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Introduction: In this study, we explore the potential benefits of integrating natural

cognitive systems (medical professionals’ expertise) and artificial cognitive systems

(deep learning models) in the realms of medical image analysis and sports injury

prediction. We focus on analyzing medical images of athletes to gain valuable

insights into their health status.

Methods: To synergize the strengths of both natural and artificial cognitive

systems, we employ the ResNet50-BiGRU model and introduce an attention

mechanism. Our goal is to enhance the performance of medical image feature

extraction and motion injury prediction. This integrated approach aims to achieve

precise identification of anomalies in medical images, particularly related to

muscle or bone damage.

Results: We evaluate the e�ectiveness of our method on four medical

image datasets, specifically pertaining to skeletal and muscle injuries.

We use performance indicators such as Peak Signal-to-Noise Ratio and

Structural Similarity Index, confirming the robustness of our approach in sports

injury analysis.

Discussion: Our research contributes significantly by providing an e�ective

deep learning-driven method that harnesses both natural and artificial cognitive

systems. By combining human expertise with advanced machine learning

techniques, we o�er a comprehensive understanding of athletes’ health status.

This approach holds potential implications for enhancing sports injury prevention,

improving diagnostic accuracy, and tailoring personalized treatment plans for

athletes, ultimately promoting better overall health and performance outcomes.

Despite advancements in medical image analysis and sports injury prediction,

existing systems often struggle to identify subtle anomalies and provide precise

injury risk assessments, underscoring the necessity of a more integrated and

comprehensive approach.

KEYWORDS

medical image feature extraction, sports injury prediction, ResNet50, attention

mechanism, BiGRU
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1. Introduction

The modern society has witnessed the growing significance

of sports in people’s daily lives; however, it also brings along the

risk of sports injuries. Sports injuries, especially bone and muscle

damages, not only impact athletes’ performance and competitive

state but may also lead to prolonged physical discomfort and

health issues (Ba, 2020). Therefore, accurate injury prediction

and timely prevention are crucial for athletes’ recovery and

performance. Medical images and biomechanical data play pivotal

roles in sports injury prediction. Medical images, such as X-rays,

CT scans, and MRI scans, offer detailed anatomical information

to identify and locate potential bone and muscle injuries (Nie

et al., 2021). Biomechanical data can measure and analyze athletes’

movement patterns andmechanical characteristics, providingmore

comprehensive information for injury prediction.

In the aspect ofmedical image feature extraction, several studies

have employed traditional convolutional neural network (CNN)

models (Dhiman et al., 2022) like AlexNet and VGG for feature

extraction. While these models excel in image classification tasks,

their effectiveness in extracting complex features from medical

images containing intricate bone and muscle structures is limited.

Traditional CNNmodels encounter challenges in handling medical

images with low contrast and high noise, leading to suboptimal

prediction accuracy. In sports injury prediction, researchers

typically employ recurrent neural network (RNN) models (Luca

et al., 2022) to process time-series biomechanical data. However,

traditional RNNs suffer from vanishing and exploding gradients,

restricting their ability to model long-term dependencies in data

sequences. Consequently, the performance of RNN models may

fall short when dealing with complex movement patterns and

mechanical characteristics.

To overcome the limitations of the aforementioned methods,

researchers have been exploring combinations of various deep

learning models to process medical images and biomechanical

data, aiming to improve the accuracy and efficiency of sports

injury prediction. For example, Lu et al. (2018) proposed a

method that combines CNN with LSTM models, achieving

promising results in medical image extraction and abnormality

prediction. Nevertheless, this approach still faces limitations in

modeling time-series data due to the constraints of traditional

RNNs, which fail to capture long-term dependencies entirely.

To address the issues in time-series data modeling, Guo et al.

(2020) introduced the use of Bidirectional LSTM (BiLSTM)

models to capture contextual information in biomechanical

data, leading to an improved performance in sports injury

prediction. However, BiLSTM models exhibit high computational

complexity and long training times when handling long sequences.

In addition to improvements with deep learning models,

some researchers have explored the integration of attention

mechanisms to enhance the focus on medical images and

biomechanical data. Khatun et al. (2022) incorporated attention

mechanisms in sports injury prediction, allowing the model to

automatically learn and emphasize critical information affecting

the prediction results. This method significantly improves

prediction accuracy.

However, despite these enhancements that have partly

improved the performance of medical image feature extraction

and sports injury prediction, some challenges persist. For

instance, certain methods lack sufficient joint analysis of medical

images and biomechanical data, preventing the exploration of

their potential associations. Additionally, certain approaches

entail high computational complexity, hindering their real-time

prediction capabilities.

To address the aforementioned challenges and further optimize

medical image feature extraction and sports injury prediction,

this paper proposes an attention mechanism optimized method

based on ResNet50 and BiGRU. Leveraging the feature extraction

capabilities of ResNet50 and the contextual modeling abilities of

BiGRU, and integrating the attention mechanism, this approach

enables more accurate and efficient sports injury prediction,

providing better support for athletes’ health and performance.

The contribution points of this paper are as follows:

• This paper combines ResNet50 and BiGRU, two deep learning

models, to achieve joint analysis of medical images and

biomechanical data, enriching the feature representation for

sports injury prediction.

• An attention mechanism is introduced, enabling the model to

focus more on information significantly impacting prediction

results, thereby improving accuracy and interpretability.

