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Introduction: The field of machine learning has undergone a significant

transformation with the progress of deep artificial neural networks (ANNs) and the

growing accessibility of annotated data. ANNs usually require substantial power

and memory usage to achieve optimal performance. Spiking neural networks

(SNNs) have recently emerged as a low-power alternative to ANNs due to their

sparsity nature. Despite their energy e�ciency, SNNs are generally more di�cult

to be trained than ANNs.

Methods: In this study, we propose a novel three-stage SNN training

scheme designed specifically for segmenting human hippocampi from magnetic

resonance images. Our training pipeline starts with optimizing an ANN to its

maximum capacity, then employs a quick ANN-SNN conversion to initialize the

corresponding spiking network. This is followed by spike-based backpropagation

to fine-tune the converted SNN. In order to understand the reason behind

performance decline in the converted SNNs, we conduct a set of experiments to

investigate the output scaling issue. Furthermore, we explore the impact of binary

and ternary representations in SNN networks and conduct an empirical evaluation

of their performance through image classification and segmentation tasks.

Results and discussion: By employing our hybrid training scheme, we observe

significant advantages over both ANN-SNN conversion and direct SNN training

solutions in terms of segmentation accuracy and training e�ciency. Experimental

results demonstrate the e�ectiveness of our model in achieving our design goals.

KEYWORDS

spiking neural network (SNN), ANN-SNN conversion, image segmentation, fine-tuning,

U-Net

1. Introduction

The advancement of Artificial Neural Networks (ANNs) has revolutionized many AI-

related domains, delivering state-of-the-art results across a wide range of tasks in computer

vision and medical image analysis. However, the exceptional performance of ANNs often

comes at the cost of significant computational requirements, limiting their practicality in

power-hungry systems like edge devices and portable gadgets. In recent years, spiking neural

networks (SNNs) have emerged as a promising low-power alternative to ANNs. SNNs

replicate the temporal and sparse spiking behavior exhibited by biological neurons (Roy

et al., 2019; Davies et al., 2021; Manna et al., 2022, 2023; Vicente-Sola et al., 2022). Unlike

traditional neural networks, SNN neurons consume energy only during spike generation,

leading to sparser activations and natural enhancements in Size, Weight, and Power

(SWaP) characteristics.
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An SNN can be trained directly from scratch, utilizing a certain

surrogate gradient function for backpropagation. Due to the binary

nature of the signals, training SNNs is often more challenging

and time-consuming compared to training ANNs, especially for

networks with complex structures (Shrestha and Orchard, 2018;

Wu et al., 2018; Rathi et al., 2020; Li et al., 2021). Moreover,

for many pre-trained ANNs on large datasets, e.g., ImageNet

or LibriSpeech, training equivalent SNNs from scratch would be

very difficult.

Alternatively, an SNN can be obtained by converting from a

fully trained ANN. Many state-of-the-art ANN-SNN conversion

solutions (Diehl et al., 2015; Rueckauer et al., 2016; Sengupta

et al., 2019; Ho and Chang, 2021) focus on setting proper firing

thresholds after copying the weights from a trained ANN model.

The converted SNNs commonly require a large number of time

steps to achieve comparable performance.

Furthermore, most existing SNN works focus on recognition

related tasks. Image segmentation, a very important task in medical

image analysis, is rarely studied, except for Patel et al. (2021) and

Kim et al. (2022).

In Kim et al. (2022), take a direct training approach, which

inevitably suffers from the common drawbacks of this category.

Patel et al. (2021) use leaky integrate-and-fire (LIF) neurons for

both ANNs and SNNs. While convenient for conversion, the ANN

networks are limited to a specific type of activation functions and

must be trained from scratch.

In this paper, we propose a three-stage SNN training scheme

and apply it to segment the human hippocampus from magnetic

resonance (MR) images. In our proposed pipeline, a segmentation

network is first trained, followed by an ANN-SNN conversion step

to initialize the weights and layer thresholds in the SNN. Then,

we apply a spike-based fine-tuning process to adjust the network

weights in dealing with potentially suboptimal thresholds set by

the conversion.

