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Ensuring mitochondrial quality is essential for maintaining neuronal homeostasis, 
and mitochondrial transport plays a vital role in mitochondrial quality control. 
In this review, we first provide an overview of neuronal mitochondrial transport, 
followed by a detailed description of the various motors and adaptors associated 
with the anterograde and retrograde transport of mitochondria. Subsequently, 
we review the modest evidence involving mitochondrial transport mechanisms 
that has surfaced in acute neurological disorders, including traumatic brain 
injury, spinal cord injury, spontaneous intracerebral hemorrhage, and ischemic 
stroke. An in-depth study of this area will help deepen our understanding of the 
mechanisms underlying the development of various acute neurological disorders 
and ultimately improve therapeutic options.
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1. Introduction

Mitochondria act as “generators,” producing more than 90% of the energy required for the 
normal functioning of neurons, and are central to metabolism and bioenergy conversion 
(Millecamps and Julien, 2013; Lin and Sheng, 2015; Devine and Kittler, 2018). In addition, 
mitochondria also play an essential role in other cellular processes, such as calcium buffering, 
neurotransmitter metabolism, action potential formation, synaptic transmission, and short-term 
plasticity, as well as in promoting cell survival (Tang and Zucker, 1997; Kang et al., 2008; Devine 
and Kittler, 2018). Therefore, precise regulation of mitochondrial transport and distribution is 
essential to ensure that mitochondria can be delivered and localized to the areas where they 
are needed.

The highly polarized morphology is an important feature that distinguishes neurons from 
other cells. Neurons comprise three parts: the soma, a thin and long axon, and thick and short 
dendrites with numerous branches (Lin and Sheng, 2015). The mitochondria in these regions 
are not evenly distributed due to different metabolic demands (Hollenbeck and Saxton, 2005). 
Synapses, growth cones, axonal branching sites, and Ranvier nodes, which are metabolically 
active and demanding enormously for ATP, tend to have more mitochondria distributed (Zhang 
et al., 2010; Course and Wang, 2016). Although mitochondria can be generated locally within 
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axons, it is generally accepted that most are formed within the soma. 
Damaged mitochondria head back to the cell body to be degraded by 
the autophagy-lysosome system. Although there is little direct 
evidence for this hypothesis, it seems uncontroversial considering that 
the organelles and raw materials required for protein production and 
degradation are primarily localized in the soma. Thus, the limited 
extent of mitochondrial biosynthesis and axon degradation challenges 
neuronal control of distal mitochondrial quality (Sheng and 
Cai, 2012).

To address this challenge, neurons have evolved finely regulated 
transport systems based on the cytoskeleton. The cytoskeleton 
provides the support and backbone for the neuron, maintaining its 
highly specialized structure and allowing for the efficient transport 
and stable docking of organelles within the neuron. The neuronal 
cytoskeleton consists mainly of microtubules and actin filaments 
(Xiao et al., 2016; Dogterom and Koenderink, 2019). Imaginatively, 
Microtubules are recognized as “highways with bidirectional lanes” in 
neurites. Cargoes such as organelles and vesicles can be efficiently 
transported in both directions by the “truck”-transporter complex, 
like a car going back and forth on a highway. In the axon, microtubules 
are evenly arranged with their minus ends oriented toward the soma 
and plus ends toward the terminus. Newly born mitochondria in the 
cytosol are delivered to the distal axon via anterograde transport 
(away from the soma) to provide energy. In contrast, injured 
mitochondria are repaired through fusion or removed by autophagy 
via retrograde transport (toward soma). In neurons with high 
glutamylated microtubules, the average speed and time of a single run 
did not change in either direction, while the overall motility of 
mitochondria decreased (Bodakuntla et al., 2020). Unlike the uniform 
polarity of axonal microtubules, dendritic microtubules exhibit mixed 
polarity, and therefore, the direction of mitochondrial transport in 
dendrites may vary depending on microtubule polarity (Zhou et al., 
2016; Zheng Y.-R. et al., 2019). Unlike microtubules, actin filaments 
are more similar to “country roads” just before reaching the terminal. 
The actin cytoskeleton is abundant in cellular compartments closely 
related to synapses, such as presynaptic terminals and dendritic 
spines, creating conditions for the short-distance movement of 
organelles such as mitochondria and cytoplasmic vesicles at these sites 
(Langford, 2002).

Mitochondria must be  coupled to motor proteins (similarly, 
loading cargoes onto trucks) to allow polarized transport. Long-
distance mitochondrial transport is mainly coordinated by microtubule-
based motor proteins, among which the kinesin family mediates 
anterograde transport directed to the distal end. At the same time, 
dynein facilitates retrograde transport toward the proximal end (usually 
the soma). Meanwhile, the actin cytoskeleton and myosin motors direct 
the movement and anchoring of mitochondria over short distances 
(Quintero et al., 2009; López-Doménech et al., 2018). The driving force 
for transporting these motors comes from the hydrolysis of ATP 
produced by mitochondrial respiration (Hirokawa et al., 2010; Zala 
et al., 2013). Visual time-lapse imaging methods allow the observation 
of dynamic, bidirectional transport of neuronal mitochondria along 
neuronal protrusions, during which they frequently change 
orientations, pause, or switch to a continuously anchored state. These 
complex movement patterns are the result of a combination of 
mitochondria with bidirectional motors and docking and anchoring 
mechanisms. Mitochondria attach to motors through outer membrane 
receptors linking to adapter proteins. This receptor-adapter-motor 

complex enables the precise regulation of targeting and mobility of 
mitochondrial transport (Kang et al., 2008; Sheng and Cai, 2012).

2. Motors

It was shown that the transport of mitochondria along microtubules 
in neurons requires the joint participation of motors and adapters. The 
different motors are summarized below (Figure 1). Factors reported to 
influence mitochondrial transport have been summarized in Table 1.

