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Vision transformer architectures attract widespread interest due to their robust

representation capabilities of global features. Transformer-based methods as

the encoder achieve superior performance compared to convolutional neural

networks and other popular networks in many segmentation tasks for medical

images. Due to the complex structure of the brain and the approximate

grayscale of healthy tissue and lesions, lesion segmentation su�ers from

over-smooth boundaries or inaccurate segmentation. Existingmethods, including

the transformer, utilize stacked convolutional layers as the decoder to uniformly

treat each pixel as a grid, which is convenient for feature computation. However,

they often neglect the high-frequency features of the boundary and focus

excessively on the region features. We propose an e�ective method for lesion

boundary rendering called TransRender, which adaptively selects a series of

important points to compute the boundary features in a point-based rendering

way. The transformer-based method is selected to capture global information

during the encoding stage. Several renders e�ciently map the encoded features

of di�erent levels to the original spatial resolution by combining global and local

features. Furthermore, the point-based function is employed to supervise the

render module generating points, so that TransRender can continuously refine

the uncertainty region. We conducted substantial experiments on di�erent stroke

lesion segmentation datasets to prove the e�ciency of TransRender. Several

evaluationmetrics illustrate that ourmethod can automatically segment the stroke

lesion with relatively high accuracy and low calculation complexity.
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1. Introduction

Reliable segmentation is the cornerstone for identifying disease types and making

treatment strategies, and it plays an indispensable role in assisted therapy and intelligent

healthcare (Tajbakhsh et al., 2020). Deep learning-based methods attract enormous

research interest in various segmentation tasks, such as stroke lesion segmentation

(GBD 2016 lifetime risk of stroke collaborators, 2018; Wu Z. et al., 2023), skin

lesion segmentation (Yuan et al., 2017; Khattar and Kaur, 2022), and brain tumor

segmentation (Pereira et al., 2016; Huang P. et al., 2022). Ischemic stroke is a

series of sudden neurological deficits caused by localized cerebral ischemia and

permanent infarction, and it has become a major cause of injury and even death

(Matsuo et al., 2017). For the detection and treatment of stroke, magnetic resonance

imaging (MRI) has become an indispensable method with the advantage of high

resolution. Deep learning-based techniques produce rapid and accurate lesion segmentation
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that assists physicians in making timely medical decisions (Nielsen

et al., 2018). In the last decade, convolutional neural networks

(CNN) have grown popular for researchers in the image processing

field due to their success at extracting feature representations (Wu

J. et al., 2023). U-Net (Ronneberger et al., 2015) is a popular

encoder-decoder symmetric structure that achieves great success

for various 2D segmentation tasks. Many of the proposed methods

(Milletari et al., 2016; Schlemper et al., 2019; Zhou Y. et al.,

2021) are improved based on U-Net, providing spatial information,

semantic information, and more. However, CNN-based methods

are intractable for establishing long-distance features because of the

limitations of their inherent structure.

In the last few years, transformer (Vaswani et al., 2017), which

originated in the field of natural language processing (NLP),

has shown great potential in a series of visual tasks. The vision

transformer (Dosovitskiy et al., 2021; Wang et al., 2021; Chen et al.,

2022) is applied directly from NLP to image classification task

and outperforms the CNN-based methods. Transformer and its

derived methods demonstrate impressive achievements in a variety

of visual tasks. The pure transformer is not appropriate, and the

structure of hybrid CNN-transformer methods becomes the model

of choice in medical image analysis (He et al., 2022). TransUNet

(Chen et al., 2021), the first hybrid architecture in medical field,

extracts the global features of medical images through transformer

layers. For the organs segmentation, TransUNet realizes excellent

results that outperform existing CNN-based methods. In contrast

to the cascade structure, TransFuse (Zhang et al., 2021a) utilizes

both CNN and transformer in a parallel connection. The above-

mentionedmethods refine the feature representation of the encoder

from different perspectives, while for the decoder they employ the

traditional convolutional upsampling method. It’s undeniable that

the long range modeling capability of transformer is very powerful.

Unfortunately, stroke lesion segmentation still faces enormous

challenges, as shown in Figure 1. and the difficulty of identifying

lesion boundaries. We can see that the location of the lesions

are different due to the individual differences of patients and

their lifestyle habits. The uncertain location of occurrence and the

complex brain structure cause the shape of the lesion is extremely

irregular. Furthermore, the statistical features of focal tissue are

not significantly different from those of healthy tissue, leading to

challenging segmentation of irregular lesion boundaries.