To evaluate the effectiveness of our proposal pipeline, we

conduct extensive comparisons with conversion-only and direct

training methods, and demonstrate our approach can significantly

improve segmentation accuracy, as well as decreases the training

effort for convergence. We also carry out experiments to explore

the mechanisms behind the performance drop in ANN-SNN

conversion. In addition, we conduct a comparative analysis

between binary (2-value) and ternary (3-value) representations

in SNNs. While SNN hardware naturally uses binary spikes,

ternary spikes can be resulted from the utilization of zero-

mean normalization in data preprocessing and rate coding in

spiking networks.

We choose the hippocampus as the target brain structure as

accurate segmentation of hippocampus provides a quantitative

foundation for many other analyses, and therefore has long been

an important task in neuro-image research. A modified U-Net

(Ronneberger et al., 2015) is used as the baseline ANN model in

our work. This submission builds upon and expands our research

previously presented at ISBI’23 (Yue et al., 2023).

The contributions made in this study can be summarized as

follows:

1. We propose a novel three-stage SNN training scheme

designed specifically for segmenting human hippocampi from

magnetic resonance images. To the best of our knowledge, our

model is the first three-stage SNN fine-tuning work proposed

for the image segmentation task, as well as on U-shaped

networks.

2. Our proposed pipeline achieves comparable or better results

than both full conversion methods and direct training

methods, with significantly fewer time steps and much faster

convergence.

3. We delve to understand the accuracy drop of ANN-SNN

conversion through a set of experiments to investigate the

output scaling issue. Furthermore, we explore the impact of

binary and ternary representations in SNN networks. We

believe our observations and conclusions are valuable in

furthering the understanding of SNN training.

2. Background and related work

2.1. Hippocampus segmentation

In various neuroimage studies, segmenting brain structures

from magnetic resonance (MR) images is of great importance as it

often impacts the outcomes of subsequent analysis steps. Among

the anatomical structures, the hippocampus holds particular

interest due to its crucial role in memory formation. Moreover,

it is one of the brain regions susceptible to tissue damage

in Alzheimer’s Disease. Traditional approaches to automatic

hippocampal segmentation include atlas-based and patch-based

methods (Coupé et al., 2011; Tong et al., 2013; Song et al., 2015),

which commonly rely on identifying similarities between the target

image and anatomical atlases to infer labels for individual voxels.

In recent years, deep learning models, particularly the U-

net model introduced by Ronneberger et al. (2015) and its

variations, have emerged as dominant solutions for medical image

segmentation. In our research, we have developed two network-

based approaches for hippocampus segmentation, as outlined in

Chen et al. (2017a) and Chen et al. (2017b), which have achieved

state-of-the-art results. In Chen et al. (2017a), we proposed a multi-

view ensemble convolutional neural network (CNN) framework in

which multiple decision maps generated along different 2D views

are integrated. In Chen et al. (2017b), an end-to-end deep learning

architecture is developed that combines CNN and recurrent neural

network (RNN) to better leverage the dimensional anisotropism in

volumetric medical data.

2.2. Training spiking neural networks

The training of ANN models predominantly relies on gradient

descent and backpropagation. Unfortunately, the neurons in SNNs

are highly non-differentiable with a large temporal aspect. This

makes gradient descent much more difficult to apply. As a result,

workaround approaches have been proposed, which can be roughly

grouped two categories: direct training solutions and ANN-SNN

conversion solutions.

The direct training approach employs surrogate gradients (Wu

et al., 2018; Kim and Panda, 2020), which serve as approximations

of the step function, enabling the backpropagation algorithm to
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update the network weights. In order to assign spatial and temporal

gradients to neurons, spike-timing-dependent plasticity (STDP)

is commonly utilized. STDP actively adjusts connection weights

based on the firing timing of associated neurons, providing a

mechanism for learning in SNNs, as explored by Liu et al. (2020).

Training an ANN first and subsequently converting it into an

SNN offers a viable solution to bypass the non-differentiability

issue. One major group of conversion solutions (Diehl et al., 2015;

Rueckauer et al., 2016; Sengupta et al., 2019; Ho and Chang, 2021)

involve training ANNs with rectified linear unit (ReLU) neurons

and then converting them into SNNs with integrate-and-fire (IF)

neurons by appropriately setting firing thresholds. An alternative

method proposed by Hunsberger and Eliasmith (Hunsberger and

Eliasmith, 2015; Rasmussen, 2019) utilizes soft LIF neurons, which

incorporate smoothing operations around the firing threshold. This

smoothing enables gradient-based backpropagation to be applied

during network training. Consequently, the conversion process

from ANN to SNN becomes relatively straightforward.