2.1. Kinesin

Among the kinesin family members, kinesin-1, also termed KIF5, 
is the primary driver of the distal distribution of neuronal 
mitochondria (Pilling et al., 2006). Kinesin contains two heavy chains 
(KHC) and two light chains (KLC) (Sheng and Cai, 2012). The amino 
terminus of the heavy chain of kinesin-1 is the motor domain with 
ATPase and binding directly to microtubules, while its carboxy 
terminus is the cargo-binding domain, tethering to mitochondria by 
binding to the adapter proteins Miro and Milton/TRAK (Hirokawa 
et al., 2010). There are three isoforms of the mammalian KIF5 motor, 
KIF5A, KIF5B, and KIF5C. KIF5B is widely expressed in various cell 
types, whereas KIF5A and KIF5C are only distributed in neurons and 
mediate the transport of membrane organelles such as mitochondria 
(Hirokawa et  al., 2010). Disruption of the KIF5-mitochondrial 
coupling in hippocampal neurons impaired mitochondrial transport, 
leading to decreased mitochondrial distribution in distal axons (Cai 
et al., 2005). This was also verified in Drosophila (Hurd and Saxton, 
1996). Targeted deletion of KIF5A or KIF5B also impaired 
mitochondrial transport, leading to mitochondrial accumulation in 
the cytosol (Xia et al., 2003; Karle et al., 2012). In addition to KIF5, 
Kinesin-3 (KIF1B-α) and Kinesin-like protein 6 (KLP6) are also 
involved in mitochondrial transport (Nangaku et al., 1994). KIF1B-α 
and KLP6 mutations decreased the average velocity and distal 
distribution of axonal mitochondria (Tanaka et al., 2011). In muscle 
cells, Dynamin-related protein 1 (Drp1), A GTPase protein widely 
distributed in the cytoplasm, binds specifically to KLC1, releasing 
KIF5B and enhancing microtubule-dependent transport of 
mitochondria, increasing the speed and distance of mitochondrial 
transport (Giovarelli et al., 2020). Inhibition of the binding of the 
molecular motor KIF5B to microtubules and mitochondrial 
communication along axons inhibits the movement of mitochondria 
toward the distal axonal segment, resulting in a mitochondrial 
deficiency in this region (Zorgniotti et  al., 2021). Stress, such as 
sudden trauma, induces alterations in the microtubule network 
through glucocorticoid signaling pathways. Glucocorticoid receptor 
translocation to mitochondria induces ER-mitochondrial system 
retention. Glucocorticoids trigger microtubule dysfunction and 
kinesin-1 detachment by reducing mitochondrial transport to the 
pericellular periphery (Choi et al., 2018).

2.2. Dynein

Cytoplasmic dynein is the motor driving retrograde mitochondrial 
transport in axons. While in dendrites, where microtubules are mixed 
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polar, it is involved in mitochondrial transport toward both the distal 
end and the soma (Sheng and Cai, 2012). Only one dynein has been 
identified up to now. Dynein contains multiple subunits, including 
two catalytic dynein heavy chains (DHC), several dynein intermediate 
chains (DIC), dynein light intermediate chains (DLIC), and dynein 
light chains (DLC), functioning in coordinating cargo binding or 
regulating motility. The carboxyl terminus of DHC is the motor 
domain that enables motility (Lin and Sheng, 2015). Dynactin is a 
large protein complex with 11 subunits. It binds directly to dynein and 
microtubule through its p150Glued subunit, thereby enhancing the 
persistence of dynein motility or regulating its interaction with 
cargoes (King and Schroer, 2000). Mutations in dynein decreased the 
distance and duration of retrograde mitochondrial transport in long 
motor neurons. In contrast, the destruction of dynactin complexes did 
not undermine the adhesion of motors to the membrane. However, it 
damaged both anterograde and retrograde transport, suggesting that 
dynactin is involved in regulating bidirectional transport (Lin and 
Sheng, 2015). The dynein-dynactin motor complex can move in both 
directions but toward the minus end of the microtubule in general 
(Mallik et al., 2005; Ross et al., 2006). This may confer the ability of the 
dynein to bypass obstacles during intracellular transport.

2.3. Myosin

Compared to kinesin and dynein, much less research has been 
done on myosin. There are 18 classes of myosin (Foth et al., 2006). 
Myosin drives short-distance transport of organelles and vesicles 
along actin filaments in presynaptic terminals and growth cones 
(Sokac and Bement, 2000; Quintero et al., 2009). It was reported that 
myosin-19 (Myo19) serves as a motor for actin-based mitochondrial 
motility in vertebrate cells (Quintero et al., 2009). Myo19 is widely 

expressed in various cell types, including neurons, and its 970 aa heavy 
chain consists of a motor domain, three IQ motifs, and a short tail. 
Knockdown analysis suggests that the Myo19 tail is necessary and 
sufficient for mitochondrial localization. Another study showed that 
myosin-5 (Myo5) is one of the candidate motors directing 
mitochondrial motility, consisting of a motor domain, a stem domain, 
and a tail domain (Sheng and Cai, 2012). Since Myo5 may form a 
transport complex by interacting with dynein, this probably helps to 
coordinate long-range transport and short-range movement of 
mitochondria (Naisbitt et al., 2000; Sheng and Cai, 2012). Similarly, a 
study in Drosophila melanogaster neurons suggested that Myo5 and 
myosin-6 (Myo6) regulate axonal mitochondrial transport (Pathak 
et al., 2010). Consumption of Myo5 increased mitochondrial velocity 
in both directions, while knockdown of Myo6 induced a selective 
increase in retrograde transport in axons. These findings indicate that 
Myo5 and Myo6 may compete with microtubule-based motors or that 
myosin can facilitate mitochondrial docking along actin by moving 
mitochondria away from microtubule tracks (Sheng and Cai, 2012). 
However, this needs further confirmation from subsequent studies.