Most of the existing methods tend to treat all feature

representations of the lesion region uniformly in a regular grid way,

ignoring the high-frequency information at the boundaries, which

makes the segmentation of the lesion boundary more difficult.

To ameliorate these difficulties, we propose a point-based

boundary segmentation method, TransRender, which comprises

the transformer as the encoder and the render-based module

as the decoder. The transformer-based encoder constructs global

features of the input image sequence at several scales. The

render-based decoder utilizes a subdivision strategy that adaptively

selects an uncertain set of points to recompute the original

segmentation. Furthermore, the render module leverages both

CNN and transformer features to recover the resolution of the

segmentation results, which enriches the local-global features of

the deep semantic information. To illustrate the validity of the

TransRender, we implement the comparative experiments using

different stroke lesion datasets. The experimental results from these

datasets suggest that TransRender achieves excellent performance

in the lesion segmentation task.

To summarize, our main contributions are as follows:

1. We construct a boundary-related network structure for stroke

lesion segmentation, called TransRender, by adopting both the

multi-scale transformer to build long-distance dependency and

render-based decoder to compute the original recovery images.

2. We propose a render-based decoder that is trained to predict

uncertain points, allowing the decoder to fine-tune the

lesion boundaries.

3. We design multi-level point-to-point supervision to

optimize the point selection strategy. The comprehensive

experiments are conducted on two MRI-based stroke

lesion datasets to confirm the superior performance of

the TransRender.

2. Related work

We will review the relevant literature from

CNN-based methods, hybrid architecture-based

methods, and boundary-related methods in

this section.

2.1. CNN-based methods

In several fields, such as image classification and image

segmentation, the CNN methods have gained enormous success

(Zhao et al., 2021, 2023; Guo et al., 2022). Traditional segmentation

methods generally use convolutional and pooling layers to extract

local features and thus perform segmentation (Li et al., 2021). U-

Net (Ronneberger et al., 2015) is a popular symmetric structure

based on convolution layers. The skip connection serves as a

bridge to connect different semantic information, making U-

Net suitable for medical image processing tasks. Some studies

on stroke attempt to improve the U-Net method to realize

accurate lesion segmentation. D-UNet (Zhou Y. et al., 2021)

utilizes the dimensional transformation module to extract the

spatial information between slices through the combination of

2D detail features and 3D spatial features. The multi-inputs

UNet (Zhang et al., 2021b) takes 3D diffeomorphic registration

with the original MRI as inputs, providing rich prior knowledge

for the subsequent UNet segmentation network. The CNN-

based encoder is limited by convolutional operations and still

lacks the ability to extract global information. Yang et al.

(2019) proposed a network that adopts DenseUNet as the

encoder and uses a long short-term memory module to fuse

contextual information on the decoder. The two-stage U-Net

(Agnes et al., 2022) proposes a feature combination module to

efficiently extract global information. Unfortunately, thesemethods

introduce global features from different perspectives, but do not

qualitatively eliminate the limitations of the convolutional inherent

receptive fields.
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FIGURE 1

Stroke lesions are distributed in di�erent locations and have extremely irregular sizes and shapes. Furthermore, the similarity of the lesion to the

surrounding healthy tissue further increases the di�culty of segmentation.

2.2. Hybrid architecture-based methods

Transformer has spread from NLP to computer vision since it

is excellent at attracting long-distance information and encoding

shape representations (Han et al., 2022). The vision transformer

(ViT) (Dosovitskiy et al., 2021) is the first structure to be used

for image classification tasks and obtains results that exceed the

CNN methods. As the interest grows, ViT and its derived methods

(Liu et al., 2021) display powerful performance in a series of

visual segmentation tasks. Because of the complex structure and

tissue intensity similarity of medical images, a pure transformer

is hard to realize the desired segmentation outcomes. The hybrid

architectures of CNN combined with transformer have become the

model of choice in the medical field (He et al., 2022). TransUNet

(Chen et al., 2021) is the first hybrid structure that is utilized

to segment the abdominal organs. TransUNet extracts deep-level

features by using stacked convolutional layers and then establishes

long-term associations by stacking transformer layers in a cascade

way. On the contrary, BiFusion module (Zhang et al., 2021a) is

proposed to integrate the parallel convolutional and transformer

branches, and the proposedmethod achieves excellent performance

while being highly efficient. Swin-Unet is proposed by Cao et al.