2.3. SNN models for semantic image
segmentation

Patel et al. (2021) and Kim et al. (2022) are two major

SNN models proposed for semantic image segmentation. In Kim

et al. (2022), the authors investigate ANN-SNN conversion and

surrogate gradient learning. The results from this study show

that direct training with surrogate gradient learning achieves

lower latency and higher performance compared to ANN-

SNN conversion.

In Patel et al. (2021), an SNN U-Net is converted from an ANN

using the Nengo framework. Both rate-based ANN and spike-based

SNN are trained and evaluated using a modified version of the

ISBI 2D EM Segmentation cell dataset. While they demonstrate

slightly worse performance compared to the TensorFlow baseline

model, both the Nengo ANN and the converted SNN achieve

similar segmentation accuracy using the same number of neurons

and weights. This similarity should be partly attributed to the fact

that Nengo ANNs and converted SNNs utilize the same type of

LIF neurons.

3. Method

In this study, we propose a three-stage training framework

for optimizing U-shaped SNNs. Our approach diverges from

the two prevalent strategies: ANN-SNN conversion and direct

training. The major advantage of ANN-SNN conversion lies in

the fact that ANNs are easy to be trained to their maximum

capacities. The downside of conversion is that the procedure

requires a large number of time-steps to obtain fully converted

SNNs. Direct trainings of SNNs have the benefit of being

straightforward, but they are generally more difficult and time-

consuming than trainings of ANNs, primarily due to the binary

nature of spiking signals.

Our three-stage approach is designed to harness the strengths

of both strategies while avoiding their limitations. In our pipeline,

an ANN is first fully trained, before being converted to an

SNN. We use quick (or early-stop) conversions, bypassing the

lengthy full conversion procedures. While the performance of

these quick-converted SNNs is not comparable to the original

ANNs, it nevertheless produces well-initialized SNNs to be fine-

tuned. With good initializations, the fine-tuning step can bring

SNNs’ performance back to near-ANN levels. This is the primary

motivation and novelty of our design. To the best of our knowledge,

it is the first such design on U-shaped spiking networks, as well as

for image segmentation.

We adopt a modified U-Net architecture as the baseline

ANN model. The architecture follows an encoding and decoding

structure, as illustrated in Figure 1. Taking 2D images as inputs,

the encoding component consists of a series of convolutional

layers followed by pooling layers to extract high-level latent

features. On the other hand, the decoder utilizes transpose or

deconvolution layers to reconstruct the segmentation ground-truth

mask. To leverage local information effectively, skip connections are

introduced to concatenate the corresponding feature maps between

the encoding and decoding stacks.

In order to accommodate the constraints associated with ANN-

SNN conversion, several modifications are made to the original U-

Net and our previous hippocampus segmentation network (Chen

et al., 2017a). Firstly, we substitute max-pooling with average-

pooling since effective implementation of max-pooling in SNNs

is challenging. Secondly, we eliminate the bias components of

the neurons, as they may interfere with the voltage thresholds in

SNNs, making the training process more complex. Thirdly, batch

normalizations are removed due to the absence of bias terms. Lastly,

dropout layers are added to provide regularization for both ANN

and SNN trainings.

3.1. Our proposed three-stage SNN
fine-tuning model

Rathi et al. (2020) proposed an SNNfine-tuning solution for the

image classification task. In their study, three models are compared:

(1) full ANN-SNN conversion methods; (2) direct training SNNs

from scratch; and (3) fast ANN-SNN conversions, followed by fine-

tuning the converted SNNs. For full ANN-SNN conversions, they

take time-step of 2,500 for all models, while fast conversions use

fewer than 250 time-steps. Their study demonstrates that the “fast

conversion + fine-tuning” approach can achieve, with much fewer

time steps, similar accuracy compared to fully converted SNNs, as

well as faster convergence than direct training methods.