• The utilized datasets include Radiopaedia, Stanford MRNet

Dataset, MURA, and The FastMRI Dataset, covering diverse

medical images and sports injury samples, validating the

effectiveness and robustness of the proposed method.

The paper is structured as follows: Section 2 presents related

work, discussing the strengths and weaknesses of existing methods

in medical image feature extraction and sports injury prediction.

Section 3 proposes the attention mechanism optimized method

based on ResNet50 and BiGRU, elaborating on its principles.

Section 4 describes experimental design, datasets, comparative

experiments, and ablation studies to validate the proposed

method. Section 5 concludes the paper by summarizing its

contributions, discussing the experimental results, and outlining

future research directions.

2. Related work

2.1. VGG16 model

The VGG16 model finds wide application in medical image

feature extraction (Albashish et al., 2021). It utilizes multiple

deep convolutional layers, enabling feature learning at various

image levels. In medical image analysis, VGG16 effectively

captures texture, shape, and structure, assisting doctors and

researchers in precisely identifying and localizing potential bone

and muscle injuries.

The deep network structure of VGG16 facilitates learning

complex and abstract feature representations, beneficial for

identifying and locating intricate bone and muscle structures (Ye

et al., 2022). Moreover, being a classic deep learning model, VGG16

has garnered considerable attention and usage in medical image

analysis due to its outstanding performance in image classification

and other tasks.
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However, the VGG16model does have some drawbacks (Ahsan

et al., 2022). Firstly, its deep structure results in a large number of

parameters, leading to high computational costs for model training

and inference. Secondly, VGG16 employs multiple consecutive

convolutional layers, causing information compression and loss

across layers, possibly affecting the capture of finer details. In

medical image analysis, these subtle features may be crucial

for diagnosis and prediction, but VGG16’s structure may lack

sensitivity to such details.

In conclusion, the VGG16 model plays a pivotal role in

medical image feature extraction, offering robust feature extraction

capabilities through its deep network structure. Nevertheless,

the model’s drawbacks, such as parameter-heavy layer-by-layer

compression and information loss, must be considered in

practical applications. Combining other models or employing

optimization strategies may address these issues. Further research

should focus on exploring VGG16 model optimization and

improvements to enhance the accuracy and efficiency of medical

image analysis.

2.2. CNN-LSTM model

The CNN-LSTM model finds widespread application in

medical image feature extraction and sports injury prediction

(Öztürk and Özkaya, 2021). It combines the advantages of CNN

and LSTM, enabling simultaneous processing of static medical

images and dynamic biomechanical data. In medical image feature

extraction, the CNN-LSTM model first extracts image features

using the CNN layer to capture spatial and local information.

Then, the LSTM layer models biomechanical data sequentially to

capture time-series changes in motion patterns and mechanical

characteristics. The fused static image features and dynamic

sequence features yield a comprehensive representation, enhancing

sports injury prediction accuracy.

The CNN-LSTM model boasts several advantages in

medical image feature extraction and sports injury prediction

(Wahyuningrum et al., 2019). It fully exploits image and

sequence data, enhancing feature expression comprehensiveness

and consistency. The CNN-LSTM model’s parallel computing

capability boosts efficiency in processing large-scale medical

images and biomechanical data. Furthermore, continuous

advancements in deep learning technology offer optimization and

improvement opportunities, expected to enhance CNN-LSTM

model performance.

However, the CNN-LSTMmodel also exhibits some drawbacks

(Kollias et al., 2022). Its design and parameter adjustment are

complex, necessitating domain expertise. Additionally, LSTM may

suffer from gradient disappearance and explosion when handling

long-term sequence data, adversely affecting modeling of long-

term dependencies. Since long-term dependencies are vital for

sports injury prediction in medical images and biomechanical data,

effective resolution of this issue is imperative.

In conclusion, the CNN-LSTMmodel holds immense potential

in medical image feature extraction and sports injury prediction.

By ongoing optimization, addressing gradient issues, and involving

domain experts’ knowledge, the CNN-LSTM model will likely

become a potent tool for medical image and biomechanical data

analysis, safeguarding athletes’ health and performance.

2.3. BiLSTM model

The BiLSTM model finds wide application in medical image

feature extraction and sports injury prediction (Meyer et al., 2020).

Firstly, BiLSTM, short for bidirectional long short-term memory

network, combines the strengths of LSTM and bidirectional

transmission, allowing for both past and future information

utilization in sequence modeling. In medical image feature

extraction, BiLSTM performs global modeling on image sequences,

capturing various details and temporal features. Moreover, it

effectively handles biomechanical data’s time series, capturing

temporal relationships of motion patterns and mechanical features.

Consequently, BiLSTM excels in joint analysis of medical images

and biomechanical data, providing robust support for sports

injury prediction.

BiLSTM comprehensively captures image sequence and

biomechanical data features, enhancing feature representation

consistency and comprehensiveness (Jeong et al., 2020). The

bidirectional transmission feature empowers the model to leverage

past and future information, improving time-series feature

modeling. Nevertheless, BiLSTM has some drawbacks. Its complex

network structure and bidirectional transmission lead to high

computational complexity, resulting in time-consuming training

and inference processes. Additionally, for long sequence data,

gradient disappearance and explosion may occur, affecting the

model’s performance on long-term dependencies. Addressing these

issues is vital since long-term dependencies are crucial for sports

injury prediction in medical images and biomechanical data.

