 
clean scalp EEG characteristic features from scalp EEG contaminated 
with artifacts. We designed clean scalp EEG and contaminated scalp 
EEG input-to-output pairs. We set clean EEG as the expected output 
and constructed contaminated scalp EEG frames with different signal-
to-noise ratio EMG and EOG artifacts as the input. The dual-way 
autoencoder is trained in a supervised manner, using the Adam 
optimizer (Zhang, 2018) with the mean square error between the 
outputs and the expected reconstructed clean EEG as a loss function. 
Furthermore, all activation functions are SeLu.

2.3 Datasets and pre-processing

2.3.1 Introduction to the dataset
We selected a publicly available standardized scalp EEG artifact 

removal dataset to validate the effectiveness of the method. The 
EEGdenoiseNet is a benchmark dataset for scalp EEG artifact removal 

by deep learning. This dataset has been manually annotated to obtain 
single-channel pure EEG, EOG, and EMG, and has been standardized 
for segmentation. Figure 3 shows example waveforms of scalp EEG, 
EOG, and EMG, respectively. The total of 13,512 segments of scalp 
EEG with a sampling rate of 256 Hz consist of 4,514 segments of pure 
EEG, 3,400 segments of oculomotor artifacts, and 5,598 segments of 
EMG artifacts, respectively.

The clean scalp EEG signals in this dataset were not spontaneous. 
They were extracted from 52 subjects performing real and imagined 
motor tasks. The sampled data from the 64 electrode channels were 
first extracted from the clean scalp EEG signals by ICA and then 
segmented into 2 s one-dimensional EEG signals after band-pass 
filtering from 1 to 80 Hz. In other words, the final single-channel scalp 
EEG signal was extracted from different channels of EEG. The EOG 
signal was obtained from additional EOG channels from multiple 
publicly available datasets and processed by band-pass filtering from 
0.3 to 10 Hz. The EMG signal was obtained from a publicly available 
facial EMG dataset and processed by band-pass filtering from 1 
to 120 Hz.

With this dataset, we compared our method with the current 
state-of-the-art methods in power spectral density (PSD), signal-to-
noise ratio (SNR), and other classical time series similarity measures 
for quantitative metrics.

2.3.2 Pre-processing of the dataset
As mentioned previously, the EEGdenoiseNet dataset is divided 

into clean EEG, EOG, and EMG datasets, all with a sampling rate of 
256 Hz, and all have been segmented in advance for a 2 s time window. 
We randomly selected 80% of the clean EEG as the training set and 
the remaining 20% of the EEG as the test set. The EEG contaminated 
by EOG and EMG is linearly constructed according to equation (3), 
which is also the noise-added formula used in the original dataset 
paper. Additionally, it should be noted that the sample counts of EEG, 
EMG, and EOG were not equal, we adopted a random sampling 
strategy without replacement for EMG and EOG to construct EEG 
contaminated with artifacts.

 EEG EEG ArtifactContaminated clean EMG EOG= + ∗λ /  (3)

TABLE 1 Parameters of each layer of the DPAE model.

Layer Shape Connected to

Input 512 -

Dense_layer1 (Path1) 230 Input

Dense_layer2 (Path1) 103 Dense_layer1

Dense_layer3 (Path1) 46 Dense_layer2

Dense_layer4 (Path2) 680 Input

Dense_layer5 (Path2) 511 Dense_layer4

Dense_layer6 (Path2) 383 Dense_layer5

Concatenate layer1 429 Dense_layer3, Dense_layer6

Batch normalization Layer1 429 Concatenate layer1

Dense_layer7 (fusion encoder) 193 Batch normalization Layer1

Dense_layer8 (fusion encoder) 86 Dense_layer7

Dense_layer9 (fusion feature) 39 Dense_layer8

Dense_layer10 (fusion decoder) 86 Dense_layer9

Dense_layer11 (fusion decoder) 193 Dense_layer10

Dense_layer12 (Path1) 46 Dense_layer11

Add layer1 (Path1) 46 Dense_layer3, Dense_layer12

Dense_layer13 (Path1) 20 Add layer1

Dense_layer14 (Path2) 383 Dense_layer11

Add layer2 (Path2) 383 Dense_layer6, Dense_layer14

Dense_layer15 (Path2) 287 Add layer2

Concatenate layer2 307 Dense_layer14, Dense_layer15

Batch normalization Layer2 307 Concatenate layer2

Dense_layer16 (decoder) 256 Batch normalization Layer2

Output 512 Dense_layer16

FIGURE 3

Typical examples in the EEGdenoiseNet dataset. The waveforms of 
clean scalp EEG, EOG, and EMG with a sampling rate of 256  Hz and a 
duration of 2  s are given here, respectively.
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FIGURE 4

Example waveforms of the denoising results of EMG (left) and EOG (right). It is evident that the time-domain waveforms of the denoised EEG signal 
closely resemble those of the clean scalp EEG signal, irrespective of the presence of contamination from EOG or EMG.

where λ is the artifact coefficient inferred from the SNR of the 
noise-added EEG. The SNR value is calculated as equation (4), with lg 
representing the logarithm with a base of 10.