3. Adaptors

Distinct motors may require different adaptors to cooperate to 
function as transporters. The current understanding of adaptors is 
presented below (Figure 2).

3.1. Miro-Milton/TRAK

Mitochondria recruit motor proteins through membrane adapter 
proteins to allow their motility (Stowers et al., 2002; Kumar et al., 2016). 

FIGURE 1

Schematic diagram of the mitochondrial transport motors in neurons. Created with BioRender.com.
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The adapter complex contains two components: Miro and Milton in 
Drosophila (the homolog in mammals is TRAK) (Cai et al., 2005; Guo 
et al., 2005; Li et al., 2009). Miro is a member of the Rho GTPase family 
and contains two EF-arm Ca2+ binding motifs and two GTPase 
domains (Frederick et al., 2004; Fransson et al., 2006; Klosowiak et al., 
2013). As an outer mitochondrial membrane receptor, Miro interacts 
with the motor adapter Milton (or TRAK) to recruit the KIF5 motor to 
the mitochondrial surface (Lin and Sheng, 2015). GTP hydrolysis or 
changes in calcium binding by the EF arm may regulate axonal 
mitochondrial motility in response to calcium signaling and synaptic 
activity by modulating the Miro-Milton-KIF5 complex (Cai and Sheng, 
2009). In mammalian cells, there are two Miro homologous proteins, 
Miro-1 and Miro-2, with 60% identical sequences, and two TRAKs: 
TRAK1 and TRAK2. The two TRAK proteins have different functions 
to direct polarized mitochondrial transport. TRAK1 is mainly localized 
in axons, while TRAK2 in dendrites. Further, TRAK1 binds to kinesin 
and dynein and is responsible for axonal mitochondrial transport. In 
contrast, TRAK2 interacts with dynein and bears responsibility for the 
dendritic distribution of mitochondria (van Spronsen et al., 2013). In 
hippocampal neurons, Miro1 is the leading mitochondrial receptor site 
for TRAK2 (MacAskill et al., 2009). Up-regulation of Miro1 expression 
enhanced the recruitment of TRAK2 and KIF5 to mitochondria, 
thereby facilitating mitochondrial motility. In hippocampal neurons, 

the knockdown of TRAK1 leads to impaired axonal mitochondrial 
transport, suggesting that the TRAK family plays a vital role in 
regulating mitochondrial motility (Brickley and Stephenson, 2011). 
Cells carrying pathogenic variants in TRAK1 exhibit irregular 
mitochondrial localization and mitochondrial dysfunction, manifesting 
as altered mitochondrial membrane potential and decreased metabolic 
state and mitochondrial oxygen consumption (Barel et  al., 2017). 
Disruption of Miro or Milton impaired the distal distribution of axonal 
mitochondria, resulting in a reduction in the number of mitochondria 
at distal synapses (Stowers et  al., 2002; Guo et  al., 2005). There is 
evidence that Miro can also act as a receptor for dynein (Russo et al., 
2009; Nguyen et al., 2014). Milton/Miro complex interacts with dynein 
to coordinate the relative movement of bidirectional motors (Lin and 
Sheng, 2015). Interestingly, the absence of dMiro in Drosophila did not 
wholly block mitochondrial motility: a small number of mitochondria 
are still located in the neurites (Guo et al., 2005; Russo et al., 2009). An 
incomplete dependence on Miro1 was found for the distribution of 
axonal mitochondria (López-Doménech et  al., 2016). In Miro1/2 
double knockout cells, TRAK1/2 is still recruited to the outer 
mitochondrial membrane to drive mitochondrial transport (López-
Doménech et al., 2018). These data suggest that Miro is not the only 
adaptor connecting mitochondria to motors. Adaptors other than Miro 
may exist to recruit motors to transport mitochondria.

TABLE 1 Factors that have been reported to influence mitochondrial transport.

Factors Results

Disruption of the KIF5-mitochondrial coupling (Lin and Sheng, 2015; Devine and Kittler, 2018) Inhibit anterograde transport

Targeted deletion of KIF5A or KIF5B (Kang et al., 2008; Millecamps and Julien, 2013)

KIF1B-α and KLP6 mutations (Tang and Zucker, 1997)

Inhibition of the binding of KIF5B to microtubules (Hollenbeck and Saxton, 2005)

Glucocorticoid receptor translocation to mitochondria (Course and Wang, 2016)

Disruption of Miro or Milton (Zhang et al., 2010; Sheng and Cai, 2012)

Silencing syntabulin (Xiao et al., 2016)

Overexpression of tau (Dogterom and Koenderink, 2019)

Inhibit HIF-1α inhibitor (Bodakuntla et al., 2020)

Mutation in TMEM230 (Zheng Y.-R. et al., 2019)

Destruction of dynactin complexes (Xiao et al., 2016) Inhibit bidirectional transport

Knock down of Armcx3 (Zhou et al., 2016)

Administration of the RAR-β agonist CD2019 (100 nM for 72 h) (Bodakuntla et al., 2020) Facilitate anterograde transport

Knockdown of Myo6 (Langford, 2002) Facilitate retrograde transport

Consumption of Myo5 (Langford, 2002) Facilitate mitochondrial motility

Upregulation of Miro1 (Quintero et al., 2009)

Upregulation of Armcx1 (López-Doménech et al., 2018)

Knockdown of SNPH (Hirokawa et al., 2010)

Knockdown of TRAK1 (Pilling et al., 2006; Zala et al., 2013) Inhibit mitochondrial motility

Knockdown of Armcx1 (López-Doménech et al., 2018)

Inhibit MTX-2/Miro1/MTX-1/KLC-1 complex (Cai et al., 2005)

Overexpression of SNPH (Xiao et al., 2016)

Recruitment of SNPH to mitochondria (Hurd and Saxton, 1996)