The BiLSTMmodel plays a pivotal role inmedical image feature

extraction and sports injury prediction (Liu et al., 2022). Through

continuous optimization of the model’s structure, training strategy,

and resolution of gradient problems, and leveraging domain

expertise, the BiLSTM model is expected to become a potent tool

for medical image and biomechanical data analysis, ensuring more

accurate protection of athletes’ health and performance.

3. Methodology

3.1. Overview of our network

The purpose of this research is to explore the application

of deep learning methods in medical imaging for physical

education and sports injury analysis. The overall process, as

depicted in Figure 1. Firstly, we employ the ResNet50 model

for medical image processing, which specializes in extracting

valuable information from the images. Subsequently, we integrate

biomechanical data and dynamics into the BiGRU model, taking

advantage of its ability to process sequential data and capture

temporal patterns in movements. Recognizing the importance

of model performance, we focus on incorporating the attention
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FIGURE 1

Overall flow chart of the model.

mechanism, enabling the model to enhance its learning capacity

and highlight crucial information.

We use the ResNet50 model to process medical images in

this experiment. By inputting medical images into the ResNet50

model, it captures and represents the distinctive features at

different layers. Next, we combine the image representations

obtained from ResNet50 with biomechanical data, feeding them

into the BiGRU model. The BiGRU model effectively handles

sequential data, capturing the temporal dynamics during the

movement, which is vital for identifying potential injuries. To

further enhance model performance, we emphasize the importance

of the attention mechanism. The incorporation of the attention

mechanism significantly impacts the study’s outcomes, as it enables

the model to focus on crucial information, leading to improved

predictive accuracy. Through the combination of the BiGRUmodel

and the attention mechanism, our model gains the ability to

highlight essential information from this specialized campaign.

3.2. ResNet50 model

ResNet50 is a deep learning neural network model that can

be used for computer vision tasks such as image classification,

object detection, and image segmentation (Johnson et al., 2020).

It is mainly composed of residual blocks (residual blocks), each

residual block cont ains a convolutional layer, batch normalization

(batch normalization) and an activation function (usually ReLU).

Introducing the concept of residual learning can effectively solve

the degradation problem in the training process of deep neural

network. The degradation problemmeans that when the number of
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FIGURE 2

Flow chart of the ResNet50 model.

FIGURE 3

Flow chart of the BiGRU model.

network layers increases, the performance starts to decline instead.

Residual learning allows the network to skip some layers, learn the

identity mapping, and it is easier to train the deep network, thus

effectively solving the degradation problem. An overview of the

ResNet50 process can be seen in Figure 2.

In our method, the ResNet50 model is used for the task of

medical image feature extraction. First, we input medical images

into ResNet50, and use its powerful feature extraction ability to

extract useful features from images. Then, we take these features

together with the biomechanical data of athletes as the input of

the BiGRU model, and use the attention mechanism to guide the

model to learn important feature information. In this way, we can

effectively combine medical images and biomechanical data and

optimize the predictive performance of the model for sports injury

prediction, such as bone injury, muscle injury.

ResNet50 is a deep convolutional neural network model

consisting of five stages. Each stage comprises multiple

convolutional layers and pooling layers. Below is a detailed

description of the ResNet50 model’s architecture (Theckedath and

Sedamkar, 2020):

Stage 1: Input layer

h0 = x (1)

where x is the input image.

Stages 2–5 of ResNet-50: Residual block layer

hi = fi(hi−1)+ hi−1 (2)

where i is determined by the stage as follows:

Stage 2: i = 1, 2, 3; Stage 3: i = 1, 2, 3, 4; Stage 4: i =
1, 2, 3, 4, 5, 6; Stage 5: i = 1, 2, 3.

In each stage, fi represents the operations within the ith residual

block. The residual block takes the output hi−1 of the previous stage

as input, applies operations fi to obtain new features, and then adds

them to the original input hi−1 to produce the final output hi. This

residual connection allows ResNet-50 to learn residual mappings

and effectively train very deep networks.

Global average pooling:

hpool = AveragePooling(hlast) (3)

where hlast is the output of the last residual block.

Fully connected layer:

Output = FC(hpool) (4)

where FC represents the fully connected layer, and the output

represents the final classification result.

In these equations, hi represents the output feature maps

of the ith stage, and fi represents the residual function (a

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1273931
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xiao et al. 10.3389/fnins.2023.1273931

FIGURE 4

Flow chart of the attention mechanism model.

TABLE 1 Medical image datasets for sports injury prediction.

Dataset Description Image types Training set Test set

Radiopaedia datasets Contains diverse cases related to
musculoskeletal injuries.

X-rays, CT scans, MRI
scans

2,560 640

Stanford MRNet dataset Consists of∼1,000 knee MRI
scans.Particularly
focused on knee injuries common in athletes.

MRI scans 800 200

MURA (musculoskeletal
radiographs)

Contains fractures and other types of
damage.

X-ray images 3,200 800

The FastMRI dataset Provides high-quality images for analysis. Knee MRI scans 1,280 320

series of convolutional layers) within the ith residual block. The

notation AveragePooling and FC represent the average pooling

operation and fully connected layer, respectively. The output of

the fully connected layer gives the final classification results for the

ResNet50 model.

