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Gut dysbiosis and psychiatric symptoms are common early manifestations 
of Alzheimer’s disease (AD) and Parkinson’s disease (PD). These diseases, 
characterised by progressive neuron loss and pathological protein accumulation, 
impose debilitating effects on patients. Recently, these pathological proteins have 
been linked with gut dysbiosis and psychiatric disorders. The gut-brain axis links 
the enteric and central nervous systems, acting as a bidirectional communication 
pathway to influence brain function and behavior. The relationship triad 
between gut dysbiosis, psychiatric disorders, and neurodegeneration has been 
investigated in pairs; however, evidence suggests that they are all interrelated and 
a deeper understanding is required to unravel the nuances of neurodegenerative 
diseases. Therefore, this review aims to summarise the current literature on the 
roles of gut dysbiosis and psychiatric disorders in pathological protein-related 
neurodegenerative diseases. We discussed how changes in the gut environment 
can influence the development of psychiatric symptoms and the progression 
of neurodegeneration and how these features overlap in AD and PD. Moreover, 
research on the interplay between gut dysbiosis, psychiatric disorders, and 
neurodegeneration remains in its early phase. In this review, we  highlighted 
potential therapeutic approaches aimed at mitigating gastrointestinal problems 
and psychiatric disorders to alter the rate of neurodegeneration. Further research 
to assess the molecular mechanisms underlying AD and PD pathogenesis remains 
crucial for developing more effective treatments and achieving earlier diagnoses. 
Moreover, exploring non-invasive, early preventive measures and interventions is 
a relatively unexplored but important avenue of research in neurodegenerative 
diseases.
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1. Introduction

Neurodegenerative diseases are a class of disorders characterised by the progressive loss of 
neurons in the central nervous system (CNS) that are progressive in nature (Agnello and 
Ciaccio, 2022). Most neurodegenerative diseases are sporadic with no clear causes; although 
certain neurodegenerative diseases are known to be inherited, aging is a predominant risk factor. 
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FIGURE 1

The relationship triad between proteinopathy, gut-brain axis, and psychiatric disorders, in AD and PD. The common symptoms resulting from these 
three features of AD and PD are listed on the right. α-syn, alpha-synuclein; Aβ, amyloid beta; SCFs, short chain fatty acids.

Other risk factors include genetic abnormalities, lifestyle factors, and 
environmental factors. Therefore, a growing and aging population is 
expected to have a severe impact on the number of affected 
individuals, with a drastic increase in disease prevalence by 2050 
(Dorsey et al., 2018; Nichols et al., 2022). A predicted increase in cases 
of 2.6-fold for Alzheimer’s disease (AD) and 2-fold for Parkinson’s 
disease (PD) by 2050 and 2030, respectively, is expected to have a large 
socioeconomic burden. Neurodegenerative diseases are often 
diagnosed upon the development of obvious symptoms that tend to 
manifest years, post-onset (DeTure and Dickson, 2019; Raza et al., 
2019). AD and PD are the two most common neurodegenerative 
diseases, with 55 million and 6 million cases globally at present, 
respectively.

AD is a form of dementia in which neurodegeneration initially 
occurs in the entorhinal cortex and hippocampus, progressing to 
other areas of the cerebral cortex (DeTure and Dickson, 2019); 
conversely, PD is clinically characterised as a motor disorder by loss 
of dopaminergic neurons in the substantia nigra pars compacta (Raza 
et al., 2019). The symptoms of these diseases reflect the area in which 
neuronal loss occurs. Memory deficits, confusion, impaired judgment, 
and language deficits are characteristic of AD, whereas tremors, 
bradykinesia, muscle rigidity, and impaired balance are typical of 
patients with PD. These symptoms have severe and lasting impacts not 
only on patients, but also on families, friends, and caregivers.

Although there are distinct differences between patients with AD 
and PD, there are broad similarities. Proteinopathy, 
neuroinflammation, oxidative stress, blood brain barrier (BBB) 
disruption, neurotransmitter depletion, and neuronal death are 
common features of AD and PD (Dugger and Dickson, 2017). 
Furthermore, emerging evidence indicates alterations in the gut 
microbiome of patients with AD and PD, acting via the gut-brain axis 
(GBA), prior to the onset of characteristic symptoms. Psychiatric 
symptoms, such as depression and anxiety, have also been reported to 
precede the appearance of characteristic symptoms in AD and PD, and 
notably are also linked with the GBA (Zhang et al., 2022a; Intili et al., 

2023; Pagonabarraga et al., 2023). The treatment of these disorders is 
currently limited to symptom management. There is an urgent need 
to develop preventive measures and disease-modifying treatments. 
The aim of this review is to provide a broader perspective on AD and 
PD by exploring some of their overlapping features, particularly the 
gut microbiome and psychiatric disorders. By adopting a broader 
perspective, we can uncover important clues pertaining to the causes 
of neurodegeneration and prompt new avenues for therapeutic 
exploration (Figure 1).

2. The gut-brain axis

The GBA is a bidirectional communication pathway between the 
gastrointestinal tract and brain (Mayer, 2011), which encompasses 
several different entities, including the vagus nerve, a part of the 
autonomic nervous system, as well as the endocrine system, immune 
system, hypothalamic–pituitary–adrenal axis, autonomic nervous 
system, enteric nervous system, CNS, and gut microbiota (Cryan and 
Dinan, 2012).

Braak and colleagues initially postulated the involvement of the 
GBA in PD in the late 90s; they also hypothesised that the pathological 
protein, alpha-synuclein (α-syn), propagates in a spatiotemporal 
manner via a defined route to and throughout the CNS (Braak et al., 
2003). The GBA was not originally proposed by Braak when describing 
the spatiotemporal manner of amyloid beta (Aβ) where propagation 
was thought to begin in the entorhinal cortex (Braak and Braak, 1991). 
However, more recent studies have implicated the GBA’s involvement 
in the transmission Aβ from the gut to the CNS (Sun Y. et al., 2020). 
The pathological forms of Aβ and α-syn are hallmark features of AD 
and PD, respectively, and endow these diseases as proteinopathies 
(Hetz and Saxena, 2017). These proteins misfold, aggregate, and 
provide templates for further aggregation, thereby creating a harmful 
feed-forward loop. Meanwhile, tau is also common in AD and PD; 
however, the evidence so far suggests that it is controversial whether 
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tau is associated with the enteric and CNS pathologies, as has been 
observed for Aβ and α-syn (Derkinderen et al., 2021). Despite the 
presence of distinct protein aggregates as characteristic markers of 
these diseases, it is likely that multiple protein interactions may 
be responsible for conveying crucial information in AD and PD. A 
previous review by Sengupta and Kayed investigated the crosstalk 
between the three most noted pathological proteins, Aβ, α-syn, and 
tau, and highlighted the importance of a personalised combination 
approach when searching for new therapeutic strategies (Sengupta 
and Kayed, 2022). By discerning the diverse array of protein aggregates 
exhibited by the patient and using a synergistic blend of 
immunotherapies to specifically target these aggregates, this highly 
personalised therapeutic approach has the potential to yield profound 
clinical advantages. Although tau may not align with Braak’s 
hypothesis in the same manner as Aβ and α-syn, the potential role of 
GBA in AD and PD has attracted significant attention (Rietdijk et al., 
2017). In particular, the gut microbiome has become a central focus 
in the GBA story of neurodegeneration (Morais et al., 2021).