 

( )
( )/

10lg clean

EMG EOG

RMS EEG
SNR

RMS Artifactλ
 

=   ∗   
(4)

RMS denotes the root mean square and represents the power of 
this segment of the signal, calculated as equation (5).
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Therefore, the smaller the value of λ, the larger the SNR value. The 
authors who proposed this dataset set the signal-to-noise ratio interval 
to [-7 dB, 2 dB], and we adopted the same setting scheme. As a side 
note, the data segmentation of our EMG-contaminated EEG is as 
follows: set the number of training sets for each SNR level to 4,478 and 
the number of test sets to 560. Set the data segmentation of our 
EOG-contaminated EEG as follows: set the number of training sets 
for each SNR level to 2,720 and the number of test sets to 340. This is 
also consistent with the way the authors constructed the segmentation 
of this dataset. We also set up separate validation sets equal to the size 
of the test set.

3 Results

3.1 Performance evaluation metrics

Here, we adopted the evaluation criteria established by the 
creators of the dataset, consistent with their criteria for assessing 
denoising performance. Evaluating the network performance in terms 
of the root mean square error (RRMSE) of correlation on the time and 
frequency domains of the denoised EEG data, as well as the Pearson 
correlation coefficient values with the paired clean EEG.

First, we calculate the RRMSE of the denoised EEG from both the 
time domain and frequency domain, respectively. Here, we denote the 
denoised EEG by f y( ) and the paired clean EEG by x as ground truth. 
Then, the RRMSE in the time domain is calculated as equation (6):

 

( )( )
( )temporal

RMS f y x
RRMSE

RMS x
−

=
 

(6)

Considering that the scalp EEG signal is a non-linear time-variant 
signal, the RRMSE in the frequency domain introduces the power 
spectral density for calculating as equation (7):

 

( ) ( )( )
( )

( )
( )spectral

RMS PSD f y PSD x
RRMSE

RMS PSD x
−

=
 

(7)

The Pearson correlation coefficient (CC) is the classic measure of 
correlation of time-series data and is calculated as  equation (8):

 

( )( )
( )( ) ( )

cov ,f y x
CC

Var f y Var x
=

 
(8)

We start by explaining the source of the test data, which was 
constructed with the training set by sampling without replacement, which 
ensures that for the testing stage, either clean scalp EEG, EOG, or EMG 
are completely new and unseen. Some samples of our model noise 
reduction performance are given in Figures 4–6. For each segment of 
data, the normalization method has two steps: subtracting the standard 
deviation and then dividing by the maximum of the absolute values. It is 
important to highlight that when presenting the results of noise reduction 
through power spectrograms, we differentiated the various frequency 
bands of the EEG by employing distinct colors. This was done to 
accurately depict our method’s capacity to preserve the essential 
information within the power spectrum of each band. The frequency 
distribution intervals of each band are as follows: delta [1–4 Hz], theta 
[4–8 Hz], alpha [8–13 Hz], beta [13–30 Hz], and gamma [30–80 Hz].
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3.2 Contrast with other deep learning 
methods

To have a more comprehensive view of the performance of our 
model, we  compare it with a fully convolutional neural network 
(FCNN), simple CNN, complex CNN (Emara et al., 2019), and RNN, 

which are proposed with the benchmark dataset and the latest novel 
CNN. Table 2 shows the scales in parameters and FLOPs (floating 
point operations) (Frølich and Dowding, 2018) of each network. 
Firstly, considering the number of parameters, it is evident that our 
methods belong to the forefront, characterized by a minimal 
parameter count. However, compared with the RNN model, the 

FIGURE 5

Example PSD plots of denoising result of EMG. We presented power spectral density (PSD) plots for scalp EEG signals contaminated by EMG across 
various frequency bands both before and after noise reduction. The delineated frequency intervals for each band are as follows: delta [1–4  Hz], theta 
[4–8  Hz], alpha [8–13  Hz], beta [13–30  Hz], and gamma [30–80  Hz]. The efficacy in eliminating artifacts in the higher-energy EEG bands, specifically 
delta, theta, and alpha, exhibited greater strength and displayed more consistent curves. Conversely, in the beta and gamma bands, the ability to 
remove artifacts was less pronounced due to the comparatively lower energy levels inherent in the clean EEG signals within these bands.

TABLE 2 Comparison of the network scales.