Inspired by Rathi et al. (2020), we develop a three-stage SNN

fine-tuning scheme for semantic segmentation. We first train a

segmentation ANN to its full convergence and then convert it

to a spiking network with greatly reduced time steps, which we

call early-stop conversion. The converted SNN is then taken as an

initial state for a fine-tuning procedure. In summary, our three-

stage segmentation pipeline consists of ANN training→ early-stop

conversion→ SNN fine-tuning steps.

The SNN neuron model in our work is integrate-and-fire (IF)

model where the membrane potential will not decrease during the

time when neuron does not fire as opposed to LIF neurons.

The dynamics of our IF neurons can be described as:
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FIGURE 1

Network architecture of our baseline ANN model.

uti = ut−1
i +

∑

j

wijoj − vot−1
i (1)

ot−1
i =

{

1 if ut−1
i > v

0 otherwise
(2)

where u is themembrane potential, t is the time step, subscript i and

j represent the post- and pre-neuron, respectively, w is the weight

connecting the pre- and post-neuron, o is the binary output spike,

and v is the firing threshold. Each neuron integrates the inputs from

the previous layer into its membrane potential, and reduces the

potential by a threshold voltage if a spike is fired.

Our SNN network has the same architecture as the baseline

ANN, where the signals transmitted within the SNN are rate-coded

spike trains generated through a Poisson generator. During the

conversion process, we load the weights of the trained ANN into

the SNN network and set the thresholds for all layers to 1 s. Then, a

threshold balancing procedure (Sengupta et al., 2019) is carried out

to update the threshold of each layer.

Fine-tuning of the converted SNN is conducted using spike-

based backpropagation. It starts at the output layer, where the

signals are continuousmembrane potentials, generated through the

summation:

uti = ut−1
i +

∑

j

wijoj (3)

The number of neurons in the output layer is the same as the

size of the input image. Compared with the hidden layer neurons

in Equation (1), the output layer does not fire and therefore the

voltage reduction term is removed. Each neuron in the output

layer is connected to a Sigmoid activation function to produce the

predictive probability of the corresponding pixel belonging to the

target area (hippocampus).

Let L(·) be the loss function defined based on the ground-

truth mask and the predictions. In the output layer, neurons do

not generate spikes and thus do not have the non-differentiable

problem. The update of the hidden layer parameters Wij is

described by:

1Wij =
∑

t

∂L

∂Wt
ij

=
∑

t

∂L

∂oti

∂oti
∂uti

∂uti
∂Wt

ij

(4)

Due to the non-differentiability of spikes, a surrogate gradient-

based method is used in backpropagation. In Rathi et al. (2020),

the authors propose a surrogate gradient function ∂ot

∂ut
= αe−β1t .

In this work, we choose a linear approximation proposed in Bellec

et al. (2018), which is described as:

∂ot

∂ut
= αmax{0, 1−

∣

∣ut − Vt

∣

∣} (5)

where Vt is the threshold potential at time t, and α is a constant.

As demonstrated in Rathi model, we hope our three-stage

pipeline can achieve comparable or better accuracy, but with much

fewer time steps compared to full conversion methods, as well as

much faster convergence than direct training methods. It should

be noted that our work is the first attempt of exploring the

application of spike-based fine-tuning and threshold balancing on

fully convolutional networks (FCNs), including the U-Net.

3.2. Di�erent losses

We explore different loss functions in this work, which include

binary cross entropy (BCE), Dice loss and a combination of the two

losses (BCE-Dice). BCE loss is the average of per-pixel loss and

gives an unbiased measurement of pixel-wise similarity between

prediction and ground-truth:

LBCE =

N
∑

i=1

−[ri log si + (1− ri) log(1− si)] (6)

where si ∈ [0, 1] is the predicted value of a pixel and ri ∈ {0, 1} is

the ground-truth label for the same pixel. ǫ is a small number to

smooth the loss, which is set to 10−5 in our experiments. Dice loss

focusesmore on the extent to which the predicted and ground-truth

overlap:

LDice =
2
∑

i siri + ǫ
∑

i si +
∑

i ri + ǫ
(7)
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We also explore the effects of a weighted combination of BCE

and Dice: LBCE_Dice = 0.3× LBCE + 0.7× LDice.