High concentrations of Ca2+ (Xia et al., 2003; Karle et al., 2012)

High glucose concentrations (Nangaku et al., 1994)
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3.2. Syntabulin

Syntabulin is another KIF5 adapter whose C-terminal 
transmembrane domain allows mitochondrial targeting. Unlike Miro, 
which is indirectly attached to the KIF5 motor by association with 
TRAK, syntabulin directly interacts with the KIF5 cargo binding 
domain, which mediates the binding of the KIF5 motor to mitochondria 
(Mutsaers and Carroll, 1998; Su et al., 2004; Cai et al., 2005). In cultured 
hippocampal neurons, the knockdown of syntabulin or mutation of the 
KIF5 binding domain to turn off syntabulin-KIF5 coupling resulted in 
the accumulation of mitochondria in the soma and a reduction in distal 
mitochondrial distribution (Lin and Sheng, 2015). Analysis of neuronal 
mobility showed that silencing syntabulin inhibited anterograde 
mitochondrial transport without affecting retrograde transport (Lin and 
Sheng, 2015). Together, the above evidence suggests that syntabulin acts 
as a KIF5 motor adapter to mediate anterograde mitochondrial transport.

3.3. Armcx1

Armcx1 (ARMadillo repeat-Containing proteins on the X 
chromosome 1, also known as Alex1) is a mammalian-specific gene 
encoding a mitochondria-localized protein. It contains a 
mitochondrial targeting sequence. Armcx1 is localized on the outer 
mitochondrial membrane (OMM) of neurons and binds to Miro1 to 

function. Upregulation of Armcx1 was reported to promote neuronal 
survival and repair of injured axons after optic nerve injury via 
augmenting mitochondrial trafficking in mature retinal ganglion cells, 
dependent on its mitochondrial targeting sequence. In contrast, the 
knockdown of Armcx1 exacerbated axonal lesions and the death of 
neurons (Cartoni et al., 2017). The proofs above indicate that Armcx1 
regulates mitochondrial transport during neuronal repair.

3.4. Armcx3

As another member of the GPRASP (GPCR-associated sorting 
protein)/ARMCX protein family, the Armcx3 (or Alex3) is highly 
expressed in the adult nervous system. It has been reported to 
be involved in mitochondrial dynamics by regulating the speed and 
distance of mitochondrial movement (López-Doménech et al., 2012). 
In cultured hippocampal neurons knocked out of endogenous 
Armcx3, mitochondria moved at reduced velocity and lengths in both 
anterograde and retrograde directions and are smaller than controls. 
However, neither the rate nor the distance covered by a single 
movement of individual mitochondria was affected. 
Immunofluorescence analysis and immunoprecipitation of transfected 
HEK293AD cells showed that Armcx3 strongly co-localized with 
Miro1/2 and TRAK2 rather than KIF5. These data suggest that 
Armcx3 participates in the KIF5/Miro/TRAK2 transport complex by 

FIGURE 2

Illustration of the mitochondrial transport adaptors in neurons. Created with BioRender.com.
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directly interacting with Miro1-2/TRAK2, consequently regulating 
mitochondrial dynamics. Interestingly, when Armcx3 was 
cotransfected with Miro1 mutants lacking the EF-hand structure 
responsible for Ca2+ binding, the Miro1/Armcx3 interaction was 
greatly diminished, suggesting that this interaction is regulated 
by Ca2+.

3.5. Metaxin

Metaxin (MTX) is a class of OMM proteins previously known for 
its role as a component of a preprotein import complex in the OMM 
of the mammalian (Armstrong et  al., 1997). A recent study in 
Cryptobacterium hidradenum found that MTX-1/2 facilitated 
neuronal mitochondrial transport from the soma to dendrites and 
axons, in which Miro1 and kinesin light chain (KLC-1) played a role. 
This work indicated that the MTX-2/Miro1/MTX-1/KLC-1 complex 
enables kinesin-based mitochondrial transport, while the MTX-2/
Miro1/TRAK-1 complex allows dynein-based mitochondrial 
transport (Zhao et al., 2021). The authors concluded that MTX-2 and 
Miro1 constitute the adaptor core of both motors, while MTX-1 and 
TRAK-1 assign the KIF5 and dynein motors, respectively, to both 
complexes. Furthermore, the loss of the above complex leads to 
impaired mitochondrial transport in human neurons and is therefore 
required for human neuronal mitochondrial transport.

4. Anchoring proteins

In mature neurons, only 20–30% of mitochondria are motile, 
and approximately 70% are quiescent (Kang et al., 2008; Chen and 
Sheng, 2013). Specific mechanisms are needed to maintain 
mitochondrial arrest, and the “anchoring” model is a well-
recognized potential mechanism.

4.1. Syntaphilin

An earlier study identified syntaphilin (SNPH) as a “static anchor” 
for axonal mitochondria (Kang et al., 2008). The intermediate domain 
of SNPH is the axon sorting sequence that mediates its axonal 
targeting; its C-terminal and N-terminal microtubule-binding 
domains enable the binding of SNPH to the OMM and microtubules, 
respectively. Thus, SNPH acts as a “static anchor,” specifically tethering 
axonal mitochondria to microtubules and stopping the travel (Kang 
et al., 2008; Chen et al., 2009; Chen and Sheng, 2013), similar to a jack 
to lift the car. Knockdown of SNPH in mice resulted in a significant 
increase in the proportion of motile mitochondria in axons and a 
reduction of the density of mitochondria within axons (Kang et al., 
2008). In contrast, overexpression of SNPH remarkably undermined 
mitochondrial transport in axons (Lin and Sheng, 2015). Another 
study revealed that the recruitment of SNPH to mitochondria via 
optogenetic methods blocked rapid mitochondrial transport in both 
directions (van Bergeijk et al., 2015). Interestingly, SNPH-mediated 
mitochondrial anchoring also depends on the kinesin and dynein light 
chain LC8, stabilizing SNPH-microtubule interactions (Chen et al., 
2009; Chen and Sheng, 2013). Furthermore, SNPH contains 12% 
serine residues and several phosphorylation sites, indicating its 

“anchoring” can be modulated through multiple signaling pathways. 
Therefore, SNPH is critical in maintaining axonal and synaptic 
mitochondrial density via an “anchoring” mechanism under varying 
conditions (Lin and Sheng, 2015).