Model FCNN RNN
Simple 
CNN

Complex 
CNN

Novel 
CNN

DPAE 
MLP

DPAE 
1D-CNN

DPAE 
1D-RNN

Params 1.0 M 0.7 M 16.8 M 8.5 M 33.6 M 1.5 M 2.0 M 2.3 M

FLOPs 57.4 M 55.3 M 53.7 M 20.1 M 124.5 M 3.1 M 3.9 M 5.8 M

We highlights the minimum values for parameters and FLOPs through bold formatting.

FIGURE 6

Example PSD plots of the denoising results of EOG. We present power spectral density (PSD) plots for scalp EEG signals contaminated by EOG across 
various frequency bands both before and after noise reduction. The delineated frequency intervals for each band are as follows: delta [1–4  Hz], theta 
[4–8  Hz], alpha [8–13  Hz], beta [13–30  Hz], and gamma [30–80  Hz]. The frequency range of EOG typically falls within 0–13  Hz, which is relatively 
narrow. As depicted in the figure, EOG primarily introduces interference in the delta, theta, and alpha frequency bands. The results demonstrate that 
our denoising method consistently exhibits exceptional performance across all frequency bands.
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FIGURE 7

Evaluation metrics curves of the denoising results from different artifacts of the EEGdenoiseNet dataset. The figure presents the denoising results of 
different neural network models based on time-domain and frequency-domain root relative mean square error (RRMSE) and Pearson correlation 
coefficients. These results are obtained for scalp EEG signals contaminated by varying signal-to-noise ratios of EOG and EMG.

number of parameters is slightly increased, considering that the RNN 
only has three hidden layers, while our DPAE model has 16 hidden 
layers, so it can be said that the DPAE framework can increase the 
depth of the network while effectively reducing the number of 
parameters. FLOPs represent the amount of network computation 
when the model is propagated forward, which can be used to measure 

the computational complexity of the model. It can be seen that the 
FLOPs of the three network frameworks of the DPAE are extremely 
small, and are one-tenth or even one-twentieth of the other models, 
among which the FLOPs value of the DPAE MLP model is the 
smallest. This indicates that our method consumes very little memory 
and is very fast, which is conducive for applications.
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We trained the above methods all in 200 epochs with batch size at 
128, using the same optimizer and loss function as our method. 
We  present the benchmark assessment metrics proposed with this 
dataset against the RRMSE temporal, RRMSE spectral, and Pearson 
correlation coefficients graphs at all SNR levels in Figure 7. The first 
column gives the performance for scalp EEG contaminated by EOG 
under the three noise reduction metrics, while the second column 
corresponds to the noise reduction results for EEG contaminated by EMG.

In terms of trend, we can see that our noise reduction performance 
gets better as the SNR level increases. The fluctuation of our method 
is much more stable compared to other methods, which indicates the 
higher robustness of our method. The DPAE CNN model stably 
outperforms other models at all SNR levels in both temporal and 
spectral RRMSE metrics for EMG removal. The DPAE CNN also 
obtained the best performance on the removal of EOG as the signal-
to-noise ratio went beyond -3 dB. In addition, the DPAE MLP model 
and the DPAE RNN model significantly outperform the baseline 

FCNN and RNN models, confirming the generalization of the DPAE 
frame across network structures. Secondly, the DPAE MLP model 
stably outperforms other deep learning algorithms on EOG removal 
after the SNR level exceeds -6 dB both on RRMSE temporal and 
spectral. In EMG removal, it outperforms other models in RRMSE 
spectral after the SNR level exceeds -3 dB, and in RRMSE temporal 
after the SNR level exceeds zero. The DPAE RNN, on the other hand, 
has a weaker performance improvement and does not outperform 
other deep learning algorithms, but only manages to completely 
outperform the simple CNN and outperform the complex RNN at the 
same SNR levels. As a side note, our method does not perform well on 
the Pearson correlation coefficient.

3.3 Ablation study

In addition, our encoder design scheme mainly consists of three 
elements: a dual-pathway network structure, fusion block module, and 
residual connection. We took the two-pathway network as the baseline 
and the complete network as the ablation object based on the MLP layer. 
The ablation study (Meyes et  al., 2019) was set on two occasions: 
removing the fusion block module or removing the residual connection. 
In terms of control variables, we set the three networks under the same 
random seed with the same training set (using the EMG dataset) and 
consistent hyperparameters (batch size = 128, leaning rate = 0.001, 
epoch = 200). The experimental results are shown in Figure 8.

As we can see, the model with the fusion block removed has the 
slowest convergence speed and the worst final loss level. The model 
with the residual connections removed has a slightly higher 
convergence speed, and the final loss is better but not as good as the 
complete model. First, this result is consistent with the fact that residual 
connections can improve the convergence speed of the network. 
Second, it shows that the fusion block module can indeed effectively 
fuse and update the coding representation of scalp EEG signals, which 
can not only improve the convergence efficiency of the network jointly 
with the residual connection but also make the network converge to a 
better local optimum. Finally, according to the results of the 
comparison between eliminating the fusion block and eliminating the 
residual connections for the network performance degradation, the 

FIGURE 8

Ablation study on loss comparison. We conducted the ablation study 
on two separate instances: one involved the removal of the fusion 
block module, and the other involved the removal of the residual 
connection. Both instances utilized the same random seed and the 
same training set (utilizing the EMG dataset). The observed metric is 
the training losses.