3.3. Binary (2-value) SNNs vs. ternary
(3-value) SNNs

Data normalization is a common pre-processing step in

machine learning, where samples are scaled into a specific range,

such as [0, 1] or [−1, 1]. The latter approach, known as zero-mean

normalization, involves centering the data around zero, which

is often helpful to eliminate biases and improve convergence in

optimization procedures.

In spiking networks, rate coding is a widely used encoding

scheme to convert input values into firing rates of spiking neurons.

This process often employs Poisson generators, which sample from

a uniform distribution at each time step and compare the sampled

number with a target value. Taking a grayscale image as an

example: if the maximum intensity is 255 and a pixel has an

intensity of 10, then the target value is 10/255. If the sampled

number is less than the target value, a spike is emitted; otherwise,

no spike is emitted (Diehl et al., 2015; Hazan et al., 2018).

Zero-mean normalization can result in negative values. To

represent negative values in SNNs, one approach is to introduce

negative spikes, where firing is determined by the comparisons

of absolute values and the sign of the target value is assigned

to the fired spikes. As a result, the range of values for a single

spike expands from {0, 1} (i.e., binary spikes) to {−1, 0, 1} (ternary

spikes), as in Perez-Carrasco et al. (2013) and Rathi et al. (2020).

Figure 2 illustrates the difference between ternary spikes, sampled

from a zero-mean normalization and binary spikes from a [0,

1] normalization.

While zero-mean normalization and negative spikes offer

convenience in training SNNs at the software level, directly

implementing negative spikes into the hardware is often quite

challenging. In this work, we investigate the performance

discrepancies between binary and ternary SNNs based on image

classification and segmentation tasks. Detailed results will be

presented in the next section.

4. Experiments and results

In this work, we carry out two sets of experiments. The

first set is for hippocampus segmentation, and comparisons are

conducted between our proposed SNN fine-tuning scheme with

two competing solutions: full conversionmethod and direct training

method. The second set is to evaluate the performance disparity

between 2-value and 3-value SNNs, using image classification and

semantic segmentation settings.

4.1. Data and training

The segmentation data were obtained from the ADNI database

(https://adni.loni.usc.edu/) and extracted in our previous work

(Chen et al., 2017a,b). We downloaded a total of 110 baseline T1-

weighted whole brain MRI images from different subjects, along

with their corresponding hippocampus masks. In this study, we

only included normal control subjects. Given that the hippocampus

accounts for a small fraction of the entire brain and is generally

situated in a rather consistent position, we approximated and

cropped the right hippocampus of each subject. These cropped

sections served as the inputs for segmentation. The dimensions of

the cropping box are 24× 56× 48.

We utilize a five-fold cross-validation method to train and

evaluate our proposed fine-tuning model. For each fold, the test

and training sets include 22 and 88 subjects, respectively. The batch

size in both training and testing, for ANNs and SNNs, is set at 26.

The batch size is primarily determined by the GPU and system

memory where our model is trained. Our GPU is a Nvidia RTX

3080 with 10G memory and the system has 8G memory. Training

of both ANN and the SNN networks uses the Adam optimizer

with slightly different parameters. We set the initial learning rate

for training both networks at 0.001. This rate is later fine-tuned by

the ReduceLROnPlateau scheduler in PyTorch, which monitors the

loss during training and decreases the learning rate when the loss

ceases to fall.

Following a similar setup in Rathi et al. (2020), we use time

steps of 200 for our early-stop ANN-SNN conversion routine.

The validity of this choice is substantiated through comparative

experiments on different timesteps, which will be presented later

in this section. The ANNmodels were trained with 100 epochs and

SNNmodels were trained over 35 epochs. Also, we repeat the same

ANN→ early-stop conversion→ fine-tuning procedure with three

different loss functions: BCE only, Dice only and combined BCE

and Dice.

4.2. Segmentation results

In this section, we present and evaluate the experimental results

for the proposed model. Two different performance metrics, 3D

Dice ratio and 2D slice-wise Dice ratio, were used to measure

the accuracy of the segmentation models. The 3D Dice ratio was

calculated subject-wise for each 3D volume. Mean and standard

deviation averaged from five-folds are reported. The 2D slice based

Dice ratio was calculated slice by slice, and the mean and standard

deviation were averaged from all test subjects’ slices.