4.2. Mmr1

Mmr1 (mitochondrial Myo2p receptor-related 1) is a member 
of the DSL1 family of tethering proteins (Swayne et  al., 2011). 
Localized on mitochondria at the bud tip, Mmr1 forms a complex 
with Myo2p and is thought to be a mitochondrial adapter for Myo2p 
in yeast involved in mitochondrial distribution (Itoh et al., 2004). 
Deletion of Mmr1 impairs mitochondrial translocation to the bud 
tip in yeast, while the overexpression increases mitochondrial 
anchoring, neither of which damages the mitochondrial movement 
frequency or velocity (Itoh et  al., 2004; Higuchi-Sanabria et  al., 
2016). However, a recent study suggests that the function of Mmr1 
as a tether may not be as persistent as previously thought because its 
ubiquitinated degradation mediates the dissociation of mitochondria 
from Myo2 and prevents mitochondrial accumulation at the bud tip 
or bud neck (Obara et al., 2022). Altogether, the spatiotemporally 
regulation of Mmr1 degradation is critical for maintaining the 
proper distribution of mitochondria in yeast daughter cells. 
However, the homologous protein of Mmr1p in eukaryotes has not 
been reported yet.

5. Other mechanisms

5.1. TMEM230

TMEM230 (transmembrane protein 230) is a recently identified 
gene associated with PD. Overexpression of WT and mutant 
TMEM230 or knockdown of the endogenous protein in cultured 
SH-5Y5Y cells and mouse primary hippocampal neurons impaired 
retrograde axonal mitochondrial transport and induced 
neurodegeneration. And the mutant-induced impairment of 
mitochondrial transport was much more severe. Therefore, the 
authors concluded that maintaining proper TMEM230 levels could 
be  critical for axonal mitochondrial transport and neuronal 
survival. These findings provide new insights into the role of 
TMEM230  in the pathogenesis of Parkinson’s disease (Wang 
X. et al., 2021). Unlike the chronic course of Parkinson’s disease, 
acute neurological disorders may be  more intense in terms of 
neuronal stress, and the role of TMEM230  in this remains to 
be further investigated in depth.

5.2. Ca2+

Axons can be up to one meter long. Hence, the distribution of 
mitochondria in neurons as energy-supplying organelles and calcium 
reservoirs is critical for maintaining axonal morphological and 
functional homeostasis. Neurons are subjected to repetitive action 
potentials, which lead to a large influx of Ca2+. The distribution of 
mitochondria along axons can transport ATP and Ca2+ to the 
appropriate places. This activity is mediated by the Miro-Milton 
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complex. High concentrations of Ca2+ act as a “stop” signal, causing 
detachment of the KIF5 motor from microtubules or the Miro/Trak 
complex, resulting in the arrest of mitochondrial transport (Wang and 
Schwarz, 2009). Moreover, the increase of Ca2+ reduces the ligation 
frequency and the run length of Myo19, thus inhibiting the movement 
of mitochondria at synaptic terminals (Pollard et al., 2023). This allows 
the mitochondria to remain in the metabolically active zone, 
producing ATP and buffering Ca2+. However, a high concentration of 
Ca2+ also increases Drp1 activity, triggering mitochondrial 
fragmentation and metabolic disorders, thus contributing to axon 
collapse (Bao et al., 2018). In general, the current evidence seems to 
suggest that moderately high concentrations of Ca2+ play a negative 
regulatory role in mitochondrial transport.

5.3. Glucose

Due to the potentially long span, the glucose concentration may 
vary at the locations where neurons pass (Matsuda et  al., 2009). 
Mitochondria stay where nutrients such as glucose are most 
concentrated, as reported in one study – in rat axons, mitochondrial 
transport was halted at high glucose concentrations (Agrawal et al., 
2018). This arrest is mediated by high glucose concentrations via 
glycosylation of the motor adaptor Milton (TRAK) by the glucose-
activated enzyme O-GlcNAc transferase (OGT) (Pekkurnaz et al., 
2014). Further studies showed that four and a half LIM domains 
protein 2 (FHL2) binds to O-GlcNAcylated TRAK, anchoring 
mitochondria to F-actin and halting its motility (Basu et al., 2021). 
Disruption of F-actin restores mitochondrial movement. Thus, 
mitochondrial dynamics can be  adapted to changes in glucose 
concentration within the neuron to improve energy production 
(Agrawal et al., 2018; Basu et al., 2021).

5.4. Tau

Tau is a neuronal microtubule-associated protein (MAP) that 
promotes the assembly and binding of microtubules and inhibits 
microtubule dynamics. An injury-dependent increase in neuronal tau 
acetylation (ac-tau), mediated by S-nitrosylated GAPDH, has been 
observed in several forms and stages of TBI (Shin et al., 2021). An 
earlier study demonstrated that tau overexpression resulted in 
profound alterations in the mitochondrial distribution in differentiated 
neuroblastoma cells. This was manifested by severe disruption of 
microtubule-based anterograde transport, while retrograde transport 
was less affected. Consequently, negative transport predominates and 
causes mitochondria to aggregate toward the center of the cell (Ebneth 
et al., 1998).