The gut is host to trillions of microorganisms, which are 
collectively referred to as the gut microbiome (Cryan et al., 2020); this 
large microflora ecosystem plays a major role in maintaining the 
physiological balance of human health. Unique to each individual, 
factors such as the birth mother’s gut microbiome, geographical 
environment, diet, and medications influence its composition (Morais 
et  al., 2021). The gut microbiome plays a crucial role in multiple 
physiological processes, including digestion, hormone regulation, and 
neurotransmitter release (Mayer, 2011). In the context of digestion, 
the gut microbiota effectively ferment indigestible substrates, secrete 
enzymes, and synthesise essential vitamins and nutrients, thereby 
having a significant impact on the overall health of an individual 
(Gomaa, 2020). With regards to hormone regulation, the gut 
microbiome is extensively involved in hormone synthesis, metabolism, 
and signalling (Martin et al., 2019). This interaction between the gut 
microbiota and hormones is known as the gut-brain-endocrine axis, 
which involves complex communication pathways between the gut, 
the brain, and the endocrine system. Moreover, the gut microbiota 
assumes a pivotal role in neurotransmitter release, particularly in 
serotonin synthesis, where over 90% of serotonin production occurs 
in the gut (Ge et al., 2017). Additionally, these bacteria possess the 
capability to synthesise other neurotransmitters like dopamine, 
GABA, and noradrenaline, while also influencing the availability of 
neurotransmitter precursors (Strandwitz, 2018).

Dysbiosis is characterised by an imbalance in the gut microbiome’s 
composition, marked by an overabundance of harmful or pathogenic 
microorganisms, a reduction in beneficial bacteria, or an overall 
decline in microbial diversity within the gut (Lloyd-Price et al., 2016). 
This perturbation in gut microbiota can significantly impact health 
and is associated with a diverse array of pathological conditions, 
including neurodegenerative and neuropsychiatric disorders 
(Konjevod et al., 2021; Mitrea et al., 2022; Basiji et al., 2023). Although 
not covered in this review, it is crucial to acknowledge that sex 
differences within the gut-brain axis could impact the development 
and progression of neurological disorders and treatment approaches, 
and we recommend referring to Holingue et al. (2020) comprehensive 
review for a detailed exploration of this subject. Remarkably however, 
gastrointestinal discomfort and mental health disorders are frequently 
reported symptoms in both AD and PD (Zhang et al., 2022a; Intili 
et al., 2023). This compelling correlation has inspired a new wave of 

research, as investigations delve into unravelling the potential 
connections linking the gut microbiome, psychiatric symptoms, and 
the underlying processes of neurodegeneration.

3. The gut microbiome in AD and PD

Studies involving humans, mice, and in vitro models have 
provided insights into the involvement of the gut microbiome in AD 
and PD (Scheperjans et al., 2015; Vogt et al., 2017; Ho et al., 2018; Seo 
et al., 2023). Several bacterial strains are differentially expressed in 
patients with neurodegenerative disorders compared with healthy 
age-matched controls (Romano et al., 2021; Chandra et al., 2023). 
Further investigations of these bacterial strains have identified links 
to various pathological mechanisms involved in neurodegeneration, 
including protein aggregation and neuroinflammation. Research has 
uncovered alterations in the gut microbiota of patients with 
neurodegenerative diseases, with evidence suggesting that bacterial 
proteins and metabolites play key roles.

3.1. Bacterial proteins

Recently, bacterial proteins have emerged as intriguing players in 
the complex landscape of neurodegenerative diseases. One prominent 
example is the bacterial amyloid protein known as curli, which shares 
structural similarities with the Aβ protein implicated in AD (Chapman 
et al., 2002). Researchers have found evidence suggesting that curli 
proteins can cross-seed Aβ aggregation, hastening the formation of 
toxic amyloid aggregates in the brain (Friedland et al., 2020). This 
cross-seeding mechanism implies that curli may serve as a catalyst, 
effectively initiating the aggregation of host proteins involved in 
neurodegeneration. Furthermore, the role of curli in PD has been 
investigated. Utilising animal models, researchers have demonstrated 
that oral exposure to curli-producing bacteria results in elevated 
aggregation of α-syn coupled with the development of motor 
symptoms. Administering a chemical modulator that inhibits curli 
production prevents these pathological events, underscoring the 
potential involvement of curli in PD pathogenesis (Chen et al., 2016; 
Sampson et  al., 2020; Wang C. et  al., 2021). Recent metagenomic 
profiling of patients with PD compared with healthy age-matched 
controls has reinforced these findings, revealing the upregulation of 
several curli genes in PD cases, substantiating the outcomes observed 
in animal models (Wallen et al., 2022).

Curli has received attention not only for its potential role in 
protein aggregation, but also for its neuroinflammatory effects. When 
curli proteins interact with the CNS, they can stimulate microglia 
activation, the resident immune cells of the brain (Chen et al., 2016). 
This activation triggers a pro-inflammatory response characterised by 
the release of cytokines and other inflammatory molecules. Prolonged 
and dysregulated neuroinflammation is a common feature of various 
neurodegenerative diseases, including AD and PD, contributing to 
neuronal damage and dysfunction (Zhang W. et al., 2023). Therefore, 
the ability of curli to induce neuroinflammation further highlights its 
multifaceted effect on the pathogenesis and progression of 
neurodegenerative diseases, making it a subject of intense research 
interest. Alternatively, curli in the gut might prime immune cells and 
lead to heightened responses to amyloid proteins within the brain 
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(Chen et al., 2016; Miraglia and Colla, 2019). Curli is not an isolated 
instance, as various bacteria within the gut can produce amyloid-like 
proteins. Their cumulative effect may be additive, or alternatively, 
these diverse bacterial species may influence the pathogenesis of 
distinct neurodegenerative diseases (Miraglia and Colla, 2019; 
Friedland et al., 2020; Wang and Zheng, 2022). Despite the intriguing 
observations linking curli to the exacerbation of protein aggregation, 
our understanding of the underlying mechanisms and whether this 
relationship is causative or consequential remains limited.