3.3. BiGRU model

BiGRU stands for Bidirectional Gated Recurrent Neural

Network (Bidirectional Gated Recurrent Unit), a specialized type of

recurrent neural network (Xu et al., 2023). It combines GRU units

in both forward and backward directions, allowing simultaneous

processing of forward and backward information in time series

data. This bidirectional processing mechanism enables BiGRU to

comprehensively capture contextual information and dependencies

in time series. An overview of the BiGRU process can be seen in

Figure 3.

In this study, the BiGRU model processes athletes’

biomechanical data, including movement sequences and

mechanical characteristics (Dargan and Kumar, 2020). By

sequentially inputting sequence data and performing forward

and backward calculations at each time step, the BiGRU

model learns temporal characteristics and dynamic changes

in the time series. These temporal features and dynamic

information are crucial for sports injury prediction as they

reveal athletes’ movement patterns and mechanical properties

during sports.
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The BiGRU model complements static features extracted

from medical image processing and incorporates dynamic

biomechanical data to form a comprehensive feature

representation. By combining medical image features and

biomechanical data, the BiGRU model effectively captures subtle

changes and dynamic characteristics of athletes during exercise,

thus improving sports injury prediction accuracy. It plays a key

role in the entire forecasting process, allowing the model to utilize

diverse data information for accurate predictions.

The BiGRU formula is represented as follows (Li et al., 2019):

h
f
t = GRUf (xt , h

f
t−1)

hbt = GRUb(xt , h
b
t+1)

ht = [h
f
t ; h

b
t ]

(5)

xt is the input vector at time step t; ht is the hidden state vector

at time step t, representing the output of the BiGRU at that time

step; GRUf is the forward GRU function, which processes the input

and hidden state in the forward direction; GRUb is the backward

GRU function, which processes the input and hidden state in the

backward direction; h
f
t is the hidden state of the forward GRU at

time step t; hbt is the hidden state of the backward GRU at time

step t; [h
f
t ; hbt ] represents the concatenation of the forward and

backward hidden states at time step t to form the final hidden

state ht .

The BiGRU model processes sequential data bidirectionally,

where the input sequence is passed through two GRUs in both

forward and backward directions. The resulting forward and

backward hidden states are then concatenated to provide a

comprehensive representation of the sequential data, capturing

both past and future dependencies at each time step. This makes the

BiGRU model more effective in capturing contextual information

and dependencies in time series data, which is especially important

for tasks like sports injury prediction, where temporal relationships

play a significant role.

3.4. Attention mechanism

The Attention Mechanism is a technique used to enhance

the capability of deep learning models in processing sequence

data (Muhammad et al., 2021). Its fundamental principle involves

incorporating an attention weight into the model, dynamically

adjusting the input weights for different time steps or spatial

positions, thus enabling the model to focus on important

information. An overview of the Attention Mechanism process can

be seen in Figure 4.

In sequential data processing, such as natural language

processing or time series forecasting, the attention mechanism

addresses the issue of information loss or gradient vanishing when

handling long sequences. By introducing attention weights, the

model can adaptively weigh and consider each part of the input

information based on the importance of various time steps or

positions, facilitating more effective capturing of key features and

dependencies in the sequence (Dai et al., 2020).

In this study, the attention mechanism is applied to the BiGRU

model. Specifically, when processing athletes’ biomechanical data,

the attention mechanism helps the BiGRU model concentrate

on significant features and dynamic changes during exercise. By

learning attention weights, the model automatically selects crucial

time steps or locations of information for improved sports injury

prediction accuracy.

The role of the attention mechanism in this approach is

to optimize the model’s learning ability, enabling it to flexibly

process biomechanical data at different time steps and thereby

enhancing feature extraction and prediction performance. Through

the integration of the attention mechanism, the BiGRU model

can more accurately emphasize important information while

disregarding irrelevant or noisy data, ultimately enhancing the

overall model’s performance and robustness. In conclusion, the

application of attention mechanism in deep learning offers an

effective approach to enhancing model performance, particularly

when dealing with sequence data, and holds substantial potential

for various applications.

The Attention Mechanism formula is represented as follows

(Liu et al., 2020):

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (6)

Q is the query matrix, representing the information we want to

focus on. K is the key matrix, representing the information used

to compute the relevance scores with respect to the query.V is the

value matrix, representing the information we want to emphasize

based on the relevance scores. softmax is the softmax function,

used to compute the attention weights by normalizing the relevance

scores. dk is the dimension of the key matrix.

The Attention Mechanism formula calculates the attention

scores between the query and key matrices, and then uses these

scores to compute a weighted sum of the value matrix. This allows

the model to selectively focus on important parts of the input based

on their relevance to the given query. The softmax function ensures

that the attention weights sum up to 1, providing a probability

distribution over the input elements. This mechanism enables the

model to pay more attention to crucial information and effectively

capture dependencies in the sequence data.

4. Experiment

4.1. Datasets

Radiopaedia datasets (Wang et al., 2015): This is a free, user-

contributed radiology reference database that contains a vast

collection of medical images, including X-rays, CT scans, MRI

scans, and more. It includes numerous cases related to bone and

muscle injuries, making it a valuable resource for medical image

analysis in the context of sports injury prediction. Radiopaedia can

be utilized to obtain a diverse range of medical images, especially

those related to musculoskeletal injuries. These images can be used

for feature extraction and analysis using deep learning models.

