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Objective: Delirium is an acute alteration of consciousness marked by confusion, 
inattention, and changes in cognition. Some speculate that delirium may be  a 
disorder of functional connectivity, but the requirement to lay still may limit 
measurement with existing functional imaging modalities in this population. 
Electroencephalography (EEG) may allow for a more feasible approach to 
the study of potential connectivity disturbances in delirium. We  conducted a 
systematic review to investigate whether there are EEG-measurable differences 
in brain functional connectivity in the resting state associated with delirium.

Methods: Medline, PubMed, PsychInfo, Embase and CINAHL were searched for 
relevant articles containing original data studying EEG functional connectivity 
measures in delirium.

Results: The search yielded 1,516 records. Following strict inclusion criteria, four 
studies were included in the review. The studies used a variety of EEG measures 
including phase lag index, coherence, entropy, shortest path length, minimum 
spanning tree, and network clustering coefficients to study functional connectivity 
between scalp electrodes. Across connectivity measures, delirium was associated 
with decreased brain functional connectivity. All four studies found decreased 
alpha band connectivity for patients with delirium. None of the studies directly 
compared the different motor subtypes of delirium.

Significance: This systematic review provides converging evidence for 
disturbances in oscillatory-based functional connectivity in delirium.
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1. Introduction

Delirium is an acute confusional state with varied etiologies characterized by inattention, 
disturbance of consciousness, and change in cognition (American Psychiatric Association, 
2013). It differs from other forms of neurocognitive impairment, such as dementia, in that it 
typically has one or more reversible causes, is acute to subacute in onset (hours to days), and 

OPEN ACCESS

EDITED BY

Jamie Sleigh,  
The University of Auckland, New Zealand

REVIEWED BY

Annibale Antonioni,  
University of Ferrara, Italy  
Paola Malerba,  
The Ohio State University, United States

*CORRESPONDENCE

Angelica Hanna  
 angelica.hanna@mail.utoronto.ca

RECEIVED 09 August 2023
ACCEPTED 02 November 2023
PUBLISHED 16 November 2023

CITATION

Hanna A, Jirsch J, Alain C, Corvinelli S and 
Lee JS (2023) Electroencephalogram measured 
functional connectivity for delirium detection: 
a systematic review.
Front. Neurosci. 17:1274837.
doi: 10.3389/fnins.2023.1274837

COPYRIGHT

© 2023 Hanna, Jirsch, Alain, Corvinelli and Lee. 
This is an open-access article distributed under 
the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Review
PUBLISHED 16 November 2023
DOI 10.3389/fnins.2023.1274837

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1274837%EF%BB%BF&domain=pdf&date_stamp=2023-11-16
https://www.frontiersin.org/articles/10.3389/fnins.2023.1274837/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1274837/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1274837/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1274837/full
mailto:angelica.hanna@mail.utoronto.ca
https://doi.org/10.3389/fnins.2023.1274837
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1274837


Hanna et al. 10.3389/fnins.2023.1274837

Frontiers in Neuroscience 02 frontiersin.org

exhibits a fluctuating course (Oh et  al., 2017). Delirium can 
be  classified into different subtypes based on motor activity: 
Hyperactive delirium is characterized by increased motor activity and 
speech, while hypoactive delirium is characterized by decreased motor 
activity and speech, as well as decreased alertness and speed (Lipowski, 
1987; Hosker and Ward, 2017). Delirium, especially the hypoactive 
subtype often goes unrecognized in the emergency department and 
medical wards in 50%–75% of cases (Han et al., 2009). Delirium is 
associated with prolonged hospitalization and adverse outcomes after 
discharge, including accelerated functional and cognitive decline 
(Thomas et al., 1988; Francis et al., 1990; McCusker et al., 2003; 
Jackson et al., 2004). Efficient and effective diagnosis of delirium is 
therefore important in clinical settings.

The pathophysiology of delirium is poorly understood, but the 
discovery of the default mode network (DMN) and the evolution 
of understanding of dynamic functional network connectivity has 
revolutionized the approach to understanding complex neurologic 
phenomena including delirium (Anderson and Cohen, 2013). 
Maldonado (2018) highlighted the potential for network 
dysconnectivity as a possible pathophysiologic mechanism to 
explain delirium. While there may be  both metabolic and 
electrical changes, if the pathophysiology of delirium were purely 
“electrical,” then there may be no metabolic or chemical signature 
associated with delirium (Maldonado, 2018). Moreover, the 
requirement for participants to lay relatively still for extended 
periods of time may limit the use of existing functional imaging 
techniques such as functional magnetic resonance imaging (fMRI) 
and positron emission tomography (PET) scanning in this 
population. Advances in wireless multi-channel scalp recording 
of neuroelectric brain activity and oscillatory-based functional 
connectivity offer a new approach to quickly assess functional 
connectivity at the bed side.