While curli proteins have gained attention for their potential 
involvement in neurodegenerative diseases, other bacterial proteins 
have also been explored in this context. For instance, bacterial 
enzymes such as proteases have also been shown to influence the 
aggregation of misfolded proteins, such as tau in AD or α-syn in PD 
(Dominy et al., 2019; Feng et al., 2020; Nonaka and Nakanishi, 2020; 
Chi et al., 2021). Porphyromonas gingivalis (P. gingivalis), a gram-
negative bacterium primarily associated with periodontal disease, has 
recently come into focus for its potential involvement in 
neurodegenerative diseases, particularly AD. One of the key findings 
is the presence of gingipain, a protease from P. gingivalis, in the brains 
of patients with AD. Gingipain can cleave host proteins, including 
those involved in maintaining neuronal cells and preventing the 
accumulation of toxic protein aggregates, such as Aβ (Dominy et al., 
2019). The presence of gingipain in the brain suggests a potential 
mechanism by which P. gingivalis may contribute to AD pathogenesis. 
Furthermore, studies using animal models have provided experimental 
evidence supporting the connection between P. gingivalis and 
neurodegenerative diseases (Feng et al., 2020; Chi et al., 2021). These 
studies have shown that oral infection with P. gingivalis can lead to Aβ 
accumulation in the brain, cognitive impairments, and 
neuroinflammation. Furthermore, P. gingivalis was accompanied by 
alterations in gut homeostasis. Further research is needed to establish 
a definitive causal relationship and understand to what extent it may 
act through the GBA. Nevertheless, the emerging evidence linking 
gingipains to neurodegenerative diseases, particularly AD, 
is intriguing.

3.2. Bacterial metabolites

Metabolites of the gut microbiota play an important role as 
signalling messengers between the gut microorganisms and host. 
Among these metabolites, short-chain fatty acids (SCFAs), p-cresol, 
and indoles serve crucial physiological functions. An imbalance in 
these metabolites has been implicated in the pathogenesis of several 
diseases (Lavelle and Sokol, 2020; Liu et al., 2022).

3.2.1. Short chain fatty acids
SCFAs originate from the fermentation of dietary fibers by gut 

bacteria during digestion; hence, SCFA type depends on the ingested 
fiber. The most common SCFAs in the gut of humans are butyric, 
acetic, and propionic acids (Xiong et al., 2022). SCFAs have been 
associated with various neuroprotective roles, although research in 
this area is still in its infancy (Silva et  al., 2020). Butyrate has 
demonstrated anti-inflammatory properties by suppressing the 
activation of microglial cells and reducing the production of 
pro-inflammatory cytokines in the brain (Wenzel et al., 2020; Liu 
et al., 2021; Caetano-Silva et al., 2023). Furthermore, SCFAs have been 

identified as inhibitors of histone deacetylase enzymes, leading to 
increased histone acetylation. This epigenetic modification can 
enhance the expression of genes associated with synaptic plasticity and 
neuronal survival (Patnala et al., 2017; Caetano-Silva et al., 2023). 
Some studies have also suggested that SCFAs may stimulate the release 
of neurotrophic factors, such as brain-derived neurotrophic factors, 
promoting the survival, growth, and maintenance of neurons 
(Barichello et al., 2015; Varela et al., 2015). SCFAs also influence the 
BBB by enhancing the expression and assembly of tight junction 
proteins in endothelial cells (Braniste et al., 2014). Tight junctions are 
critical for sealing the gaps between these cells, forming a tight barrier 
that restricts the entry of molecules and pathogens into the brain.

Recent interest in SCFAs in neurodegenerative diseases has 
stemmed from the observation that compared with healthy controls, 
individuals with AD and PD have reduced SCFA levels in their faecal 
microbiome, and that these levels correlate with disease severity 
(Unger et al., 2016; Aho et al., 2021; Baert et al., 2021; Wu et al., 2021). 
An interesting study by Sampson et al. demonstrated that introducing 
microbiota from patients with PD to α-syn overexpressing mice 
exacerbated motor symptoms compared with microbiota transplants 
from healthy human donors (Sampson et  al., 2016). Oral 
administration of SCFAs can ameliorate symptoms of 
neurodegeneration, possibly acting via glucagon-like peptide-1 
(Govindarajan et al., 2011; Liu et al., 2017). However, previous studies 
have investigated this relationship and discovered that SCFAs 
contribute to disease pathogenesis (Sun et al., 2018; Colombo et al., 
2021). These discrepancies are possibly attributed to different SCFA 
doses, sampling measures, and models. Despite the inconsistencies, 
these studies have highlighted the involvement of the gut microbiome, 
and more widely, the GBA, in neurodegeneration. These discoveries 
expand our understanding of these diseases and facilitate the 
development of new treatments.

3.2.2. p-Cresol and p-cresol sulphate
p-Cresol is a microbial metabolite produced by the gut microbiota 

during the digestion of dietary compounds, particularly tyrosine and 
phenylalanine. p-Cresol can undergo secondary metabolism, 
primarily in the liver, where it is conjugated with a sulphate group, 
giving rise to p-cresol sulphate, a protein-bound uremic toxin (UT) 
(Liabeuf et al., 2011). Elevated levels of p-cresol sulphate have been 
associated with several diseases and health implications, including 
chronic kidney disease, cardiovascular disease, gastrointestinal 
disorders, bone health, and neurological and cognitive impairment 
(Liu et al., 2018; Lin et al., 2019). It is important to emphasise that the 
link between p-cresol sulphate and these health complications is 
primarily observed in the context of chronic kidney disease and 
related kidney disorders (Liu et al., 2018). In individuals with healthy 
renal function, the body efficiently processes and eliminates p-cresol 
sulphate, thus diminishing its potential impact on health (Gryp et al., 
2017). Nevertheless, the influence of protein-bound UTs on AD and 
PD is an emerging area of research that merits examination of their 
role in these conditions.