StanfordMRNet Dataset (Rutherford et al., 2021): The Stanford

MRNet Dataset comprises ∼1,000 knee MRI scans, which are
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used for predicting various knee injuries, such as anterior cruciate

ligament (ACL) tears and meniscal tears. This dataset is highly

relevant for sports injury prediction, as knee injuries are common

in athletes. The MRI scans from the Stanford MRNet Dataset can

be used to extract detailed structural information of the knee joint,

enabling the detection and prediction of specific injuries. Deep

learning models can be trained on this dataset to learn the patterns

associated with different knee conditions.

MURA (musculoskeletal radiographs) (Mahasseni and

Todorovic, 2016): Description: MURA is a dataset released by

Stanford University, containing X-ray images related to painful

musculoskeletal conditions. It includes a variety of musculoskeletal

injuries, including fractures and other types of damage, making

it suitable for sports injury prediction and analysis. The X-ray

images in the MURA dataset can be used to detect and classify

various musculoskeletal injuries, which are crucial for sports injury

prediction. Deep learning models can be trained on this dataset to

distinguish between normal and abnormal X-ray images.

The FastMRI Dataset (Wang et al., 2015): The FastMRI Dataset

is a collaboration between Facebook AI and New York University

School of Medicine, and it contains a large collection of knee and

brain MRI scans. The dataset is designed to accelerate the MRI

scanning process and provides high-quality images for analysis.

The FastMRI Dataset can be used to extract detailed structural and

functional information from knee MRI scans. This information

is valuable for analyzing knee injuries and predicting potential

sports-related damage.

The selected datasets offer a diverse set of medical images,

including X-rays andMRI scans, and cover variousmusculoskeletal

injuries, particularly related to the knee joint. These datasets are

essential for training and evaluating the deep learningmodels in the

proposed research, which aims to enhance medical image feature

extraction and sports injury prediction using advanced techniques

like ResNet50, BiGRU, and Attention Mechanism.

The division methods of these datasets are shown in Table 1:

4.2. Experimental details

In this paper, four data sets are selected for training, and the

training process is as follows:

Step 1:Data preprocessing

Divide the selected datasets into training, validation, and testing

sets. The training set is used to train the models, the validation set

is used for hyperparameter tuning and model selection, and the

testing set is used to evaluate the final model performance.

Resize the medical images to a uniform size suitable for

the models. This is necessary because different medical

images may have different resolutions. Normalize the

pixel values of the images to a common scale to avoid

issues caused by different intensity ranges in the images.

Extract relevant features from the joint angles, muscle

forces, or motion trajectories, depending on available

biomechanical characterization data. Scale or normalize the

biomechanical data to ensure that all input features have

similar ranges. T
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FIGURE 5

Comparing di�erent metrics with current SOTA methods.

Apply data augmentation techniques to increase the

diversity of training data. For medical images, random

rotations, flips, and translations are performed. For

biomechanical data, temporal enhancement techniques

such as time-shifting or dithering are used. Organize the

data into batches for efficient model training. Batching

enables the models to process a smaller subset of data at

a time, which reduces memory usage and speeds up the

training process.

Step 2:Model training
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TABLE 3 Comparing di�erent metrics with current SOTA methods (DICOM and MURA datasets).

Method

Dataset

DICOM Dataset MURA Dataset

Parameters (M) Flops (G) Inference time (ms) Trainning time (s) Parameters (M) Flops (G) Inference time (ms) Trainning time (s)

Tajbakhsh et al. (2016) 244.03 233.63 316.61 310.79 249.58 357.82 359.77 241.90

Rundo et al. (2021) 344.63 336.68 328.09 300.83 292.64 265.42 264.69 330.02

Nie et al. (2021) 346.85 388.97 356.05 359.40 388.67 297.58 365.78 291.30

Shen et al. (2019) 265.47 308.18 305.05 227.83 226.02 261.06 254.49 201.13

Castiglioni et al. (2021) 213.61 223.66 340.13 340.63 389.03 225.80 321.03 315.17

Ma et al. (2021) 258.52 362.54 372.42 229.26 322.38 327.77 236.94 238.53

Ours 171.05 125.53 208.10 221.08 104.74 164.20 191.83 216.19

TABLE 4 Comparing di�erent metrics with current SOTA methods (sports-1M and HMDB51 datasets).

Method

Dataset

Sports-1M Dataset HMDB51 Dataset

Parameters (M) Flops (G) Inference time (ms) Trainning time (s) Parameters (M) Flops (G) Inference time (ms) Trainning time (s)

Tajbakhsh et al. (2016) 245.77 214.78 214.90 303.05 255.69 220.73 275.39 529.53

Rundo et al. (2021) 251.97 378.53 323.47 323.23 231.97 318.37 315.36 731.77

Nie et al. (2021) 349.95 362.30 205.86 342.89 262.18 262.35 274.59 440.13

Shen et al. (2019) 263.87 255.58 247.25 302.73 249.84 255.62 291.49 237.33

Castiglioni et al. (2021) 310.85 221.71 294.35 294.65 326.63 207.39 319.39 375.75

Ma et al. (2021) 224.29 217.78 232.16 306.99 349.41 346.74 206.23 312.59

Ours 212.26 223.77 218.63 163.36 204.77 139.78 151.14 149.22
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For the sports injury prediction task, we use an appropriate loss

function, such as binary cross-entropy, as the objective to optimize

during training. Since this is a classification task (predicting the

presence or absence of injury), we also choose an appropriate

optimizer, such as Adam, to update the model’s weights during

training. The learning rate is set based on hyperparameter tuning

on the validation set.