(2023), combining a Swin transformer with a U-shaped structure.

Swin-Unet can capture local semantic features and build long-

distance context information. The nnFormer is proposed by Zhou

H. Y. et al. (2021), which optimally combines convolution with

a self-attentive mechanism to surpass previous methods on brain

tumor segmentation. As for the decoder, both of them employ the

traditional convolutional upsampling path or transformer layers,

which tend to degrade the boundary information due to the

uniform computation of the pixels around the edge (Kirillov et al.,

2020).

2.3. Boundary-related methods

We notice recent works in medical image segmentation that

can be related to the proposed method. de Vries et al. (2023)

adopts general architecture as the encoder-decoder, while they

introduce the multiple cross-attention module to receive the

temporal information. Zhu et al. (2023) proposed a fusion network

that extracts edge features from CNN and edge spatial attention

blocks, and fuses edge features with semantic features from the

transformer. To clarify the structure boundaries, the boundary

preserving module (Lee et al., 2020) is proposed to generate a

key point map and explore the boundaries of the target object.

Kirillov et al. (2020) proposed a unique idea of considering image

segmentation as a rendering issue. The rendering-based approach

is effective and qualitative in the instance segmentation and

semantic segmentation tasks. In the boundary-rendering network

(Huang R. et al., 2022), a point selection module is proposed to

concentrate on the area of unclear edge. Moreover, a boundary

renderingmodule is employed to discover the contour information.

Some other methods (Chu et al., 2020; Kervadec et al., 2021) to

design boundary loss functions to mitigate the difficulties of highly

unbalanced problems in medical images. However, the existing

methods tend to generate over-smooth or inaccurate predictions

(Huang R. et al., 2022). We propose an improved render-based

decoder and combine it with a transformer-based encoder, which

can accurately segment lesions via fine-level details on a grid and

global semantic information.

3. Methodology

The structure of the TransRender is described in Figure 2.

The transformer-based encoder, render-based decoder, and fusion

module are the three parts of the proposed network architecture.

For each sliced input image, TransRender utilizes a multi-scale

transformer as an encoder to establish long-range dependencies

between the patch sequences. Then, the render-based decoder

recovers the resolution of the segmentation by upsampling strategy

with local-global features. Finally, a fusionmodule is adopted as the

postprocessing to integrate the segmentation maps at each level.

Furthermore, the proposed method trains renders with several

point-based supervisions. We introduce the detailed structure of

these three parts in this section.

3.1. The encoder

Figure 2 gives the structure of the encoder, which mainly

consists of several transformer modules and convolutional

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1259677
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wu et al. 10.3389/fnins.2023.1259677

FIGURE 2

The structure of the TransRender, which includes a multi-scale transformer-based encoder, render-based decoder, and a fusion module. Moreover,

the orange line, green line, and blue line mean global skip connection, local skip connection, and point-based loss function, respectively.

modules. To encode the hierarchical context information of the

input image, we first utilize a hierarchical transformer. With a

particular input X ∈ R
H×W×C, we denote its spatial resolution by

H ×W and its channel number by C, respectively. The MRI image

X is initially split into a patch sequence {xip ∈ R
P2·C|i = 1, ..,N} in

the linear embedding layer, where the height and width of each

patch are PH and PW , and N stands for the amount of patches.

Then we flatten and reflect these patches to a D-dimensional feature

representation via the linear projection:

z0 = [x1pE; x2pE; ...; xNp E], s.t. z0 ∈ R
N×D,E ∈ R

(P2·C)×D, (1)

where z0 represents the final features, and E is the patch

embedding projection.

Finally, a positional embedding Epos ∈ R
N×D to be added

is significant for the divided patches to integrate positional

information. The encoded patch sequence will be fed into the

transformer layers. As illustrated in Figure 3A, the cascaded multi-

head self-attention (MSA) layer and the multi-layer perception

(MLP) layer comprise the transformer, which is computed as:

t
′
l = MSA(LN(tl−1))+ tl−1, (2)

tl = MLP(LN(t′l))+ t
′
l, (3)

where tl and tl−1 represents the resulting features of the

corresponding transformer layers, and LN(·) denotes the layer

normalization. The MSA is defined as:

MSAi(X) = σ1 (
QiKi

T

√
d

)Vi, s.t.Qi = XW
Q
i ,Ki = XWK

i ,Vi = XWV
i ,

(4)

where d denotes the feature dimension, and Qi ∈ R
N×Dq ,

Ki ∈ R
N×Dk , and Vi ∈ R

N×Dv are the query, key, and value,

respectively. The W
Q
i ,W

K
i , and WV

i are the weight matrices,

and σ1 means the nonlinear function softmax. Moreover, patch

merging is employed between the two transformer modules, which

reduces the spatial resolution of patches and doubles the channel

dimension simultaneously.