5.5. RAR-β

Retinoic acid receptors (RARs)-β are members of the nuclear 
receptor superfamily, and evidence for their involvement in neuronal 
mitochondrial transport is beginning to emerge. Previous studies have 
shown that increased RAR-β content coincided with axon growth rate in 
cultured cortical neurons (Corcoran and Maden, 1999; Hoecker et al., 
2013). This was confirmed by the elongation of neuronal axons following 

administration of the RAR-β agonist CD2019 (100 nM for 72 h) (Trigo 
et  al., 2019). Further, tracer imaging revealed that RAR-β recruits 
mitochondria at the distal end of axons. Once the combination of 
CD2019 and CAY10585, hypoxia-inducible factor-1 alpha subunit 
(HIF-1α) inhibitor, was applied, the effect of RAR-β on mitochondrial 
anterograde transport and axon growth was inhibited. Thus, the authors 
suggest that RAR-β activation promotes the velocity and amount of 
anterograde transport of neuronal mitochondria through HIF-1α 
signaling, promotes mitochondrial proliferation, and induces neurite 
growth (Trigo et al., 2019). The mitochondrial chaperone GRP75 is 
known for its involvement in mitochondrial-endoplasmic reticulum 
coupling. This study also found that RAR-β-mediated mitochondrial 
recruitment was accompanied by an upregulation of GRP75 and 
increased co-localization with mitochondria. The interaction between 
them is thought to be required for neurite elongation. Recently, another 
report indicated that HIF-1α plays a neuroprotective role by targeting the 
miR-20a-5p/KIF5A axis to regulate autophagic flux and rescue oxygen–
glucose deprivation and reoxygenation (OGD/R)-induced neuronal 
damage (Cao et al., 2022). The above evidence suggests a non-negligible 
involvement of RAR-β signaling in mitochondrial transport. However, 
the exact mechanism remains to be further elucidated.

6. Intercellular mitochondrial transfer

The intercellular mitochondrial transfer has received increasing 
attention in recent years. Intercellular mitochondrial transfer is essential 
for intercellular communication and maintenance of cell viability. 
Damaged mitochondria can be transferred from neurons to astrocytes 
for recycling and disposal (Davis et al., 2014; Hayakawa et al., 2016). 
Healthy mitochondria can be transferred from astrocytes to injured 
neurons to help restore homeostasis (Liu et al., 2022). Various pathways, 
such as tunneling nanotubes (TNTs), extracellular vesicles, and gap 
junctions, enrich the trans-cellular transfer of mitochondria (Nasoni 
et al., 2021; Jain et al., 2023). There are many excellent reviews of the 
intercellular transfer of mitochondria (Shanmughapriya et al., 2020; 
Fairley et al., 2022; Luchetti et al., 2022), so we will not discuss them here.

7. Local disposition of mitochondria

Parkin and PTEN-induced kinase 1 (PINK1) have received much 
attention in mitophagy, which functions as a critical pathway for 
mitochondrial quality control (Eldeeb et al., 2022). Given the short half-
life (in minutes), synthesizing in the cytoplasm and transporting PINK1 
to the distal end (which may take considerable time in neurons with long 
axons, such as the sciatic nerve) to maintain mitochondrial quality seems 
to become less practical. Then how does the PINK1-Parkin pathway act 
distally? Recent studies have shown that PINK1 mRNA is present in 
axons (Ashrafi et al., 2014). PINK1 mRNA is first co-transported with 
neuronal mitochondria to axons and then translated. While translating, 
the mitochondrial outer membrane proteins synaptojanin 2 binding 
protein (SYNJ2BP) and synaptojanin 2 (SYNJ2) are on the mitochondrial 
need to bind to PINK1 mRNA through the RNA binding domain of 
SYNJ2, ultimately triggering mitochondrial autophagy. The above 
evidence suggested that axonal translation makes distal mitophagy 
feasible without having to be transported back to the soma (Soumbasis 
and Eldeeb, 2022). Indeed, selective removal of harmful components 
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from mitochondria has been reported, such as resident proteases in 
mitochondria (Misgeld and Schwarz, 2017). Defective proteins can also 
fuse with lysosomes through small vesicles sprouting from mitochondria, 
known as mitochondria-derived vesicles (MDVs) (Shin et al., 2020). The 
above mechanisms improve the precision, efficiency, and flexibility of 
mitochondrial quality control in neurons.

8. Mitochondrial fusion-fission 
dynamics

Healthy mitochondria are tube-shaped, while damaged 
mitochondria appear spherical. The morphology of mitochondria 
reflects whether the organelle is healthy and is the result of equilibrium 
between fission and fusion (Ul Fatima and Ananthanarayanan, 2023). 
Mitochondrial fission is mediated by the cytosolic GTPase DRP1, 
whereas fusion by the dynamin-like GTPases Mitofusin 1/2 (Mfn1/2) 
and the optic atrophy protein 1 (OPA1) (Yue et al., 2014; Herkenne 
et al., 2020; Zaninello et al., 2020; Sidarala et al., 2022; Rios et al., 2023). 
Fission allows defective mitochondrial components to be isolated and 
cleared by mitochondrial autophagy, maintaining the polarized state of 
mitochondria (Youle and van der Bliek, 2012). DRP1 mutations result 
in the absence of distal mitochondria, suggesting an essential role in 
mitochondrial localization (Ishihara et al., 2009). Fusion is initiated by 
Mfn1/2-regulated fusion of the OMM, followed by OPA1-regulated 
fusion of the inner mitochondrial membrane (IMM) (Filadi et  al., 
2018). Fusion allows the exchange of mitochondrial proteins and 
mitochondrial DNA (mtDNA), which reduces metabolic stress and is 
one of the pathways to repair damaged mitochondria (Youle and van 
der Bliek, 2012; Shin et al., 2020). Mitochondrial fission and fusion have 
been covered in detail in several fascinating reviews and are, therefore, 
beyond the scope of this review (Burté et al., 2015; Dorn, 2019; Sprenger 
and Langer, 2019; Valdinocci et al., 2019; Fernandes et al., 2020; Shin 
et al., 2020; Adebayo et al., 2021; Yang et al., 2021; López-Doménech 
and Kittler, 2023). Mitochondrial motility has been reported to be a 
determinant of fusion (Twig et al., 2010). It is noteworthy that Miro1/2, 
which plays a crucial role in mitochondrial transport, also functions in 
fusion cessation, demonstrating the multiple actions of Miro1/2  in 
mitochondrial dynamics (Ul Fatima and Ananthanarayanan, 2023). 
Dynamic regulation of mitochondrial transport allows neurons to 
respond rapidly to changes in synaptic activity, and modulation of 
dynamics makes it possible to adjust metabolic efficiency to 
accommodate energy demands (López-Doménech and Kittler, 2023). 
Although how fission/fusion and transport coordinate remains poorly 
defined, what is certain is that these two processes work together to 
maintain neuronal energetic homeostasis.