Accuracies of the model on the test data are summarized

in Table 1. The best performance for the ANN and fine-tuned

SNN are highlighted with bold font. It is evident that network

accuracies drop significantly after conversion (middle column) and

our fine-tuning procedure can bring the performance of SNNs

(right column) back close to the ANN level. The models built on

the three loss functions have comparable performance in ANNs

and fine-tuned SNNs, with Dice loss has slight edge over BCE and

BCE-Dice combined.

In order to find out how the fine-tuning procedure improves

the segmentation accuracy, we look into details of both the outputs

and the internal spiking patterns of the networks. Figure 3 shows an

example of input slice, ground-truth mask and the corresponding

outputs from the converted and fine-tuned SNNs. We can see the

output mask from the converted SNN (Figure 3C), while carrying

a similar shape, is much smaller than the ground-truth. We believe
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FIGURE 2

The combination of zero-mean normalization and Poisson generators produces negative spikes, as shown in the bottom figure. The upper figure

illustrates [0, 1] normalization, which does not generate negative spikes.

TABLE 1 Average accuracies (Dice scores) of ANNs, early-stop converted SNNs and fine-tuned SNNs built on three di�erence loss functions.

Loss
ANN accuracy (Dice score) Converted-SNN accuracy Fine-tuned SNN accuracy

2D 3D 2D 3D 2D 3D

BCE 77.76± 2.40 83.17± 1.44 30.51± 9.93 21.60± 12.39 76.92± 3.77 81.83± 2.99

Dice 78.86± 2.39 84.21± 1.66 61.78± 3.32 65.90± 6.94 78.09± 3.85 81.86± 4.40

BCE-Dice 78.58± 2.44 83.14± 1.59 52.03± 9.91 52.78± 14.73 77.72± 3.69 81.95± 3.24

FIGURE 3

An example slice of (A) input; (B) ground-truth mask; (C) segmentation result from the converted SNN; and (D) result from the fine-tuned SNN.
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the reason is that many neurons are not sufficiently activated due

to the suboptimal thresholds set by the conversion procedure.

The proposed fine-tuning step, on the other hand, can update the

network weights to adjust for such thresholds, bringing the neurons

back to active for improved accuracy. To confirm this thought, we

record the firing frequency of each layer in the SNN models before

and after the fine-tuning and plot them in Figure 4. It is evident that

neurons become more active after the fine-tuning, producing more

accurate segmentation predictions.

4.3. Investigation of the performance drop
in converted SNNs

From Table 1, it is evident that converted SNNs show

substantial accuracy declines compared to the original ANNs. We

formulate several hypotheses for these reductions, with the simplest

one being that a learned threshold at the output layer can help to

properly set up the threshold for pixel labeling (Rueckauer et al.,

2016; Ho and Chang, 2021).

In our implementation, the ANN’s output layers yield

probabilities indicating if pixels belong to the Hippocampus. These

probabilities are then translated into binary values based on a

threshold of 0.5 (a value above 0.5 suggests that a pixel more

likely belongs to the Hippocampus than otherwise). The converted

SNNs follow this same setup to determine each pixel’s label. Despite

efforts to ensure that every layer of the SNNs replicates the output of

its corresponding ANN layer, scaling discrepancies are inevitable.

These discrepancies might be a major factor for the performance

drop in the converted SNNs. Such scaling may be non-linear,

impacting different neurons in varied ways across layers. However,

if the conversion results in a simple global shift in probabilities,

adjusting the threshold could counteract the effect.

To explore this, we design an experiment that employs an

array of thresholds for class cut-off. Specifically, we test thresholds

ranging from 0.1 to 0.6 at the output layer. The average accuracies

over the entire dataset are presented in Table 2, and Figure 5

visualizes these findings. From the table, a threshold of 0.48 yielded

the optimal result, which is rather close to the default 0.5 threshold.

It should note that adjusting the threshold is equivalent to scaling

the output; for example, using 0.2 as the threshold is equivalent

to enlarging the outputs 2.5 times and then applying the 0.5

threshold. Our observations imply that a mere linear adjustment

at the end does not solve the scaling issues. On the other hand, it

indicates that scaling’s have happened across different neurons in

a non-linear manner, highlighting the need for fine-tunings SNNs

after conversions.