Thus, the use of electroencephalography (EEG) is a promising 
technique to explore the network dysconnectivity hypothesis as a 
mechanism leading to delirium (Noble et  al., 2019). EEG is a 
non-invasive neuroimaging technique that records neuroelectric brain 
activity using electrodes placed over the scalp. This low-cost, 
non-invasive, and widely available technology has exquisite temporal 
resolution and can complement neuropsychological assessments by 
revealing subtle brain dysfunctions that are not detectable at a clinical 
or behavioral level. EEG is commonly used in clinical settings, 
particularly assessing for epilepsy, sleep disorders, dementia, cerebral 
ischemia, consciousness (e.g., depth of anesthesia), and for psychiatric 
disorders. Technological innovations in recording (e.g., wireless dry 
electrodes) and signal processing enhance its suitability for clinical 
applications (Ebersole and Pedley, 2003).

EEG spectral analysis in delirium has been the focus of previous 
investigations and reviews (Boord et al., 2021b). However, the role 
of EEG to investigate functional connectivity in patients with 
delirium has not been similarly reviewed in detail. Oscillatory-based 
functional connectivity measures can be divided into two major 
categories depending on the metric used to examine the relationship 
between different scalp electrode or brain source locations. One 
approach examines the synchronization of the magnitude of neural 
oscillations between electrodes or brain regions. The other approach 
consists of measuring the synchronization of the phase of band-
specific neural oscillations of between electrodes or distinct brain 
regions (Lachaux et  al., 1999). The latter approach has gained 

popularity and is used in phase lag index, imaginary part of 
coherency, and granger causality.

Quantitative and resting-state EEG focus on brain oscillation 
that reflects synchronous firing of neural ensembles enabling both 
short- (e.g., within cortical areas along the superior temporal 
gyrus) and long-range (e.g., between sensory and executive regions 
within the prefrontal cortex) communication (Alain and Ross, 
2008). Brain rhythms are implicated in a wide variety of perceptual 
and cognitive tasks with different frequency bands playing different 
roles (Fan et al., 2007). For instance, alpha activity (8–12 Hz) has 
been implicated as a suppression mechanism of distracting or 
irrelevant stimuli during selective attention (Foxe and Snyder, 
2011). During working memory tasks, alpha and beta (13–29 Hz) 
oscillations increase monotonically with cognitive load (Leiberg 
et al., 2006a). Stronger gamma (30–100 Hz) band activity has been 
associated with the maintenance of visual (Tallon-Baudry et al., 
1998; Axmacher et  al., 2007; Jokisch and Jensen, 2007) and 
auditory (Lutzenberger et al., 2002; Kaiser et al., 2003, 2009a,b; 
Kaiser and Bertrand, 2003; Kaiser and Lutzenberger, 2003; Leiberg 
et al., 2006a,b) objects within the focus of attention.

This systematic review describes the role of EEG-measured functional 
connectivity in the detection/monitoring of delirium. Specifically, our 
primary research question is: (1) Are there EEG-measurable functional 
connectivity differences between those with and without delirium? Our 
secondary research questions is: (2) Are there functional connectivity 
differences associated with the different motor subtypes of delirium? This 
literature review considers oscillatory-based functional connectivity at 
both sensor (i.e., electrode) and source (brain region) levels.

2. Methods

An electronic search strategy was developed in consultation with 
an experienced medical information specialist 
(Supplementary material). We  used this strategy to search Ovid 
MEDLINE, Ovid Embase, CINAHL, and PsycINFO databases from 
their inception date to April 2023. We utilised the following MeSH 
terms to begin the strategy:

 - Concept 1: EEG
 - Concept 2: functional connectivity
 - Concept 3: delirium

All results were exported to Covidence where duplicates were 
removed. For primary study selection, titles and abstracts from the 
initial search were screened by two independent reviewers (AH and 
JL) using the established eligibility criteria.

For secondary study selection, the full texts of selected studies 
were retrieved and assessed in detail by two independent reviewers 
(AH and JL) against the eligibility criteria. An explanation was 
provided for excluded full texts. Any disagreement between the two 
reviewers with regards to inclusion of a study was resolved through 
discussion or with a third reviewer.