As mentioned in the previous section, pure transformer

architecture is not optimal for the different segmentation tasks.

We utilize the convolutional modules additionally to enrich the

local representation. In the initial stage of encoding, the undivided

input X ∈ R
H×W×C is directly fed into the Conv2D module. The

structure of the Conv2D is shown in Figure 3B, which is defined

as follows:

Conv2D(X) = σ2 (BN(C1
3(σ2 (BN(C1

3(X)))+ X)))+
σ2 (BN(C1

3(X)))+ X, (5)

where C1
3(·) denotes a two-dimensional convolution with the 3× 3

kernel and the 1×1 stride, σ2 means the PReLU linear function, and

BN(·) represents the batch normalization. TransRender extracts

the local features and long-distance dependency of the image at

the encoding stage, which will be used by the decoder to perform

resolution recovery of the predicted image.

3.2. The decoder

Due to the complexity of cerebral structures, the boundaries

of stroke lesions are difficult to identify. The traditional

CNN methods treat all pixels of the irregular target object

uniformly in a convolutional way (Kirillov et al., 2020), either
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FIGURE 3

The structure of three modules: (A) Transformer layer composed of MSA, layer normalization, and MLP; (B) Conv2D module consist of two stacked of

convolutional layers and activation functions; (C) Fusion module comprises GAP, FC layer, and sigmoid function.

FIGURE 4

The structure of render module. With the transformer features from the global skip connection and convolutional features from the local skip

connection as input, render adaptively selects key points by point selection strategy and combines point features to make re-prediction.

at the lesion boundary or the lesion core. And the proposed

render module first selects the set of uncertain points and

extracts the feature representations corresponding to these

points, and implements the re-prediction of these uncertain

points by using the prediction head. The accurate localization

of the lesion boundary is accomplished by further prediction

of the selected uncertainty points. We take several renders

to build a decoder that adaptively predicts points with high

uncertainty. The render mainly includes three steps, as shown

in Figure 4: point selection strategy, point re-prediction, and

point replacement.

First, we introduce the point selection strategy using the last

layer of the proposed method as an example. For the given feature

map Xt ∈ R
H
2 ×

W
2 ×1, the render first upsamples it by a 2×

interpolate function to obtain the initial coarse segmentation X̂t ∈
R
H×W×1. The values from [0, 1] on the segmentation X̂t represent

the possibility of whether the current pixel is a lesion or not.

We give the distribution of pixel values and pixel positions in
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Figure 5. Different colors of points represent different values, where

black, orange, and red represent healthy tissue, lesions, and fuzzy

boundaries, respectively. If the value of the pixel is closer to 0, it is

more likely that the current pixel is a background (healthy tissue),

and vice versa, if the value is closer to 1, it means a lesion. When the

segmentation threshold is set to 0.5, the closer the threshold is, the

higher the uncertainty. Although the number of pixel points near

the threshold is sparse in Figure 5A, they are essential for the clear

localization of the boundary. These values are sorted in descending

order for each pixel, which is calculated as follows:

∀1 ≤ h ≤ H, ∀1 ≤ w ≤ W,Ms = {p1h,w, p
2
h,w, .., p

n
h,w}, (6)

where pi
h,w

represents the prediction value at the (h,w) location

and n = H × W denotes the number of pixels, Ms is the feature

map derived after sorting, and the point in the Ms follows the rule

that pi
h,w

is greater than pi+1
h,w

. Based on the Ms, we construct the

uncertain points mapMu. It can be obtained as follows:

Mu = |pih,w − pthd|, (7)

where pthd represents the threshold value of uncertainty. For

the final uncertainty mapMu, a smaller value at a pixel means that

the segmentation network has more uncertainty in the prediction.

That means the smaller the difference between pi
h,w

and pthd, the

larger the uncertainty of the current pixel. To eliminate the strong

bias due to the space position, the proposed render sampling k×N

points across theMu at random. It identifies that the β × N points

with the highest uncertainty in the set of points are located around

the boundary region, as shown in Figure 5B. These points will be

important to correct the segmentation at the lesion boundary.