FIGURE 9

Denoising results of myoelectric artifacts on multichannel scalp electroencephalogram at different signal-to-noise ratios. The figure presents the 
denoising results of different DPAE models based on time-domain and frequency-domain root relative mean square error (RRMSE) and Pearson 
correlation coefficients. These results are obtained for multichannel scalp EEG signals contaminated by varying signal-to-noise ratios of EMG.
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fusion block contributes more to the performance improvement of the 
neural network compared to the residual connections.

3.4 Multichannel noise reduction 
experiment

The clean scalp EEG of the EEGdenoiseNet dataset is 
one-dimensional although it comes from different electrode channels. 
That is, our model is currently not based on specific channels for noise 
reduction, but in the form of single-channel reuse of the same model. 
However, most of the real scalp EEG datasets are multichannel, 
coupled with the fact that the clean scalp EEG signals of 
EEGdenoiseNet extracted by ICA differ from the real scalp EEG data. 
Therefore, in order to verify the practicality of our method, we did 
another experiment on multichannel scalp EEG noise reduction.

The scalp EEG data were obtained from the BCI Competition IV 
dataset 2a (Brunner et al., 2008), a four-class motor image dataset with 
nine subjects and 288 trials per subject. The number of electrodes was 
22, and the sampling rate was 250 Hz. We randomly sampled 192 trials 
of data from two subjects (with equal proportions for the four motor 
imagery tasks). We  intercepted 2 s of EEG data from which the 
subjects started motor imagery and resampled the scalp EEG to 
256 Hz as ground truth. Those data were then combined with EMG 
data from EEGdenoiseNet to simulate contaminated EEG data at 
different signal-to-noise levels.

For the training of the network model, we made the following 
changes: the original 1d DPAE model structure was still used, and the 
data from each trial were fed into the network channel by channel for 
noise reduction. Figure 9 shows the noise reduction results of the three 
model frameworks under different signal-to-noise levels. It can 
be seen that all three models maintain consistent noise reduction with 
the EEGDenoseNet dataset at different signal-to-noise ratio levels 
when facing real multichannel EEG data. Among them, 1dCNN 
DPAE consistently outperforms the other two models in EMG artifact 
removal until the signal-to-noise level is below 0 dB. This further 
illustrates the greater robustness of the 1dCNN DPAE model. The 
MLP DPAE model, on the other hand, maintains the trend of 
increasing noise reduction ability with increasing signal-to-noise ratio, 
whereas the other two models show a decrease in noise reduction 
ability at signal-to-noise ratios greater than 0 dB, suggesting that the 
MLP DPAE model is more capable of generalization.

4 Conclusion

In this paper, we propose a general dual-pathway autoencoder 
network for automatic scalp EEG denoising and validating the model 
separately constructed using MLP, CNN, and RNN on benchmark 
EEG datasets.

The experimental results show that the DPAE model constructed 
based on the above three architectures significantly outperforms the 
model constructed on the basic architecture, proving the effectiveness 
of our method. Secondly, the DPAE CNN model outperforms the 
existing deep learning noise reduction methods in terms of RRMSE 
temporal and spectral at almost all SNR levels, both in the EOG 
removal experiments and in the EMG removal experiments. Both the 
DPAE MLP and DPAE RNN also show competitive performance. 

Finally, in the comparison of the number of parameters in the network 
model and the computational complexity, the scale of our model is 
much smaller than existing deep learning methods, which proves the 
efficiency of the DPAE framework. Our method has the advantage of 
not limiting the number of channels and performs stably on the noise 
reduction of 22-channel EEG data. However, we have not yet started 
noise reduction experiments on real-time data, which is one of our 
future enhancement directions. In this way, we  can combine the 
advantages of a lightweight network and apply it to portable brain–
computer interface devices.

Our feature extraction structure of dual pathways, combined 
with residual connection and constant mapping of fusion modules, 
enables the DPAE model to efficiently guide the network to learn 
scale-independent common feature representations of the target 
source signals for reconstruction. Our network model does not 
require a priori distributional knowledge of multiple source signals 
and can be  well migrated for application to blind source 
signal separation.

Also, since the overall framework of our method is an autoencoder, 
it is not difficult to envision that the encoder structure and weight 
design in this paper can be used as an upstream task for deep learning 
of scalp EEG data based on transfer learning without complicated 
manual filtering and can be applied directly to remove artifacts to 
improve the performance of downstream tasks.
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