9. Evidence for the involvement of 
mitochondrial transport in acute 
neurological disorders

Acute neurological diseases include traumatic brain injury, spinal 
cord injury, and intracerebral hemorrhage (Zhang et al., 2021; Piffer 
et al., 2022). Stress such as sudden trauma causes tissue destruction in 
a short time, followed by progressive excitotoxicity, oxidative stress, 
mitochondrial dysfunction, and energy collapse, eventually leading to 
cell death (Cheng et al., 2022). Subsequently, a substantial energy 

supply is required for neural repair after injury. Exploring 
mitochondrial transport in this context is of great significance, as 
targeting this process may exert neuroprotective effects by improving 
mitochondrial dysfunction and alleviating the imbalance between 
energy supply and demand. Although limited, evidence for the 
involvement of mitochondrial transport in acute neurological 
disorders has emerged. These disorders include traumatic brain injury, 
spinal cord injury, spontaneous intracerebral hemorrhage, and 
ischemic stroke (see Supplementary Table 1 for details).

9.1. Traumatic brain injury

Traumatic brain injury (TBI) is a common acute disease 
worldwide, often caused by car crashes, athletic accidents, and violent 
incidents, and it burdens patients, families, and society. TBI consists 
of primary and secondary injuries (Werner and Engelhard, 2007). 
Primary injuries occur in the immediate aftermath of an external force 
and include brain parenchymal deformation, diffuse axonal injury, 
and intracerebral hematoma (LaPlaca et al., 2007). Secondary injury 
progressed relatively slowly and involves excitotoxicity, mitochondrial 
dysfunction, calcium overload, oxidative stress, neuroinflammation, 
secondary axonal injury, and apoptosis (Wang et al., 2016). The effects 
of calcium overload on mitochondrial transport have been described 
previously. The role of microtubule disruption on mitochondrial 
translocation will be discussed in the next section rather than here. 
Mitochondrial dynamics, including the extent of fusion, fission, and 
translocation, is altered following TBI, which has been well 
summarized by Shin et al. (2020). A recent study reported the role of 
Miro1 in TBI rats (Chen et al., 2021). An increase in Miro1 expression 
was first found after TBI. Knockdown of Miro1 inhibited 
mitochondrial transport, exacerbated neuronal apoptosis and energy 
deficit, and further aggravated brain edema and neurological 
dysfunction in rats. These findings suggested that Miro1 might 
provide neuroprotective effects through augmented mitochondrial 
transport. Our team explored the role of mitochondrial transport-
associated Armcx1  in TBI (Lu D. et  al., 2023). It was found that 
Armcx1 expression was decreased in cortical tissues of TBI mice, and 
overexpression of it improved neuronal mitochondrial status, 
attenuated apoptosis, and was associated with better behavioral 
performance. Again, the critical role of axonal mitochondrial 
transport in secondary injury after TBI is emphasized. Dementia 
pugilistica (DP) is a neuropathological alteration following chronic 
TBI that manifests as a decline in cognitive function. An earlier study 
suggested that kinesin and dynein levels were significantly decreased 
in DP patients. The limited evidence suggests a potential association 
of axonal mitochondrial transport impairment with TBI. More 
in-depth studies are urgently needed to help us further assess such an 
important topic.

9.2. Traumatic spinal cord injury

Traumatic spinal cord injury (SCI) occurs when an external force 
damages the spinal cord and leads to neurological dysfunction and 
disability, with traffic accidents, accidental falls, and violent events as 
the common causes (Wagner et al., 2018; Freund et al., 2019). Primary 
injury results from the initial mechanical force on the spinal cord and 

https://doi.org/10.3389/fnins.2023.1268883
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lu et al. 10.3389/fnins.2023.1268883

Frontiers in Neuroscience 09 frontiersin.org

leads to glutamate excitotoxicity, oxidative stress, breakdown of the 
brain-spinal cord barrier (BSCB), demyelination, ischemia, and 
edema (Hellenbrand et al., 2021; Ribeiro et al., 2023). This process 
initiates a secondary injury cascade that further causes cell death and 
spinal cord injury. The spinal cord primarily comprises upstream and 
downstream conduction bundles, that is, long axonal bundles of 
numerous sensory/motor neurons (Han et al., 2020). The critical role 
of axonal transport disorders in spinal cord injury is, therefore, self-
explanatory. In a mouse model of spinal cord injury, microtubule 
activity at the proximal end of the dissection is dramatically increased. 
It develops into retractile bulbs within days, with disorganized polarity 
of the microtubules inside (Ertürk et al., 2007; Kleele et al., 2014). In 
this context, the transport of organelles such as mitochondria is 
disturbed and accumulates at the cut-off ends. Using paclitaxel, a 
microtubule stabilizer, attenuates axonal damage and axon bulb 
formation in spinal cord transected mice and promotes functional 
recovery (Ertürk et al., 2007; Hellal et al., 2011; Kleele et al., 2014). 
Enhanced mitochondrial transport to support energy demand 
promotes recovery of injured axons, as demonstrated in SNPH 
knockout mice (Zhou et al., 2016). Another article reported the role 
of SNPH in this field (Han et al., 2020). The authors discovered that 
enhancing axonal mitochondrial transport by deleting SNPH restored 
injury-induced mitochondrial depolarization. Enhanced regeneration 
of corticospinal tracts (CST) passing through a spinal cord lesion, 
accelerated regrowth of monoaminergic axons across a transection 
gap, and increased compensatory sprouting of uninjured CST in 
SNPH−/− mice were found in three mouse models, respectively. 
Axonal regeneration involves reconstruction of the cytoskeleton, 
synthesis, transport of raw materials, and adequate energy supply to 
form functional growth cones (Lu Q. et al., 2023). It is reasonable to 
believe that an in-depth study on mitochondrial transport will be an 
essential foundation for future SCI repair.