Then, the render module integrates the features based on the

selected points, combining the contextual semantic information

from the global skip connection and local detail information from

the local skip connection. The feature sequences corresponding

to the selected points are fed into the mixer layer for point-

based re-prediction, where the mixer layer consists of two trainable

MLP layers. Finally, the re-predicted points set replaces the high

uncertainty points set in the initial segmentation to accomplish the

precise localization of the lesion boundary. The structure of the

render is shown in Figure 4.

Based on the render module proposed above, we construct

the render-based decoder (see in Figure 2), which combines local

and global features at multiple scales. Furthermore, we introduce

a fusion module at the end of the decoder in Figure 3C, which

fuses multiple layers of decoded features. The segmentation of

the different levels renders is merged as input Xr to perform the

following operations:

A(Xr) = σ3(FC(GAP(Xr)))+ Xr , (8)

where GAP(·), FC(·), and σ3 denotes global average pooling,

fully connected layer, and sigmoid function, respectively. The

fusion module emphasizes segmentation-related information and

suppresses irrelevant features in an attentive manner.

3.3. Loss function

The multi-scale render decoder adaptively selects the boundary

key points, thus improving the segmentation performance. In the

training stage, we design a combined loss function from two

aspects: segmentation loss and point loss, which is calculated as:

Ltotal(p, g) = Ldice(p, g)+ λ

n∑

i=1

L
i
bce(p, g), (9)

where Ldice(p, g) indicates segmentation loss and Lbce(p, g) is point

loss. λ represents the weight parameter, and the default setting

is λ = 0.7. The segmentation loss supervises the network to

generate regional details in the whole upsampling recovery process,

and point-to-point losses are employed to monitor each render

module in the decoder. The weight parameters of the MLP layer in

render are dynamically updated when the point selection strategy

calculates the point loss between the selected points on ground

truth and the points after re-prediction. Both two loss functions are

calculated as:

Ldice(p, g) = 1−
2
∑N

i=1 pigi + δ
∑N

i=1 p
2
i +

∑N
i=1 g

2
i + δ

, (10)

Lbce(p, g) = −(p log(g)+ p′ log(g′)), (11)

where p represents the prediction probability, g represents the

expert annotation. p′ and g′ represents the contrary prediction

probability of p and g, respectively.

4. Experiments and configurations

4.1. Datasets

Different stroke lesion segmentation datasets, including 490

MRI images, are used to conduct experiments to validate the

proposedmethod. They include brainMRIs of stroke patients in the

acute, sub-acute, and post-stroke stages. The details of both datasets

are introduced as follows.

The anatomical tracings of lesions after stroke (ATLAS)

is a publicly available dataset that includes 240 MRI images.

Each image contains the MRI for the t1-weighted modality and

the corresponding lesion annotation. The ischemic stroke lesion

segmentation (ISLES2022) is provided for use at the MICCAI 2022

grand challenge, which contains 250 MRI images. In contrast to

ATLAS, ISLES2022 contains three different modalities: ADC, DWI,

and FLAIR. The original size of ATLAS is 233×197×189, while the

original size of ISLES2022 varies over a wide range. After we slice

these 3D MRIs into 2D images, the slices are resized to a uniform

resolution of 208×176. In Table 1, we compare both two datasets in

terms of imagingmethod, data source, modality, number of images,

and dataset division.

4.2. Configurations

The PyTorch framework and Python are used to carry out

the experiments. We adopted AdamW as the optimizer with

default parameter settings. The epoch-based early stop strategy is

utilized to determine whether the model optimization is complete.

Furthermore, the transformer layers are pre-trained on the large

images dataset. All experiments are performed on GeForce RTX

2080 super with 8 GB memory.
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FIGURE 5

The distribution of pixel values and pixel locations: (A) The distribution of pixel points in di�erent intervals, with [0.3, 0.7] as the high uncertainty

interval; (B) The ambiguous pixel points are mainly distributed at the boundary of the lesion core area.

TABLE 1 The data comparison of ATLAS and ISLES2022 dataset.