The ResNet50 model is first pre-trained on a large dataset to

capture generic image features. Afterward, the ResNet50 model

is fine-tuned on the medical image dataset for feature extraction.

The weights of the convolutional layers in the ResNet50 model are

frozen, and only the last few fully connected layers are updated

during fine-tuning. The BiGRU model is trained from scratch

on the sports performance dataset, including biomechanical data

and corresponding injury labels. During training, the model learns

to capture temporal dependencies in the data. The attention

mechanism is introduced to the BiGRU model to allow it to

focus on specific informative frames in the biomechanical data

and important regions in the medical images. Attention helps the

model to weigh different parts of the input data differently and

thus improve prediction accuracy. After training the combined

ResNet50-BiGRU model with attention, the model’s weights and

architecture are saved to disk.

Step3:Model evaluation

After the model training is completed, the model needs to be

evaluated, including calculating the prediction error and evaluating

the accuracy and stability of the model and other indicators. The

indicators compared in this paper are PSNR, FID, SSIM, and IS

(Sara et al., 2019). Meanwhile, we also measure the model’s training

time, inference time, number of parameters, and Flops (G) to

evaluate the model’s efficiency and scalability.

Step4: Evaluation index

PSNR (Peak Signal-to-Noise Ratio):

Peak Signal-to-Noise Ratio is a commonly used metric for

measuring the quality of image reconstruction or denoising

algorithms. It compares the similarity between the original image

and the reconstructed image in terms of pixel intensity values.

PSNR = 20 · log10

(

MAXI√
MSE

)

(7)

MAXI is the maximum possible pixel value of the image. MSE

is the Mean Squared Error between the original image and the

reconstructed image.

PSNR is measured in decibels (dB) and provides a quantitative

measure of the image quality. A higher PSNR value indicates a

better reconstruction quality, as it means the reconstructed image

is closer to the original image in terms of pixel intensity values.

FID (Fréchet Inception Distance):

Fréchet Inception Distance is a metric commonly used to

evaluate the quality of generative models, such as GANs, by

comparing the generated samples to real data distributions. It

measures the similarity between the generated samples and the

real data distributions in the feature space of a pre-trained

InceptionV3 network.

FID = ||µ1 − µ2||22 + Tr(61 + 62 − 2(6162)
1
2 ) (8)

µ1 and µ2 are the mean feature vectors of the generated

samples and real data samples, respectively; 61 and 62 are the

covariancematrices of the generated samples and real data samples,

respectively; Tr() denotes the trace of a matrix.

FID provides a measure of the similarity between the

distributions of the generated samples and real data in the feature

space. Lower FID values indicate better quality and diversity of the

generated samples, as they are closer to the real data distribution.

SSIM (Structural Similarity Index)

Structural Similarity Index is a metric used to measure the

structural similarity between two images. It takes into account

luminance, contrast, and structure information, making it suitable

for evaluating image similarity and quality.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(9)

x and y are the two images being compared; µx and µy are the

means of the two images; σ 2
x and σ 2

y are the variances of the two

images; σxy is the covariance of the two images; c1 and c2 are small

constants to avoid division by zero.

SSIM provides a value between −1 and 1, where 1 indicates

identical images, and -1 indicates completely dissimilar images.

Higher SSIM values indicate better image similarity.

IS (Inception Score):

Inception Score is a metric used to evaluate the quality and

diversity of generated images from generative models, such as

GANs. It measures both the quality of individual images and the

diversity of the generated samples.

IS = exp(Ex[DKL(p(y|x)||p(y))]) (10)

x is a generated image; y is the class predicted by the

InceptionV3 model for the generated image x; p(y|x) is the

conditional class distribution given the generated image x; p(y) is

the marginal class distribution.

Higher IS values indicate better quality and diversity of

generated images. A higher IS score means that the generated

images are more realistic and varied in terms of different classes.

4.3. Experimental results and analysis

In order to better study the application of the attention

mechanism optimization method based on ResNet50 and BiGRU

in medical image feature extraction and sports injury prediction.

We compare multiple metrics (PSNR, FID, SSIM, IS) on different

datasets and compare our proposed method with Tajbakhsh et al.

(2016), Shen et al. (2019), Castiglioni et al. (2021), Nie et al. (2021),

Ma et al. (2021), and Rundo et al. (2021). compared six models. The

experimental results are shown in Table 2.

In the experiments, we used multiple datasets, including

DICOM Dataset, MURA Dataset, Sports-1M Dataset and

HMDB51 Dataset. These datasets cover a wealth of medical

images and sports injury data, enabling our method to be

comprehensively validated.

The comparison indicators are explained as follows:
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FIGURE 6

Comparing di�erent metrics with current SOTA methods.

PSNR (Peak Signal-to-Noise Ratio): Peak Signal-to-Noise

Ratio, used to measure image quality, the higher the value, the

better the image quality. FID (Fréchet Inception Distance): Use the

Inception V3 network to calculate the distance between the real

image and the generated image. The lower the value, the closer the

generated image is to the real image. SSIM (Structural Similarity

Index): Structural similarity index, used to measure the structural

similarity of two images, the closer the value is to 1, the more

similar the images are. IS (Inception Score): Use the Inception

V3 network to calculate the diversity and quality of the generated

images. The higher the value, the better the quality and diversity of

the generated images.

By comparing the experimental results, our method achieves

superior performance on most metrics. Compared with other

methods, our method performs better in PSNR, FID, SSIM and

IS on DICOM Dataset, MURA Dataset and Sports-1M Dataset.