4.4. Comparisons with full conversion and
direct training methods

To conduct a comparative analysis between our 3-stage fine-

tuning approach and the conversion method, we follow the

methodology outlined in Rathi et al. (2020). The conversion step in

our 3-stage model is an early-stop process, requiring us to identify

a suitable timestep to terminate the conversion in its early stage.

To determine an appropriate timestep, we conduct experiments

and analyze the network performance with various combinations of

timestep and weight scaling. Figure 6A illustrates the segmentation

accuracies achieved in these scenarios. It is noteworthy that, across

all the curves, the 200th timestep consistently emerges as an elbow

point. Beyond this point, the accuracies continue to rise, but at a

significantly reduced pace. This suggests that 200 can serve as an

appropriate timestep to terminate the ANN-SNN conversion and

start the SNN fine-tuning procedure.

To compare our fine-tuning model with the direct training

method, we track the 2D segmentation accuracies for both

procedures throughout the training process. The results are

summarized in Table 3. The columns in the table indicate different

batch numbers and their corresponding Dice scores derived from

both methods, with the results being averaged over multiple

trials. Figure 6B provides a visualization of Table 3, displaying the

convergence of the direct training method in orange and our fine-

tuning SNN in blue. Clearly, our fine-tuning approach achieves

much faster convergence and higher segmentation accuracy

compared to the direct method.

The above experiments and comparative analysis have clearly

demonstrated the advantages of our three-stage approach over the

traditional ANN-SNN conversion and direct training methods.

In addition, for many pretrained ANNs on large datasets like

ImageNet or LibriSpeech, our three-stage fine-tuning would be

more pragmatic than training equivalent SNNs from scratch. Given

these evident benefits, we would advocate for our three-stage

pipeline to be used as a standard paradigm for SNN training.

However, our methodology is not without its constraints,

especially from the applicability perspective. First, an effective

ANN-SNN conversion implementation is required to utilize our

strategy. Without this conversion routine in place, direct training

might be the only choice. Second, the conversion and fine-tuning

processes make a trade-off: a lengthier conversion reduces fine-

tuning time and vice versa. Finding an optimal balance could

be challenging. Lastly, the fine-tuning step in our pipeline, in

nature, is a direct training with good initializations. Therefore,

it also suffers from the inherent drawbacks of direct SNN

training, e.g., quantization errors arising from SNNs’ discrete

data representations.

4.5. Comparisons between binary and
ternary SNNs

As discussed in Section 3.3, spiking networks can utilize either

binary spikes (Diehl et al., 2015; Hazan et al., 2018) or ternary

spikes (Perez-Carrasco et al., 2013; Rathi et al., 2020). In our

segmentation networks, we adopt Rathi’s approach and use ternary

spikes. In this section, we carry out two experiments to investigate

the performance differences between binary and ternary SNNs.

The first experiment is an image classification test using the

CIFAR-10 dataset. CIFAR-10 consists of 50,000 training images

and 10,000 test images, each with a resolution of 32 × 32 pixels

and three-color channels (RGB). The dataset is composed of ten

distinct classes, including categories such as airplanes, cars, birds,

cats, and dogs. We adopt VGG-5 network as the classification
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FIGURE 4

Firing frequencies of neurons in di�erent layers. Blue bars show those for a converted-SNN and orange bars are for the fine-tuned SNN. v is the layer

threshold.

TABLE 2 Average segmentation accuracies with di�erent thresholds at the output layer.

Threshold 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54

Accuracy (Dice score) 0.25 0.27 0.30 0.32 0.34 0.35 0.34 0.31 0.25 0.21 0.16 0.12

FIGURE 5

Average segmentation accuracies with di�erent thresholds at the output layer.

network. We trained the network with two setups: the input

images are normalized into the ranges [0, 1] and [−1, 1], which

we call without zero-mean and with zero-mean transformations,

respectively. After converting to SNNs, the first network becomes

a binary SNN, and the second is a ternary spiking network. The

classification accuracies are summarized in Table 4. The results

demonstrate that SNNs using 3-value spikes generally perform

better than binary SNNs. However, we should note binary SNNs

are more straightforward to implement in hardware.