This review included studies measuring functional connectivity 
using resting state EEG in patients with delirium. These studies must 
contain original data and record EEG during delirium. All included 
studies used multi-channel EEG recording, which is necessary for 
connectivity analysis. Studies with non-oscillatory based measures of 
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functional connectivity were excluded, as functional neuroimaging 
[e.g., fMRI] present significant challenges in delirious patients.

Electrocorticography/intracranial EEG studies were excluded as 
this technique only measures from small brain samples making it 
impossible to assess whole brain functional connectivity. The focus of 
this review was functional connectivity measured in the resting state, 
as this may be the most readily measured clinically with delirious 
patients. Therefore studies including sensory or cognitive evoked 
potentials as well as Transcranial Magnetic Stimulation (TMS) were 
excluded. Furthermore, reviews and editorials were excluded. Animal 
studies were not included. There were no restrictions for language or 
year of publication.

After retrieving all included studies for the systematic review, data 
extraction was conducted. We used a data extraction tool that includes 
the key elements listed in the Supplementary material. Two 
independent reviewers (AH and JL) extracted data from the studies 
and discrepancies were resolved through discussion and consensus, 
involving a third reviewer if necessary. If any data required for 
extraction was not available in the article, their primary authors were 
contacted to obtain any needed information. Specifically, Fleischmann 
et al. were contacted to seek out the required additional information. 
Preferred Reporting Items for Systematic reviews and Meta-Analyses 
(PRISMA) guidelines were followed. Quality of the studies was 
assessed using the Newcastle-Ottawa Risk of Bias assessment scale.

3. Results

3.1. Retrieved studies

The search yielded 1,516 records. After machine deduplication, 
there were 1,121 studies screened for title/abstract. Title and abstract 
screening resulted in 197 full texts, which were assessed for eligibility, 
of which four full text articles were included (see Figure 1 and Table 1).

3.2. General study designs and quality 
assessment

All four studies of delirium were case–control studies and were of 
high quality as assessed by the Newcastle-Ottawa Risk of Bias 
Assessment Scale. Fleischmann et al. (2019) was a retrospective study. 
Hunter et al. (2020), Numan et al. (2017), and van Dellen et al. (2014) 
were prospective studies.

3.3. Settings and number of patients

Numan et al. (2017) and van Dellen et al. (2014) both included 
patients post cardiac surgery. Numan et  al. (2017) included 18 
delirious patients and 20 controls, while van Dellen et  al. (2014) 
included 25 delirious patients and 24 controls. Hunter et al. (2020) 
included patients in the intensive care unit (ICU) with five delirious 
patients and five controls. Fleischmann et al. (2019) involved delirium 
patients from the emergency department (7 delirious patients and 12 
controls), neurological wards (64 delirious patients and 248 controls), 
neurological ICU (50 delirious patients and 112 controls), and 
intermediate care unit (eight delirious patients and 42 controls).

3.4. Motor subtype of delirium

Two studies (Numan et al., 2017; Hunter et al., 2020) included 
patients with hypoactive delirium only. One study (van Dellen et al., 
2014) included patients with hyperactive, hypoactive, and mixed 
delirium. In one study (Fleischmann et al., 2019), motor subtype data 
was missing. None of the studies directly compared the motor 
subtypes of delirium.

3.5. Number of electrodes and portable 
EEG

The number of electrodes used in EEG recording varied across 
studies. Numan et al. (2017) and van Dellen et al. (2014) both used 21 
electrodes. Hunter et al. (2020) used an eight electrode set up. The 
authors stated that they were able to obtain functional connectivity 
measurements with both eight and three electrodes, however this pilot 
study had a very small sample size (n = 10). Furthermore, results from 
this study should be  validated with data from investigations with 
better scalp resolution. Fleischmann et  al. (2019) used a variable 
number of electrodes. All studies fitted the electrodes according to the 
International 10/20 system. Hunter et al. (2020), Numan et al. (2017), 
and van Dellen et al. (2014) all used bi-hemispheric electrode setups.

3.6. Connectivity measures

In all four studies, functional connectivity analyses were carried 
out at the sensor (electrode) level. Three of the four studies used the 
phase lag index (weighted or directed) and one study, Hunter et al. 
(2020), used coherence in assessing functional connectivity. 
Additional measures used by Numan et al. (2017) included entropy 
and minimum spanning tree, while van Dellen et al. (2014) also used 
shortest path length and network clustering coefficients (see Table 2).