A study revealed elevated levels of p-cresol sulphate in the 
cerebrospinal fluid (CSF) of patients with PD compared with healthy 
age-matched controls (Sankowski et  al., 2020). None of these PD 
patients had symptoms of chronic kidney disease, although the PD 
group had slightly lower eGFR, an indicator of kidney function, 
compared to the control group. Despite a lower eGFR, the level 
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reported is only just below the lower limit of normal, 90 mL/
min/1.73m2 (Tarwater, 2011). Furthermore, eGFR was calculated 
using the abbreviated Modification of Diet in Renal Disease (MDRD) 
equation, which is a widely recognised method. However, it is 
important to note that this method is an estimation and is reportedly 
unreliable when eGFR exceeds 60 mL/min/1.73m2 (Tarwater, 2011). 
Nevertheless, it is still possible that kidney function might be lower in 
individuals with PD, which could contribute to elevated p-cresol 
sulphate levels, as suggested by Sankowski et al. (2020). However, 
alternative mechanisms such as increased gut permeability or 
imbalances in the gut microbiota of PD patients may explain the 
observed increase in p-cresol sulphate levels. Bacteria from the 
Lactobacillaceae and Bifidobacteriaceae families are known to produce 
p-cresol, and elevated levels of these bacteria have been reported in 
PD individuals (Saito et al., 2018; Romano et al., 2021). Therefore, it 
is plausible that the higher levels of p-cresol sulphate in the CSF of PD 
patients may result from increased populations of p-cresol-producing 
bacteria. Furthermore, increased gut permeability is a characteristic 
observed in chronic kidney disease patients, which is believed to 
facilitate the circulation of UTs (Cosola et al., 2021). Heightened gut 
permeability is also observed in PD patients (Clairembault et  al., 
2015). Consequently, alterations in gut microbiota and/or increased 
gut permeability may contribute to the elevated CSF levels of p-cresol 
sulphate in individuals with PD. These effects could occur 
independently, in conjunction with reduced kidney function, or 
through other mechanisms that are presently unknown.

An in vivo study found that exogenous administration of p-cresol 
sulphate to mice resulted in cognitive impairment, increased oxidative 
stress, neuroinflammation, and decreased brain-derived neurotrophic 
factor levels. The authors also observed anxiety-and depressive-like 
behaviors in the mice exposed to p-cresol sulphate, which are recognised 
symptoms in AD and PD (Sun C. Y. et al., 2020). Another study revealed 
decreased dopaminergic neuron excitability in the ventral tegmental area 
of mice exposed to p-cresol, which was rescued by faecal microbiota 
transplantation (FMT) from control mice (Bermudez-Martin et  al., 
2021). This finding highlights the potential role for the gut microbiota in 
altered levels of p-cresol, and consequently p-cresol sulphate, as opposed 
to kidney function impairment. Furthermore, an in vitro study using the 
N2a and PC12 cell line, commonly used in AD research, found p-cresol 
adversely affects dendrite development, synaptogenesis, synaptic 
function, and oligodendrocyte function (Guzman-Salas et  al., 2022; 
Needham et al., 2022; Xie et al., 2022). However, the connection between 
p-cresol and AD remains relatively unexplored in comparison to PD and 
requires investigation.

Overall, p-cresol sulphate has demonstrated the ability to induce 
inflammation and oxidative stress, both characteristic features of 
neurodegenerative diseases. Furthermore, p-cresol sulphate has been 
linked to anxiety, depression, reduced neuron excitability, and 
oligodendrocyte impairment. These studies encompassed patients 
without chronic kidney disease and in vitro cultures, demonstrating 
the involvement of p-cresol and p-cresol sulphate in neurodegenerative 
disorders. As mentioned above, increased levels of p-cresol and 
p-cresol sulphate in individuals with neurodegenerative conditions 
could be  attributed to diminished kidney function, increases in 
p-cresol-producing bacteria, a combination of both, or an alternative 
unknown mechanism. Interestingly, an FMT was able to rescue the 
neurotoxic effects of p-cresol, highlighting a promising therapeutic 
approach in AD and PD patients with elevated protein-bound UT 

levels. It is critical that future research continues to delve into the 
mechanisms responsible for the elevation of p-cresol and p-cresol 
sulphate levels to guide therapeutic interventions aimed at 
these metabolites.

3.2.3. Indoles and indoxyl sulphate
Tryptophan, a dietary amino acid, undergoes digestion by gut 

microbes, resulting in the production of indole and its derivatives. The 
specific derivatives generated depend on the bacteria involved in the 
digestion process. Similar to p-cresol, indole can also undergo 
secondary metabolism in the liver, being converted to indoxyl-
sulphate, another uremic toxin (Liabeuf et al., 2011). Altered levels of 
indoles and their derivatives and secondary metabolites in AD and PD 
have prompted research into their roles in the development and 
pathogenesis of these diseases (Wu et al., 2021; Chen et al., 2022). In 
the same study by Sankowski and colleagues that found increased 
levels of p-cresol sulphate in the CSF of PD patients, indoxyl-sulphate 
was also found to be increased. Elevated levels of these UTs in the CSF 
were associated with biomarkers of inflammation and oxidative stress, 
as well as motor fluctuations in PD individuals (Sankowski et al., 
2020). Cognitive impairment is a recognised symptom among patients 
with chronic kidney failure. One study reported that treatment of 
indoxyl-sulphate to astrocyte and neuron cultures resulted in an 
increase in reactive oxygen species and increased cell death, 
respectively (Adesso et al., 2017). This outcome suggests a potential 
connection between elevated indoxyl-sulphate levels and cognitive 
dysfunction. Moreover, the use of AST-120, an indoxyl-sulphate 
adsorbent, was found to reduce inflammatory responses in astrocytes 
exposed to serum from chronic kidney failure patients (Adesso et al., 
2018). This study underscores the therapeutic promise of targeting 
indoxyl-sulphate to alleviate inflammation and warrants further 
investigation, particularly within in the context of neurodegenerative 
diseases. A noteworthy study conducted by Karbowska et al. (2020) 
investigated the effects of indoxyl-sulphate treatment in rats, focusing 
on neurotransmitter levels and behavioral changes. They observed 
that indoxyl-sulphate could accumulate within the brain, primarily in 
the brainstem, but also in the striatum with hippocampus, cerebellum, 
and cortex regions. They detected reduced levels of noradrenaline, 
dopamine, and serotonin following treatment with indoxyl-sulphate 
and these changes coincided with alterations in  locomotion and 
mood, characteristic features seen in PD. These findings provide 
evidence for a role that indoxyl-sulphate may play in the pathogenesis 
of neurodegenerative disorders, such as AD and PD.