We conduct the second experiment on semantic segmentation

using the same hippocampus data. Similar to the classification

experiment, the input data can be normalized into [0, 1] or [−1,
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FIGURE 6

(A) Segmentation accuracies of converted SNN models with timesteps and scaling thresholds. (B) Segmentation accuracies using our fine-tuning

model (in blue) and direct training (in orange).

TABLE 3 Segmentation accuracies (2D Dice scores) from our SNN fine-tuning and the direct training methods.

Model Number of batches

40 2000 4000 6000 8000 9216 10000 12000 13176

Direct training 0.0147 0.7452 0.7883 0.8364 0.8286 0.8486 0.8475 0.8541 0.8530

Fine tuning 0.2236 0.8114 0.8147 0.8488 0.8428 0.8635 - - -

TABLE 4 Comparison of binary SNNs and ternary SNNs on an image classification task.

Normalization ANN SNN inputs Converted SNN accu. Fine-tuned SNN accu.

With zero-mean 0.874 Ternary {−1, 0, 1} 0.839 0.8624

Without zero-mean 0.867 Binary {0,1} 0.6852 0.8272

Accu. is an abbreviation of accuracy.

TABLE 5 Comparison of binary SNNs and ternary SNNs on hippocampus segmentation.

Normalization ANN accuracy Converted SNN accuracy Fine-tuned SNN accuracy

2D 3D 2D 3D 2D 3D

With zero-mean 0.8111 0.8585 0.6482 0.7311 0.8148 0.8526

Without zero-mean 0.8069 0.8260 0.3107 0.2566 0.8025 0.8403

The models are trained with dice loss on one-fold of the data.

−1], which corresponding to binary SNNs and ternary SNNs after

conversion. The segmentation accuracies of different models are

summarized in Table 5. The results demonstrate the same trend that

ternary SNNs generally outperform binary SNNs. This may imply

that the performance of ternary networks may degrade slightly if

switching to binary networks and deployed onto real hardware.

5. Discussions and conclusions

SNNs are increasingly being applied in computer vision (CV)

tasks, and their performance has steadily improved with the

developments of new conversion and optimization solutions.

ANN-SNN conversion techniques empower researchers to directly

leverage the well-developed ANN training techniques, as well as

the pretrained networks. However, it poses a performance ceiling

for the converted SNNs. Direct training techniques, on the other

hand, address the non-differentiability issue through surrogate

gradients and train SNN from scratch. However, training SNNs is

more difficult than that of ANNs, often requiring significant time

and resources.

In our design, we employ a three-stage training method that

combines the benefits from both conversion and direct training.

Our pipeline leverages the conversion technique to obtain a

good initial state of the SNN from the ANN, without exhaustive

full-conversion attempts. Then, our model utilizes SNN training

to significantly enhance the performance of the incompletely

converted SNN, reaching a level comparable to the original ANN.

In our three-stage pipeline, SNNs are initialized from ANNs

with incomplete updates, prior to the fine-tuning step. A significant
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accuracy drop can be observed from the converted SNNs. While

this degradation should be considered as an inevitable result of

incomplete conversion, it is worth investigating whether there are

other ANN-SNNmapping techniques that could deliver equivalent

efficiency but with much improved accuracy.

In this work, the target task and networks focus on segmetic

segmentation. We take the human hippocampus as the target

structure and demonstrate the effectiveness of our approach

through experiments on ADNI data. While U-net was originally

developed as a solution for image segmentation, theoretically, it is

applicable for any task that seeks to seek mappings between paired

signal sources. Hence, it’s well-suited and extensively used in image

modality conversion, super-resolution, speech signal denoising

and enhancement, and generative AI, including image generation

models. In this regard, our SNN U-net fine-tuning pipeline has

the potential to make a significant impact across a wide range

of applications.

This study focuses on algorithmic innovations that aim to

enhance segmentation accuracy while ensuring efficiency in a

neuromorphic system setting. The networks are developed and

tested all within simulation settings. Our current effort includes

deploying our pipeline onto real neuromorphic hardware, such as

Intel’s Loihi 2. This would facilitate real-time system evaluations

and the performance of energy and latency analyses.
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