3.7. Connectivity changes

Delirium was consistently associated with decreased functional 
connectivity between electrodes. Specifically, all four studies found a 
decrease in alpha band connectivity for patients with delirium 
compared to controls. Changes in connectivity were generally global 
in nature-reductions in alpha functional connectivity where not 
specific to any electrode pairings.

3.8. Directionality changes

Hunter et al. (2020) found bidirectionally decreased functional 
connectivity for all electrode combinations at all frequencies, with the 
exception of parietal to frontal communication (frontal to parietal 
impaired). They found that central-temporal and central-parietal 
pairings were most robust in distinguishing between delirious patients 
with bidirectional reduction of connectivity in all frequency bands. 
Numan et al. (2017) found a decrease of back-to-front/posterior–
anterior information flow in the alpha band for patients with 
hypoactive delirium. Unlike Hunter et al. (2020) and Numan et al. 
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(2017), and van Dellen et al. (2014) found higher information flow 
towards anterior scalp regions in the delta band for delirium patients. 
They did not find any significant differences in directionality between 
patients with and without hallucinations. Fleischmann et al. (2019) 
did not study directionality.

3.9. Other findings/network analysis

Fleischmann et al. (2019) found that connectivity changes were 
not specific to single intrinsic connectivity networks but affected 
multiple nodes of networks. Generally, networks showed increased 
centrality parameters in slower frequencies and decreased centrality 
in faster frequencies. Numan et  al. (2017) found that functional 
connectivity within the minimum spanning tree was significantly 

reduced in the alpha frequency band in hypoactive delirium compared 
to non-delirious controls. van Dellen et  al. (2014) found that 
normalized path length in the alpha band was significantly decreased 
in delirium patients compared to non-delirium patients. They also 
found that delirium patients with hallucinations had significantly 
decreased local clustering and less small world topology in the alpha 
band compared to delirious patients without hallucinations.

4. Discussion

Our review found only four studies that used EEG to investigate 
functional connectivity in delirium. Three of these studies included 25 
or fewer participants, and they used diverse measures to assess 
functional connectivity. In review of this sparse literature, we found 

FIGURE 1

PRISMA diagram showing the article selection process from Ovid MEDLINE, Ovid Embase, CINAHL, and PsycINFO database searches.
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that delirium was consistently associated with decreased functional 
connectivity, especially in the alpha band. Changes in connectivity 
were generally global in nature and were not associated with specific 
cluster of electrodes, rather affecting multiple electrode pairings of 
the scalp.

The default mode network (DMN) is a resting state neural 
network in the brain comprising anatomically separated but 
functionally connected cortical and subcortical regions. In healthy 
participants, the DMN shows increased activity at rest and reduced 
activity in the network is a marker of impaired consciousness (Chow 
et al., 2022). Frequency band analysis research from severe traumatic 
brain injury patients demonstrates that global reduced alpha power 
correlates with impairment in consciousness (Fingelkurts et al., 2012). 
Further, reduced connectivity in the alpha band occurs within the 
DMN among patients with disorders of consciousness regardless of 
etiology of structural brain injury (Fingelkurts et al., 2016). All four 
studies in our systematic review found reduced alpha band 
connectivity among delirium patients exhibiting impaired 
consciousness without acute brain injury. The studies in this review 
support the crucial role that the alpha frequency band plays in the 
assessment of consciousness in heterogeneous clinical settings.

Whereas functional connectivity measures were uniformly 
reduced in all studies examined, the directionality (e.g., posterior-to-
anterior, para-sagittal) of maximal impairment in functional 
connectivity differed among the three studies that addressed the topic. 
Differences among studies in directionality measures may have been 

related to methodological factors (e.g., 8 vs. 21 electrode sampling), 
however inhomogeneity among delirium patients also exist. Resting 
state neural networks in addition to the default mode network (e.g., 
limbic system network, ventral attention network, visual network) 
may be differentially impaired in delirium depending upon etiology 
of delirium, and also variability among individuals in brain structure 
(e.g., chronic cerebrovascular changes in the elderly) may have 
affected functional connectivity directionality. Delirium patients 
exhibit highly varied clinical presentations, and future functional 
connectivity studies that include assessments of delirium motor 
sub-types during EEG recordings are necessary to explore disparities 
in clinical manifestations.