Research into indoxyl-sulphate’s precursor, indole, in 
neurodegeneration has also been investigated. Two indole derivatives, 
indole-3-propionic acid and indole-3-pyruvic acid have emerged as 
predictive factors for AD progression when measured in plasma and 
faecal samples, respectively (Huang Y. L. et al., 2021; Wu et al., 2021). 
Indole derivatives exhibit varying expression patterns, with 
upregulation and downregulation observed depending on the 
derivative. For instance, indole-3-propionic acid displayed elevated 
levels in AD and PD, whereas 5-hydroxyindole, indole-2-carboxylic 
acid, and 3-(2-hydroxyethyl) indole exhibited downregulated levels 
(Huang Y. L. et al., 2021; Wu et al., 2021; Chen et al., 2022). These 
observations have prompted preclinical investigations using animal 
models to explore the mechanisms through which indole and its 
derivatives influence neurodegeneration. In an APP/PS1 mouse 
model, a combination of indole-3-propionic acid and indole-3-acetic 
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acid was discovered to mitigate microglial activation and decrease the 
expression of inflammatory cytokines. These effects were associated 
with their ability to upregulate the aryl hydrocarbon receptor and 
inhibit the NF-κB signalling pathway (Sun et al., 2022). Although 
prior findings indicate elevated levels of indole-3-propionic acid in 
AD and PD (Huang Y. L. et al., 2021, Chen et al., 2022), this study 
administered a combination of indole derivatives, including indole-3-
propionic acid. We have considered several possible explanations for 
the discrepancy between finding elevated levels of indole-3-propionic 
acid in AD and PD patients and using indole-3-propionic acid as a 
therapeutic strategy. Given that a combination of indole derivatives 
was administered in this study, attributing the observed 
neuroprotective effects to a particular indole becomes challenging. 
Furthermore, the positive effect of indole-3-acetic acid may have 
outweighed any potential adverse effects of indole-3-propionic acid, 
resulting in an overall beneficial outcome. Alternatively, the elevated 
concentration of indole-3-propionic acid detected in individuals with 
AD and PD may represent a potential response mechanism by the 
body to counteract the progression of these diseases by upregulating 
this tryptophan metabolite. Nevertheless, additional research has also 
demonstrated the anti-oxidative and anti-inflammatory properties of 
indoles, resulting in decreased neurodegeneration (Yin et al., 2021, 
2023). These findings underscore the potential therapeutic advantage 
of these metabolites (Pappolla et al., 2021; Zhou et al., 2023).

Overall, exploring bacterial proteins and metabolites in the 
context of neurodegeneration has opened a fascinating avenue of 
research that underscores the intricate relationship between the gut 
and brain. Microbial proteins, such as curli and gingipain, and specific 
metabolites, like SCFAs, p-cresol, indoles, and protein-bound UTs 
have been implicated in influencing neuroinflammation, oxidative 
stress, and protein aggregation. The precise mechanisms are still 
evolving and occasionally contradictory; however, these findings shed 
light on the complexity of the GBA and its significance in 
neurodegenerative diseases like AD and PD. As we continue to explore 
the connection between the gut microbiome and neurological health, 
there is a growing realisation that these bacterial proteins and 
metabolites may be  pivotal in devising innovative therapeutic 
strategies and preventive measures against the debilitating effects of 
neurodegeneration. Novel technologies and applications such as 
metagenomics and metaproteomics offer immense promise and will 
be indispensable tools in unravelling the complex interplay between 
the gut microbiota and neurodegenerative conditions.

4. Psychiatric disorders in AD and PD

Alongside gut dysbiosis, psychiatric disorders, such as depression 
and anxiety, often accompany AD and PD, adding complexity to the 
management of these neurodegenerative diseases (Lin et al., 2015; 
Santabarbara et al., 2019). Individuals with psychiatric conditions are 
at four times greater risk of developing a neurodegenerative disease 
(Wingo et al., 2022). Furthermore, approximately 65% of patients with 
neurodegenerative diseases experience psychiatric symptoms (Van 
Der Linde et al., 2016). In AD, depression and anxiety are common 
psychiatric symptoms that arise at different disease stages. Similarly, 
in PD, depression and anxiety are prevalent non-motor symptoms that 
can significantly affect the overall mental health of patients. A meta-
analysis of individuals with anxiety revealed an increased risk of 

dementia later in life, confirming the findings of several other studies 
(Gulpers et al., 2016; Gimson et al., 2018; Santabarbara et al., 2020). 
One study indicated that the correlation between anxiety and the 
onset of dementia was stronger in those who developed anxiety in 
later years, suggesting that anxiety is a possible indicator of dementia 
development (Gulpers et  al., 2016). Evidence of an association 
between anxiety and PD has shown similar results. Anxiety manifests 
more than 25 years prior to the onset of motor symptoms in a subset 
of patients with PD, highlighting anxiety as a possible indicator of PD 
development (Seritan et al., 2019). Another study showed that this risk 
increases with anxiety severity (Lin et al., 2015).

The mechanisms underlying the relationship between 
neurodegenerative diseases and psychiatric symptoms are complex 
and multifactorial. Neurochemical imbalances, structural brain 
changes, and the psychosocial impact of living with these chronic 
conditions contribute to the development and exacerbation of 
depression and anxiety. Recognising and addressing these mental 
health challenges in patients with AD and PD is crucial for providing 
comprehensive care and improving their overall quality of life.

One study investigated the common underlying mechanisms of 
major psychiatric and neurodegenerative diseases (Wingo et al., 2022). 
Psychiatric disorders included major depressive disorder, anxiety 
disorders, bipolar disorder, schizophrenia, post-traumatic stress, and 
alcohol abuse. Neurodegenerative diseases in this study included AD, 
PD, Lewy body dementia, amyotrophic lateral sclerosis, and 
frontotemporal dementia. The authors identified 13 shared causal 
proteins between major psychiatric and neurodegenerative diseases 
and several biological processes, including vesicular transport, 
synaptic transmission, immune function, and mitochondrial 
processes, by combining data from genome-wide association study 
results with human brain transcriptomes and proteomes. The 
discovery of 13 causal proteins shared between psychiatric and 
neurodegenerative disorders was an interesting finding. Further 
research is essential to validate these findings and explore the potential 
of these 13 proteins as targets for therapeutic purposes.