9.3. Spontaneous intracerebral hemorrhage

Spontaneous intracerebral hemorrhage (ICH), a rupture of a 
blood vessel in the brain parenchyma, is the leading cause of death and 
disability in adults worldwide (Ikram et al., 2012; Kirshner and Schrag, 
2021). Secondary injuries induced by ICH lead to pathological 
changes such as neuronal death and axonal damage (Wagner, 2007; 
Sangha and Gonzales, 2011). Recently, an article was published 
reporting the effect of Miro1 on secondary injury after ICH (Li et al., 
2021). Overexpression of Miro1 ameliorated MMP depolarization and 
reduced neuronal damage by promoting mitochondrial transport and 
distribution, which was validated in cultured oxyhemoglobin 
(OxyHb)-treated neurons. MEC17 is a specific α-microtubulin 
acetyltransferase that catalyzes α-microtubulin acetylation (Li and 
Yang, 2015). Another research demonstrated that mitochondria in 
neuronal axons and dendrites preferentially bind to acetylated 
α-microtubulin. α-microtubulin acetylation induced by MEC17 
attenuated axonal injury in ICH mice via restoring mitochondrial 
transport, protecting the integrity of CSTs, and thus promoting fine 
motor redevelopment (Yang et al., 2022). Netrin −1 is thought to be a 
diffusible chemokine that attracts or repels axons (Salinas, 2003). In 
2018, one team from China reported that modulation of KIF1A-
Netrin-1 potentially exerts neuroprotective effects on secondary brain 

injury after ICH (Wang et  al., 2017). Another study by Xu et  al. 
suggested that SNPH knockdown combined with Armcx1 
overexpression protected perihematoma brain cells from death and 
improved neurobehavioral deficits in mice. Considering the complex 
mechanisms of secondary injury, the above studies targeting 
mitochondrial transport after ICH provide minimal evidence, and 
more comprehensive and in-depth studies are urgently needed to 
clarify the underlying mechanisms.

9.4. Ischemic stroke

Ischemic stroke refers to the narrowing or occlusion of cerebral 
arteries caused by cerebral thrombosis or dislodgement of emboli from 
other parts of the circulation, resulting in reduced or even blocked 
cerebral blood flow, which in turn causes ischemia and hypoxia or even 
necrosis of brain tissue. Ischemic stroke accounts for the primary type 
of stroke and can cause functional deficits in the corresponding areas, 
impaired consciousness, and even death (Herpich and Rincon, 2020; 
Mendelson and Prabhakaran, 2021). Current therapies are mainly 
based on recanalizing occluded blood vessels, which is insufficient or 
unavailable for many patients (Wang L. et  al., 2021). In oxygen–
glucose-deprived neurons, axonal damage is attenuated by enhanced 
retrograde transport, which may be  attributed to mitochondrial 
autophagy removing harmful mitochondria (Zheng Y. et al., 2019). The 
role of HIF-1α in ischemic injury was reported recently (Cao et al., 
2022). OGD/R increased HIF-1α expression, negatively regulating 
miR-20a-5p expression by targeting its promoter. Meanwhile, 
miR-20a-5p directly targets the untranslated region of KIF5A mRNA 
and inhibits its translation. Ultimately, HIF-1α promotes the expression 
of KIF5A. The critical role of KIF5A in the anterograde transport of 
axonal mitochondria has been described previously. It can be inferred 
that the upregulation of transport motor expression after ischemic 
injury is a remedial measure by neurons to rescue energy depletion. 
However, there is considerable doubt as to how much this upregulation 
can help. Given the lack of evidence, a comprehensive evaluation of this 
topic is not yet possible.

10. Summary and prospects

Mitochondrial transport is essential for maintaining neuronal 
homeostasis due to the specificity of neuronal polarization morphology 
and its high demand for energy consumption. In the present context, 
this importance is manifested in at least two aspects: supplying energy 
for axonal repair and removing damaged mitochondria through 
somatic autophagy. However, our understanding of this area is still 
limited, and many unanswered questions still haunt us. For example, 
how mitochondria coordinate bidirectional transport of motor 
proteins, how mitochondrial axonal transport can be  precisely 
coordinated between microtubules and actin microfilaments, and how 
to coordinate mitochondrial transport with other mitochondrial 
quality control mechanisms such as mitochondrial autophagy and 
fusion when mitochondria are damaged. Moreover, in addition to 
mitochondrial transport, the reconstruction of axons requires various 
cytoskeletal building blocks, and the generation/transport of these 
accessories is also an issue that must be considered.
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Nevertheless, this field is currently gaining more and more 
scholarly attention. Acute neurological diseases often initiate rapidly 
and represent a sudden energy failure. Therefore, attempts at energy 
salvage, such as mitochondrial transport, are particularly critical. 
Unfortunately, the current understanding of the mechanism is far 
from satisfactory. As related research progresses, our knowledge of 
mitochondrial transport will gradually improve soon, and the 
development of therapies targeting mitochondrial transport will be on 
the agenda.
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