Dataset Imaging method Data source Modality Number of images Dataset division

ATLAS MRI Public T1WI 240 160/40/40

ISLES2022 MRI Public DWI, ADC, FLAIR 250 168/41/41

We select common metrics to measure the advantages of

TransRender, including DSC, Precision, Recall, and HD to evaluate

the similarity between prediction results and lesion labels. We

consider the first two metrics, DSC and HD, more significant than

the classic F2, Precision, and Recall. The DSC calculates the region

similarity, and the HD calculates the boundary similarity between

the two inputs.

4.3. Experiments

4.3.1. Comparison experiment
We compare our TransRender with previous methods: U-Net

(Ronneberger et al., 2015), AG U-Net (Schlemper et al., 2019), D-

UNet (Zhou Y. et al., 2021), CLCI-Net (Yang et al., 2019), SAN-

Net (Yu et al., 2023), TransUNet (Chen et al., 2021), TransFuse

(Zhang et al., 2021a), and MLRA-Net (Wu et al., 2022) using

ATLAS dataset to illustrate efficiency of the TransRender. Table 2

shows the performance comparison, where the experimental result

of the proposed TransRender is presented in the last line. Further

experiments are implemented on the ISLES2022 to validate the

generalizability of the TransRender, as shown in Table 3. All

of the above experiments employ cross-validation methods to

avoid randomness.

4.3.2. Ablation experiment
The four ablation experiments on decoders are conducted to

assess the availability of the render module, which are shown

below: (1) The encoder uses U-Net and traditional convolutional

upsampling path as the decoder; (2) The encoder uses U-Net and

render-based upsampling path as the decoder; (3) TransRender

as the encoder and traditional convolutional upsampling path

as the decoder; (4) TransRender as the encoder and render-

based upsampling path as the decoder. Table 4 shows the

comparative results.

4.3.3. Hyper-parameter comparison
The render module automatically selects k × N points as the

uncertain points set to predict. The value of k directly affects how

many points are selected in network learning and, consequently,

the segmentation capacity of the proposed TransRender. We set

k = 1, 2, 3, 5 in the render module to compare the performance

using ATLAS dataset, respectively. Table 6 shows the results of

this experiment. It is also worthwhile to investigate the value of

β , which indicates the different percentiles of points selected as

important points. These important β×N points are sampled for the

features of spatial location, while the other (1 − β) × N points are

randomly assigned features. We conduct a comparative experiment

to explore the effect on segmentation performance by using β =
0.1, 0.5, 0.6, 0.7, 0.8 on the ATLAS dataset, respectively. The results

of this experiment as shown in Table 7.

5. Result and discussion

5.1. Comparison experiment

Table 2 reports the quantitative results using the ATLAS

dataset. Comparative experiments with eight different existing

methods are conducted to analyze the segmentation effectiveness

of the point-based TransRender. The comparison results indicate
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TABLE 2 The quantitative comparison of TransRender with the previous eight methods on the ATLAS dataset.

Method DSC (F1) (%) HD (px) F2 (%) Precision (%) Recall (%)

U-Net (Ronneberger et al., 2015) 48.34 51.35 49.50 54.45 53.68

AG U-Net (Schlemper et al., 2019) 49.60 50.12 53.67 49.25 62.53

CLCI-Net (Yang et al., 2019) 51.74 – 51.28 – 51.39

MI-Net (Zhang et al., 2021b) 56.72 38.80 – 60.90 59.38

SAN-Net (Yu et al., 2023) 57.11 – 56.23 – 59.77

D-UNet (Zhou Y. et al., 2021) 53.49 – – 63.31 52.43

TransUNet (Chen et al., 2021) 56.23 45.44 59.64 57.15 65.95

TransFuse (Zhang et al., 2021a) 58.18 41.56 62.40 57.64 70.06

TransRender 59.79 33.98 59.38 63.91 68.08

The bold values in the table represent the best results.

TABLE 3 The performance comparison of TransRender with the previous five methods on the ISLES2022 dataset.

Method DSC (F1) (%) HD (px) F2 (%) Precision (%) Recall (%)

U-Net (Ronneberger et al., 2015) 82.04 36.82 81.52 85.31 81.44

AG U-Net (Schlemper et al., 2019) 81.45 37.01 80.99 84.70 80.98

TransUNet (Chen et al., 2021) 84.23 29.98 84.01 86.88 84.19

TransFuse (Zhang et al., 2021a) 84.39 29.19 84.06 87.36 84.15

MLRA-Net (Wu et al., 2022) 84.73 29.95 84.48 87.03 84.70

TransRender 85.37 27.60 84.87 86.48 83.94

The bold values in the table represent the best results.