Importantly, in the context of neurodegenerative diseases, 
psychiatric disorders should be considered in conjunction with gut 
dysbiosis as these two prodromal features of neurodegeneration are 
not mutually exclusive (Berg et al., 2015; Ehrenberg et al., 2018; Huang 
et  al., 2023; Jemimah et  al., 2023). In fact, many patients with 
psychiatric disorders report symptoms of gut dysbiosis (Rogers et al., 
2016). Given the evidence discussed above suggesting that the gut 
microbiome may impact brain function and behavior, and influence 
the development of neurodegenerative diseases, it is not surprising 
that the same could be true for psychiatric disorders. Our growing 
understanding that alterations in the gut microbiome can have 
downstream effects on brain function highlights the complex and 
multifaceted interactions of the gut microbiome (Mohajeri et al., 2018; 
Zhu et al., 2020). Longitudinal studies tracking neurodegenerative 
disease progression, ranging from the healthy, undiagnosed stage, to 
the final stages of the disease, are imperative if we  are to gain a 
comprehensive understanding of the intricate relationship between 
neurodegeneration, gut dysbiosis and psychiatric disorders. In 
particular, whether gut dysbiosis and/or psychiatric disorders are 
causal of neurodegeneration, and therefore a modifiable risk factor, or 
simply a prodromal feature of neurodegenerative diseases, will 
be  indispensable in directing the development of preventive and 
therapeutic approaches.
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5. Current therapeutic approaches

Treatments for neurodegenerative diseases typically aim to boost 
specific neurotransmitters in the CNS either by increasing the substrate 
for neurotransmitter production or inhibiting neurotransmitter 
clearance mechanisms (Cacabelos, 2017; Cummings et al., 2019). These 
pharmacological treatments have enormous benefits for patients 
through symptom management; however, most of these drugs do not 
alter the disease course. Two drugs, aducanumab and lecanemab, 
aimed at modifying the progression of AD were approved by the FDA 
in 2021 and 2023, respectively, despite recommendations against 
approval of aducanumab by the FDA advisory panel (Dhillon, 2021; 
Van Dyck et al., 2023). The decision to approve lecanemab did not 
involve an advisory panel and the two drugs were approved under the 
accelerated FDA approval pathway, meaning that data from phase III 
clinical trials were not considered when deciding approval. Evidence 
for the efficacy of aducanumab is limited, with only one of the two 
phase III trials demonstrating positive outcomes (Budd Haeberlein 
et  al., 2022). Although the efficacy of lecanemab is greater than 
aducanumab, there are safety concerns, with several reported deaths 
suspected to have resulted from amyloid-related imaging abnormalities 
(Reardon, 2023; Van Dyck et al., 2023). Trials are ongoing to validate 
the safety and efficacy for both drugs (Verger et al., 2023).

Given the underwhelming results of clinical trials over the last 
several decades, there is a pressing need to identify alternative 
treatment and prevention strategies, in addition to pharmacological 
treatment, as the number of people afflicted with neurodegenerative 
diseases increases (Liu et al., 2019; Kim et al., 2022; Mari and Mestre, 
2022). One approach that is being heavily explored is the identification 
of biomarkers to detect the disease prior to onset or in the early stages 
to minimise neuronal loss and symptom severity. Several types of 
biomarkers are being investigated, including imaging biomarkers such 
as PET scans, CSF biomarkers and more recently, blood-based 
biomarkers (Bellaver et al., 2021, 2023; Katayama et al., 2021; Klatt 
et al., 2021; Mila-Aloma et al., 2022; De Picker et al., 2023; Gonzalez-
Ortiz et al., 2023; Hazan et al., 2023; Lancini et al., 2023; Qi et al., 2023; 
Qu et al., 2023; Zhang J. et al., 2023). Blood-based biomarkers hold 
great potential as a non-invasive diagnostic tool as well as monitoring 
disease progression during treatment. A recently published paper in 
The Lancet Neurology marks a breakthrough in PD research (Siderowf 
et al., 2023). The paper describes a new assay which is able to detect 
pathological α-syn in the CSF of patients already diagnosed with PD 
and those who are at high risk but do not yet display symptoms. For 
extensive reviews on biomarkers in AD and PD, please refer to the 
following reviews (Li and Le, 2020; Klyucherev et al., 2022). Ongoing 
research continues to refine and validate biomarkers, paving the way 
for improved clinical management and the development of targeted 
treatments. Nevertheless, disease prevention necessitates a continued 
and urgent pursuit in understanding the molecular mechanisms 
involved in disease pathogenesis.

6. Alternatives to pharmacological 
treatment

6.1. Diet

Acknowledging the involvement of the gut microbiome and GBA 
in AD and PD has spurred new research endeavors to explore the 

potential contribution of diet in the pathogenesis of these diseases. 
Compared with healthy individuals, those with neurodegenerative 
diseases exhibit distinct changes in their gut microbiome (Romano 
et  al., 2021; Chandra et  al., 2023). Reduced SCFA’s in PD has led 
researchers to explore supplementation of dietary fiber to boost SCFA 
levels, a metabolite linked to neuroprotection in individuals with PD 
(Baert et  al., 2021). Indole, and subsequently indole sulphate, is 
derived from the metabolism of tryptophan. Tryptophan is present in 
low amounts in plants compared to animal products (Li et al., 2021). 
Given the potential role of indoxyl sulphate in neurodegeneration, 
dietary changes to include more plant foods and less animal products 
may prove beneficial. In fact, Mediterranean and vegan diets have 
been associated with a lower risk of AD and PD, possibly owing to 
their high fiber and low saturated fat profiles (McCarty and Lerner, 
2021; Katonova et al., 2022; Stefaniak et al., 2022). In fact, a Western 
diet, characterised by foods high in saturated fat, salt, refined sugar, 
and low in fiber with an overall high energy intake, has been linked to 
neurodegeneration, including AD and PD (Qu et al., 2019; Hong et al., 
2021). Moreover, a Western diet increases systemic inflammation and 
neuroinflammation, impairs the BBB, and exacerbates protein 
pathologies, all of which are common features of neurodegenerative 
diseases (Wieckowska-Gacek et  al., 2021a,b). Hence, studies have 
focused on identifying factors influencing this alteration and whether 
dietary modifications can restore gut microbiome homeostasis and 
brain health.