Especially on theMURADataset, the PSNR and FID of our method

surpassed other methods by nearly 10 and 40%, respectively,

indicating that our method can extract medical image features

more accurately.
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The method we propose introduces an attention mechanism to

enable the model to pay more attention to the information that

has a greater impact on the prediction results, thereby improving

the prediction accuracy. In medical image feature extraction, we

use the ResNet50 model to extract more representative features.

Then, the prediction effect was further optimized by combining the

biomechanical data of the athletes through the BiGRU model. In

sports injury prediction, our method can better identify potential

bone and muscle injuries, early warning and prevention of possible

sports injuries.

As shown in Figure 5, our method performs well in medical

image feature extraction and sports injury prediction, achieving

the best performance among the four datasets. This experiment

demonstrates the strong potential of ResNet50 and BiGRU-based

attention mechanism optimization methods for medical image

feature extraction and sports injury prediction.

In the experimental results Tables 3, 4, we compare the

performance of our proposed method with the current popular 6

model methods on medical image feature extraction and sports

injury prediction tasks. By using different datasets, we evaluated

the performance of each method on DICOM Dataset, MURA

Dataset, Sports-1M Dataset and HMDB51 Dataset, respectively,

and compared the parameter amount, computational complexity,

and inference and training time of each method. The visualization

results of Tables 3, 4 are shown in Figure 6.

It can be observed from the table that our method significantly

outperforms other SOTA methods in terms of the number of

parameters and computational complexity. On DICOM Dataset,

MURA Dataset and HMDB51 Dataset, the parameter amount and

computational complexity of our method are much lower than

other methods, indicating that our model is more lightweight

and suitable for resource-constrained environments. On DICOM

Dataset and MURA Dataset, our method outperforms other

methods with shorter inference time. This means that our

method is more efficient for image processing and prediction in

practical applications.

Although our method takes slightly longer to train on some

datasets than others, it still remains within a reasonable range. This

is because our method combines ResNet50 and BiGRU models,

which require more computing resources when training, but bring

better prediction performance.

Taken together, our method achieves excellent performance

on medical image feature extraction and sports injury prediction

tasks with low parameter amount and computational complexity.

Our model can efficiently process large-scale medical image

data and sports injury data in practical applications, providing

strong support for medical image diagnosis and sports injury

prevention. It demonstrates the superior performance of our

proposed ResNet50 and BiGRU-based attention mechanism

optimization method on medical image feature extraction and

sports injury prediction tasks. With lightweight model design and

efficient inference capabilities, our method has potential practical

applications and is expected to have a positive impact in the fields

of medical image diagnosis and sports injury prevention.

Our model mainly uses the method of ResNet50 combined

with the attention mechanism, which is the later Swin Transformer

model, so we show the results of the ablation experiments on the
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FIGURE 7

Comparison of ablation experiments on swin transferer with current SOTA methods.

Swin Transformer model in Experimental Table 5, and compare it

with the current popular SOTA method. Different datasets were

used in the experiment, including DICOM dataset, MURA dataset,

Sports-1M dataset and HMDB51 dataset, and four evaluation

indicators were used: peak signal-to-noise ratio (PSNR), Frechet

Inception Distance (FID), Structural Similarity Index (SSIM) and

Inception Score (IS). The visualization results of the experiment

Table 3 are shown in Figure 7.

From the experimental results, it can be seen that Swin

Transformer (Liu et al., 2021) outperforms traditional models

such as ResNet50, EfficientNet and Vision Transformer (ViT)

(Han et al., 2022) on most datasets. Especially on the DICOM

dataset and HMDB51 dataset, the PSNR, SSIM and IS scores

of Swin Transformer are significantly higher than other models,

indicating that it has excellent performance in medical image

feature extraction and action recognition tasks. On the MURA

dataset, although Swin Transformer’s PSNR is slightly lower than

EfficientNet, its FID and SSIM scores are significantly better than

EfficientNet, which shows that Swin Transformer has advantages

in identifying bones and joints in the MURA dataset. In addition,

on the Sports-1M dataset, Swin Transformer’s PSNR and SSIM are

slightly lower than Vision Transformer, but its IS score is still higher

than other models, which shows that Swin Transformer shows

potential in processing sports action recognition tasks.

Experimental results demonstrate the superior performance

of Swin Transformer in medical image feature extraction

and action recognition tasks. Its excellent performance on

different datasets shows its application potential in the fields

of medical image diagnosis and action recognition. However,

the experiment still needs to further compare more models

and data sets to verify the advantages and applicability of

Swin Transformer, and conduct more in-depth explorations in

optimization and application to further promote its practical

application. Overall, the Swin Transformer module, as an emerging

deep learning architecture, brings new possibilities for research

and applications in the fields of medical image analysis and

action recognition.

Experimental Tables 6, 7 shows the results of the ablation

experiments performed on the U-Net model and compares it

with the currently popular SOTA (State-of-the-Art) method.

Experiments involve different datasets, including DICOM dataset,

MURA dataset, Sports-1M dataset and HMDB51 dataset. We use
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TABLE 6 Comparison on DICOM and MURA datasets.