TABLE 4 The ablation comparison of TransRender on the ATLAS dataset.

Encoder Render DSC (F1) (%) HD (px)

CNN U-Net – 48.34 51.35

X 54.13 40.71

AG U-Net – 49.60 50.12

X 55.21 38.14

Transformer TransUNet – 56.23 45.44

X 57.86 37.42

TransRender – 58.27 37.86

X 59.79 33.98

The bold values in the table represent the best results.

TABLE 5 The complexity comparison of TransRender and U-Net w/o

Render.

Encoder Render FLOPs (G) Params (M)

U-Net – 30.5 31.0

X 15.6 18.9

TransRender – 118.4 43.6

X 100.1 32.2

The bold values in the table represent the best results.

that TransRender exceeds the previous method, performance

gains range from 1.61%, 7.58px, and 0.60–11.45%, 17.37px, and

9.46% considering the DSC, HD, and PRE, respectively. The

TABLE 6 Segmentation performance comparison of di�erent initial k.

Value of k DSC (F1) (%) HD (px) F2 (%)

1 59.07 34.96 58.97

2 59.27 34.77 59.21

3 59.79 33.98 59.38

5 59.26 34.85 59.17

The bold values in the table represent the best results.

TABLE 7 Segmentation performance comparison of di�erent β.

Value of β DSC (F1) (%) HD (px) F2 (%)

0.1 55.17 45.33 54.99

0.5 58.76 38.49 57.48

0.6 59.38 36.90 59.61

0.7 59.79 33.98 59.38

0.8 59.02 34.57 57.24

The bold values in the table represent the best results.

significant improvements demonstrate that applying a render-

based decoder to TransRender is better at capturing boundary

semantic information than a standard decoder. For the DSC, our

method achieves a mean DSC of 59.79%, which is improved by

2.77% than the second-best TransFuse. We would also like to

mention that the difference in the HD metric is pretty large. Our

method does not obtain the best performance in terms of F2 and
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RE, only 59.38 and 68.08%, which are the third- and second-

best ranks, respectively. However, we recognize that region overlap

(DSC) and boundary distance (HD) is more important between the

prediction results and the physicians annotation. Excellent results

verify that adaptively predicting selected points can improve lesion

segmentation at the boundary.

Furthermore, the qualitative comparisons of the ATLAS

dataset are displayed in Figure 5. As we can see from the

visualization results, whether the lesion size is large or small,

the lesion location is left or right, our method produces visually

superior segmentation. We visualize four methods, including U-

Net (Ronneberger et al., 2015), AG U-Net (Schlemper et al.,

2019), TransUNet (Chen et al., 2021), and TransFuse (Zhang

et al., 2021a) to compare visually with the TransRender. The

scale, location, and shape of each lesion are different in the

selected five brain images. In Case 1, the target object consists

of an infarct lesion and multiple embolic, the latter of which

size is extremely small. All methods identify infarct lesions

with more or less accuracy, but our TransRender achieves the

best regional similarity. And for the multiple embolic, only

AG U-Net and TransRender locate the lesion, where the latter

obtains more correct segmentation and less over-segmentation.

The lesion size in Case 2 is small, so U-Net and TransFuse

only segment a small part of the lesion or even fail to identify

it. The other two previous methods realize correct segmentation

almost completely, but at the cost of severe over-segmentation.

Benefiting from the prediction of the boundary key points by

the render module, the proposed method greatly reduces over-

segmentation. In Case 3, transformer-based methods display

significantly improved segmentation performance compared to

CNN-basedmethods. However, thesemethods suffer from different

degrees of under-segmentation. The TransRender yields precise

details of the lesion boundary, with almost no under-segmentation.

We regard Case 4 in Figure 6 as a difficult segmentation issue

due to its close location to the skull. None of the five methods

completely segments the lesion, whereas TransRender achieves the

correct segmentation of the most pixels. It is necessary to mention

that TransRender suffers from a slight over-segmentation. The

complex tissue structure in the area of the focal lesion affects

the segmentation performance of all methods. So in Case 5, the

prediction results of each method are coarse and discontinuous.

TransRender yields fewer over-segmentation than the transformer-

based methods, and fewer under-segmentation than the CNN-

based methods.