Besides lowering the incidence of neurodegenerative diseases, 
strict diets have demonstrated benefits in the symptom management 
of patients with AD and PD. An ovo-lacto vegetarian diet, defined as 
a type of vegetarian diet that excludes meat, poultry and seafood but 
includes both eggs (ovo) and dairy products (lacto), combined with 
bowel cleansing was shown to reduce motor symptoms in individuals 
with PD (Hegelmaier et al., 2020). Whereas a Mediterranean diet was 
associated with improved cognitive performance in individuals with 
dementia and mild cognitive impairment (Anastasiou et al., 2017). 
Given the promising results observed in individuals with AD and PD 
from dietary interventions, numerous clinical trials are underway, or 
recently completed, to investigate the effect of various diets, such as 
gluten-free (NCT05238545), ketogenic (NCT04701957), and 
Mediterranean diets (NCT04683900), in managing symptoms.

Dietary modification is a plausible avenue for treating and 
preventing neurodegenerative diseases. As our understanding of the 
intricate relationship between nutrition and brain health deepens, 
research continues to unveil promising strategies for managing 
symptoms and reducing the risk of conditions such as AD and 
PD. Nevertheless, further investigation is needed to refine dietary 
recommendations, and pharmacological intervention remains the 
primary strategy in treating neurodegenerative diseases.

6.2. Probiotics and FMT

Probiotics and FMTs have gained attention as potential 
therapeutic strategies to modulate the microbiome of patients with 
AD and PD, alleviating symptom severity. These strategies have been 
reviewed in detail (Sun and Shen, 2018; Varesi et al., 2022). Probiotics 
are live microorganisms, often referred to as “friendly bacteria,” which 
can provide health benefits when consumed in adequate amounts 
(Gomaa, 2020). Probiotics are also under investigation for their 
potential to support mental well-being through enhancing gut health 
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(Sharma and Bajwa, 2021). This aspect is particularly relevant since 
individuals dealing with gut issues and neurodegenerative conditions 
often experience challenges related to their mental health (Zhang 
et al., 2022a; Intili et al., 2023). Probiotics aimed at enhancing the gut 
and brain health together are referred to as psychobiotics and are 
being investigated in neurodegenerative and neuropsychiatric 
disorders (Sharma and Bajwa, 2021). Psychobiotics, have been shown 
to ameliorate symptoms in neurodegenerative diseases like AD and 
PD and neuropsychiatric diseases such as anxiety and depression 
which are discussed in detail in these reviews (Sharma and Bajwa, 
2021; Barrio et al., 2022). Psychobiotics can help to restore a balanced 
gut microbiota composition, potentially mitigating neuroinflammation 
and oxidative stress and may support gut barrier integrity, reducing 
the risk of harmful substances entering the bloodstream and affecting 
the brain (Kesika et al., 2021; Naomi et al., 2021; Wang Q. et al., 2021; 
Mirzaei et al., 2022). Studies investigating the therapeutic potential of 
probiotics in treating neurodegenerative disease have yielded 
promising outcomes, with results demonstrating amelioration of 
cognitive deficits and motor dysfunctions in rat and mouse models of 
AD and PD, respectively, alongside reductions in protein aggregation 
(Nimgampalle and Kuna, 2017; Hsieh et  al., 2020). Psychobiotic 
supplementation has also been investigated as a preventive strategy to 
mitigate or delay neurodegeneration, with positive outcomes 
demonstrated in AD mouse models (Huang H. J. et  al., 2021; 
Abdelhamid et  al., 2022). Encouraging results of psychobiotic 
treatment in animal models of AD and PD have led to many currently 
active clinical trials (including NCT05145881, NCT06019117, 
NCT03968133, and NCT05146921). The efficacy of probiotics in these 
clinical trials will be determined based on outcome measures such as 
cognitive ability, motor function, neuropsychiatric symptoms, and 
general gut health. Clinical trials, such as those listed above, will help 
establish the safety and efficacy of psychobiotics, whether employed 
as a standalone therapeutic approach or as a complementary treatment 
for neurodegenerative diseases. Overall, research suggests that these 
psychobiotics may have the potential to alleviate symptoms of mood 
disorders like depression and anxiety, as well as improve symptoms in 
neurodegenerative diseases like AD and PD. While the field is 
relatively young, psychobiotics offer promising insights into the 
intricate connection between our gut and mental health, paving the 
way for innovative approaches to improving well-being through the 
manipulation of the microbiome.

An FMT involves the transplantation of faecal material from a 
healthy donor into the gut of a recipient. This approach aims to restore 
a healthier gut microbiota by introducing a diverse and balanced 
microbial community (Khoruts and Sadowsky, 2016). In an AD 
mouse model, an FMT resulted in improved cognitive abilities and 
reduced pathological protein levels (Sun et al., 2019). Similar results 
were observed in an MPTP-induced mouse model of PD, where motor 
function improved and markers of inflammation were reduced 
following an FMT (Sun et  al., 2018). These studies using animal 
models were followed by a recent pilot study in patients with PD, 
demonstrating increased gut microbiome diversity following multiple 
FMTs. Patients also reported improved motor functions. However, 
this study was limited by its relatively small sample size and limited 
follow-up of 9 months (DuPont et  al., 2023). Studies with larger 
cohorts and longer follow-up periods are crucial to understand the 
safety, efficacy, and long-term effects of FMTs in AD and PD. The 
advantages of FMTs lie in their potential to introduce a more 

significant and comprehensive microbial diversity into the patient’s 
gut, which may positively affect neuroinflammation and other 
pathological processes. However, this method is still in its infancy in 
neurodegenerative diseases, and there are several challenges and 
concerns. One major challenge is ensuring the safety and 
standardisation of FMT procedures. Ensuring that donors are disease-
free and transplant material is properly screened and processed is 
crucial to avoid potential complications. Moreover, the individual 
variability in gut microbiota and the complexity of neurodegenerative 
diseases means that not all patients may respond the same way to 
probiotics or FMTs. Personalised approaches may be required to tailor 
these therapies to specific patient profiles. Utilising metagenomics and 
metaproteomics, clinicians can gain insights into the diversity of a 
patient’s microbiome and design a personalised treatment plan 
accordingly (Zmora et al., 2016; Kashyap et al., 2017). Next-generation 
probiotics encompass a larger diversity of organisms than traditional 
probiotics, encouraging the development of personalised probiotics. 
These next-generation probiotics possess advantages over traditional 
probiotics and FMTs, as their composition can be tailored to suit the 
specific needs of each individual (O’Toole et al., 2017; Zhang et al., 
2022b). However, a considerable amount of research is still needed to 
understand how and what changes in the gut microbiome may confer 
risk to disease development before such a personalised approach 
becomes a reality. In contrast to probiotics, which are ingested, FMTs 
can be directly injected into the colon, bypassing the acidic stomach 
environment. This must be considered in the development and use of 
probiotics (Ojha et al., 2023). Despite limitations to probiotics and 
FMTs, these therapeutic strategies hold promise, but their clinical 
applications and long-term effects must be  carefully studied and 
refined. As our understanding of the gut-brain connection deepens, 
these approaches may become valuable tools in managing 
neurodegenerative diseases.