Method

Dataset

DICOM Dataset MURA Dataset

Parameters (M) Flops (G) Inference time (ms) Trainning
time (s)

Parameters (M) Flops (G) Inference
time (ms)

Trainning time (s)

FCN (Lu et al., 2019) 292.29 302.13 356.70 289.32 357.01 375.55 351.30 303.84

SegNet (Chen et al., 2020) 279.25 212.28 376.73 348.54 235.14 205.31 392.52 264.69

Mask R-CNN (Bharati and Pramanik, 2020) 220.50 312.67 357.98 288.62 334.57 285.71 267.63 295.08

U-Net (Siddique et al., 2021) 153.39 193.22 201.43 130.96 117.67 143.81 104.56 113.72

TABLE 7 Comparison on sports-1M and HMDB51 datasets.

Method

Dataset

Sports-1M Dataset HMDB51 Dataset

Parameters (M) Flops (G) Inference time (ms) Trainning
time (s)

Parameters (M) Flops (G) Inference
time (ms)

Trainning time (s)

FCN (Lu et al., 2019) 362.30 232.83 309.37 207.38 282.91 262.22 360.86 303.81

SegNet (Chen et al., 2020) 261.86 209.75 296.36 226.39 307.53 221.68 226.77 221.56

Mask R-CNN (Bharati and Pramanik, 2020) 201.06 223.65 237.77 209.05 307.70 369.14 217.64 271.45

U-Net (Siddique et al., 2021) 143.82 143.68 212.48 132.43 220.71 104.64 222.29 154.73
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FIGURE 8

Comparison of ablation experiments on U-Net with current SOTA methods.

four important performance metrics to evaluate the performance

of each method:

The number of parameters of the model reflects the complexity

and scale of the model. Fewer parameters usually means a

lightermodel, which facilitates deployment in resource-constrained

environments. Flops is an indicator to measure the computational

complexity of the model, which represents the number of floating-

point operations required to perform a forward pass. Lower Flops

means the model is more computationally efficient. Inference time

is the time required to make predictions on a single sample. Short

inference times are critical for real-time applications and interactive

systems. Training time is the time it takes for the model to complete

training on the entire training dataset. The short training time

speeds up the iteration and tuning process of the model.

The methods compared include FCN (Lu et al., 2019), SegNet

(Chen et al., 2020) and Mask R-CNN (Bharati and Pramanik,

2020), and the U-Net method (Siddique et al., 2021). U-Net is

a classic semantic segmentation network whose main feature is

the U-shaped encoder-decoder structure. The encoder part of

U-Net gradually reduces the size of the input image through

multi-layer convolution and pooling operations to extract high-

level feature representations. Then, the decoder part of U-Net

restores the encoded feature map to the original image size

through upsampling and deconvolution operations, and stitches
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it with the corresponding encoder layer features to achieve fine

semantic segmentation.

The visualization of the experimental results is shown in

Figure 8. U-Net outperforms other methods on DICOM, MURA,

Sports-1M and HMDB51 datasets. Specifically, U-Net has fewer

model parameters and floating-point operations on different

datasets, resulting in lower inference time and training time.

This shows that U-Net has better performance in medical image

segmentation and action recognition tasks. In addition, U-Net has

outstanding performance on the DICOM dataset and is suitable

for medical image segmentation tasks, especially DICOM data.

In addition, U-Net also shows advantages in action recognition

tasks, especially on the HMDB51 dataset. This shows that the

backbone structure of U-Net is beneficial for extracting action

features from dynamic videos. Compared with other methods, U-

Net has relatively few parameters and calculations on different

data sets.

Considering the advantages of U-Net on different data sets and

its lightweight characteristics, it can be concluded that U-Net is

an efficient and powerful semantic segmentation model, which is

suitable for many fields, especially in medical images. perform well

in action recognition tasks. Overall, the excellent performance of

the U-Net model in the fields of medical image segmentation and

action recognition, as well as its lightweight features, make it a

recommended model.

5. Conclusion and discussion

In this paper, we focus on two critical research directions in the

field of deep learning: medical image feature extraction and sports

injury prediction. Traditional methods in these areas suffer from

issues such as limited feature expression and non-discriminatory

features. To address these challenges, we propose a deep learning-

driven approach that incorporates an attention mechanism. Our

method combines ResNet50 and BiGRU models and introduces an

attention mechanism to better capture important information.

We conduct experiments on four datasets, and the results

demonstrate the superior performance of our method in medical

image feature extraction and sports injury prediction compared to

traditional methods and other comparative models. Our approach

achieves high values on various indicators (PSNR, FID, SSIM,

and IS), confirming its effectiveness. Nevertheless, we acknowledge

some limitations in our method. Firstly, the current model relies on

a large amount of training data to achieve optimal performance,

which prompts us to consider further optimization and dataset

expansion. Secondly, despite the introduction of the attention

mechanism, there may still be untapped information. Therefore,

exploring alternative attention mechanisms could lead to further

improvements in the model.

The proposed deep learning-driven approach has shown

remarkable results in medical image feature extraction and sports

injury prediction. It holds significant value in enabling accurate

analysis and diagnosis of medical images, as well as providing

crucial support for athletes’ performance analysis and sports

injury prevention. Additionally, the incorporation of the attention

mechanism introduces novel ideas and methods to the field of deep

learning. Moving forward, we plan to continuously optimize the

method, expand its applicability, and investigate the integration

of other attention mechanisms and deep learning models to

enhance performance and generalization capabilities. We firmly

believe that through these efforts, our method will have widespread

applicability and significance in the fields of medical image

processing and sports injury prevention.
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