We further carry out comparisons to validate the performance

robustness of the TransRender. The quantitative comparison is

reported in Table 3 between the TransRender and five methods

using the ISLES2022 dataset. We can observe that the CNN

methods are significantly worse than that the transformer methods

in terms of five metrics. MLRA-Net outperforms fourth-best

TransUNet and third-best TransFuse by 0.50 and 0.34% on the

DSC metric, respectively, but it is worse than TransFuse on the

HD metric. The proposed method uses a multi-scale transformer

as the encoder with render as the decoder that yields the best

scores on the DSC, HD, and F2 metrics. It might be interpreted

that render successfully corrects the error segmentation at the

lesion boundary.

Figure 7 displays the qualitative comparison using the

ISLES2022 dataset. Four brain images are selected for visualization

and comparison, each of which has different modalities, lesion

shapes, and locations. In Case 1 and Case 3, all methods only

segment parts of the lesion to a more or less degree, while

TransRender realizes the best region overlap and boundary

similarity. The lesions in Case 2 are multiple embolic, and only

the proposed method segments the lesions nearly completely. The

excellent results on these two datasets validate the segmentation

accuracy of the TransRender for multiple embolic. The existing

methods all identify Case 4 as having multiple lesions, and the

reason may be that the lesion occurs in the cerebral cortex.

TransRender identifies Case 4 as a whole lesion and completes

more correct segmentation.

Overall, on these two datasets, the proposed TransRender can

yield satisfactory segmentation performance, both qualitatively and

quantitatively. These results indicate the efficacy and robustness of

TransRender for stroke lesion segmentation.

5.2. Ablation experiment

Ablation experiments on decoders are conducted to investigate

the impact of the render module on lesion segmentation.

The comparison results for performance and complexity are

presented in Tables 4, 5. When using the render-based decoder,

the DSC scores of both U-Net and TransRender are improved,

while the HD scores are descended. We carry out experiments

with the U-Net or TransRender as encoders, and the classical

convolutional upsampling or render modules as decoders,

respectively. The DSC and HD using a convolutional upsampling-

and render-based decoder are improved from 48.34% and 51.35px

to 54.13% and 40.71px, which gain improvements of 11.98

and 20.72%. With TransRender as the encoder, we employ

render as the decoder, which attains superior performance,

scoring 59.79% in DSC and 33.98px in HD. It is worth

noting that by using render as the decoder, the calculation

complexity and the network parameters are also decreased. These

ablation comparisons demonstrate that the proposed render

offers a competitive advantage over convolution methods in

terms of its ability to process high-frequency information at

the boundary.

5.3. Hyper-parameter comparison

Further comparison experiments are conducted to explore

whether the hyper-parameters k and β would affect the

segmentation performance. Table 6 presents the comparison

results using different numbers of selected points. The number

of points selected is desired to match the lesion due to the

different sizes. When k = 3, TransRender gives the best result

in all metrics. In the experiments, we set k = 3 by default.

The performance comparison using the different numbers of

important points is shown in Table 7. The comparison indicates

that there is a significant influence of β values on the segmentation.
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Note that we set β = 0.1 to suppress the features of important

points and highlight the random features of other points. The

comparison results indicate that more important points should be

selected for feature extraction. As β increases, the segmentation

performance becomes more favorable until β = 0.7. This

might be due to some point features that mistakenly guide the

decoding process. In the other experiments, we set β to 0.7

by default.

6. Conclusion

In this study, we propose a novel point-based boundary

segmentation method for stroke lesions using different MRI

images. The TransRender is built on a multi-scale transformer

encoder because of its strong ability to establish long-distance

dependencies. The render-based decoder implements the non-

uniform grid representation, which allows more attention to the

FIGURE 6

The visual segmentation results of TransRender and the four previous methods on the ATLAS dataset. Where, the red color, blue color, and green

color mean correct, insu�cient, and excessive segmentation, respectively.
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FIGURE 7

The visual segmentation results of TransRender and the four previous methods on the ISLES2022 dataset. Where, the red color, blue color, and green

color mean correct, insu�cient, and excessive segmentation, respectively.

precise features at the boundaries. Furthermore, a combined

supervision loss is utilized to optimize the point selection of

the render. Extensive experiments are conducted using the

different ischemic stroke datasets to evaluate TransRender. And the

experimental results indicate that TransRender has a competitive

advantage over the existing networks in terms of both accuracy

and complexity. Unfortunately, the improved render module is not

adequate to achieve accurate segmentation due to the variety of

lesions. We may consider the use of other network structures in

the future to accomplish the re-prediction of selection points in the

render module.
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