6.3. Exercise

Exercise is another lifestyle change that has received limited 
research attention, and its potential effects may be underestimated. 
Exercise cannot cure these diseases; however, it has numerous benefits 
in slowing their progression, improving symptoms, and enhancing the 
overall well-being of patients (Santiago and Potashkin, 2023). 
Furthermore, recent studies have investigated the protective role of 
exercise in preventing the development of neurodegenerative diseases 
such as AD and PD. A 2016 meta-analysis of prospective observational 
cohort studies examining the link between physical activity and AD 
onset revealed a protective effect of exercise in reducing the risk of 
developing AD (Santos-Lozano et al., 2016). Two recent studies, one 
conducted in Japan and another in Korea, demonstrated a reduced 
risk of developing dementia with moderate-to-vigorous and light-
intensity exercises, respectively (Yoon et al., 2021; Ihira et al., 2022). 
Vigorous physical activity, even if performed once a week, can protect 
against several chronic diseases, including AD and PD (Marques et al., 
2018). Although a range of exercise intensities can offer protective 
advantages against the development of neurodegenerative diseases, 
engaging in more rigorous physical activity might provide heightened 
protection against AD onset (Lopez-Ortiz et al., 2023). In addition to 
reducing the risk of neurodegenerative diseases, physical activity has 
neuroprotective, symptomatic, cognitive, emotional, and social 
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benefits, making it an essential component of a comprehensive care 
plan for individuals living with these challenging conditions. A study 
conducted in an NSE/APPsw Tg mouse model of AD indicated that 
exercise reduced pathological protein levels and conferred neuronal 
protection more than sedentary controls (Um et al., 2008). Recent 
mouse studies have further underscored the therapeutic potential of 
exercise, specifically running, in AD management. These studies have 
hinted at potential mechanisms, including heightened microglial 
glucose metabolism and increased plaque clearance through improved 
ubiquitin or proteasome pathways (Mehla et al., 2022; Xu et al., 2022; 
Zhang et al., 2022).

Similar studies conducted in male PD patients revealed that 
moderate daily physical activity protects against PD development 
(Yang et  al., 2015). The authors observed no beneficial effects of 
occupational physical activity on neurodegenerative diseases, 
consistent with previous findings (Yang et al., 2015; Shih et al., 2016). 
This observation is interesting and indicates the importance of a 
relaxing, stress-free environment in facilitating the positive effect of 
exercise on PD, emphasising the connection between mental well-
being and neurodegenerative conditions. Animal studies in PD 
models have linked exercise to reduced inflammation, decreased 
α-syn levels, improved mitochondrial function, and increased 
neurotrophic and vascular endothelial growth factors (Crotty and 
Schwarzschild, 2020; Lopez-Ortiz et al., 2023). A meta-analysis was 
conducted to investigate the role of exercise as a supplementary 
therapy alongside standard drug treatments for PD (Choi et al., 2020). 
The analysis categorised studies based on the type of exercise 
interventions used. The results indicated a notable improvement in 
motor symptoms with exercise but no effect on non-motor symptoms, 
with the effectiveness of exercise hinging on the type employed. Based 
on their findings, they have proposed the type of exercise that is most 
beneficial to the desired outcome. Nevertheless, the type and intensity 
of exercise will likely be specific to an individual, based on specific 
needs and capabilities, rather than adhering strictly to a proven 
optimal approach. Although non-motor symptoms were not 
improved, this meta-analysis encompassed a relatively small sample 
size, involving only 1,144 patients with PD across 18 studies.

Although exercise can confer benefits in preventing and managing 
AD and PD, more rigorous studies involving larger cohorts and longer 
follow-up periods are required to understand the beneficial types and 
intensities of exercise and molecular pathways involved. Furthermore, 
exercise positively affects gut health and mental well-being, which are 
associated with neurodegeneration, highlighting how these diseases 
are interwoven (Chekroud et al., 2018; Gubert et al., 2020).

7. Conclusion

Neurodegenerative diseases present a significant and growing 
global health challenge. Their progressive nature, multifactorial 
causes, alongside an aging population, is expected to lead to substantial 
socioeconomic burdens. Recent research has highlighted the crucial 
role of the GBA in neurodegeneration. The gut microbiome, an 
essential component of the GBA, has emerged as a focal point of 
investigation due to its potential to influence brain function and 
behavior. Dysbiosis in the gut microbiome has been linked to AD and 
PD, impacting neuroinflammation, protein aggregation and 

neurotransmitter production. Moreover, psychiatric disorders, 
particularly depression and anxiety, frequently co-occur with 
neurodegenerative diseases, adding further complexity to 
their management.

Current pharmacological treatments for neurodegenerative 
diseases primarily focus on symptom management, with limited 
success in modifying disease progression. The development of reliable 
biomarkers for early diagnosis and targeted treatments represents a 
promising avenue for future research. Alternative approaches, such as 
dietary modifications and exercise, have shown potential in 
modulating the gut microbiome and influencing disease outcomes. 
Adopting a personalised approach in leveraging probiotics, FMTs, and 
tailored exercise regimes may offer additional benefits for patients 
with neurodegenerative diseases.

In summary, the interplay between the GBA and psychiatric 
disorders in the context of neurodegenerative diseases provides a 
comprehensive framework for exploring new preventive measures and 
therapeutic strategies. By adopting a holistic perspective and 
continuing to unravel the intricate connections in this triad of 
neurodegeneration, gut dysbiosis, and psychiatric disorders, we can 
strive to enhance the quality of life for affected individuals and make 
significant progress in understanding neurodegeneration.
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