Previously, Boord et  al. (2021b) looked at the association of 
different EEG measures with delirium. They found that EEG slowing 
and decreased functional connectivity were common in delirium. Our 
review identified one additional but important paper, Hunter et al. 
(2020), which showed the potential for the use of a three electrode 
EEG setup for the study of functional connectivity in sensor 
(electrode) space in patients with delirium. Our review expanded on 
the Boord et al. (2021b) review, exploring the changes in directionality 
associated with delirium, examining motor subtypes of delirium, and 
identifying the need for further research in these areas.

Functional magnetic resonance imaging (fMRI) studies of 
functional connectivity in delirium have yielded similar results to our 
findings. An fMRI study by van Montfort et al. (2018) found that there 
was decreased functional connectivity and overall network 

TABLE 1 Patient populations, study design, settings, delirium motor subtype, and EEG electrode setups of included studies.

Delirious patients Non-delirious 
control patients

Study 
design

Setting Motor 
subtype

Electrode 
sampling

Fleischmann et al. 

(2019)

n = 129

Age = 74 years ± 14

43% female

n = 414

Age = 74 years ± 14

43% female

Retrospective Variable: emergency 

department, neurological 

wards, neurological ICU, 

and intermediate care unit

Not specified Not reported

Hunter et al. (2020) n = 5

Mean age = 62 years

40% female

n = 5

Mean age = 66 years

0% female

Prospective ICU Hypoactive 

delirium

8 electrodes, 

bi-hemispheric

Numan et al. (2017) n = 18

Age = 76 years ± 7

45% female

n = 20

Age = 76 years ± 5

55% female

Prospective Post cardiac surgery Hypoactive 

delirium

21 electrodes, 

bi-hemispheric

van Dellen et al. 

(2014)

n = 25

(14 hypoactive, 5 hyperactive, 

6 mixed delirium)

Age = 77 years ± 6

48% female

n = 24

Age = 73 years ± 9

42% female

Prospective Post cardiac surgery Hypoactive, 

hyperactive, and 

mixed delirium

21 electrodes, 

bi-hemispheric

TABLE 2 Functional connectivity measures and connectivity changes in delirious patients by frequency band.

Connectivity 
measure

Delta Δ 
(1–3  Hz)

Theta ϴ (4–7  Hz) Alpha α 
(8–12  Hz)

Beta β (13–30  Hz)

Fleischmann et al. (2019) Weighted phase lag index 

(wPLI)

No change Regional ↑ (right central parieto-temporal 

region)

Global ↓ Regional ↓ (bilateral parieto-

occipital regions)

Hunter et al. (2020) Coherence Global ↓ Global ↓ Global ↓ Global ↓

Numan et al. (2017) Phase lag index (PLI) No change No change Global ↓ No change

van Dellen et al. (2014) Phase lag index (PLI) No change No change Global ↓ No change
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disintegration during delirium. This is in accordance with the EEG 
measured functional connectivity findings reported in this review.

Strengths of our systematic review include searching multiple 
databases with no restrictions on publication date or language. This 
study followed the PRISMA framework and, importantly, added 
quality assessments. Furthermore, this systematic review involved an 
extensive search strategy that was developed with experienced 
medical librarians.

A limitation of this review is the exclusion of non-functional 
connectivity EEG measures, including EEG power. We  chose to 
exclude these studies as the paper by Boord et al. (2021a,b) had already 
covered this area in depth. Another potential limitation is the 
exclusion of studies that measured functional connectivity without 
using EEG, including studies of fMRI and magnetic 
electroencephalography (MEG). We chose to exclude these techniques 
because imaging in delirious patients, who may not be  able to 
cooperate or remain still, presents significant challenges.

The evidence reviewed suggests that delirium can be marked by 
changes in functional network connectivity in sensor space. All four 
delirium studies in this review noted a decrease in functional 
connectivity in the alpha band. These findings support the 
investigation of the hypothesis of whether network dysconnectivity is 
a pathophysiologic mechanism underlying delirium or is an 
epi-phenomenon. Our literature review suggests that it is feasible to 
use EEG to detect delirium. Further studies examining functional 
connectivity in source space and assessing differences between motor 
subtypes of delirium are needed. EEG studies of delirium to date have 
focused on ICU and post-operative patients. Use of high-density 
multi-channel EEG may be challenging in patients with delirium in 
other acute care settings such as the emergency department where 
uncooperative delirious patients in a cramped environment are 
technically challenging to record. Further studies using portable EEG 
setups with fewer electrodes should be conducted, as they may be a 
more effective point-of-care diagnostic tool.

5. Conclusion

The current literature on the use of EEG to investigate functional 
connectivity in delirium is limited and uses heterogeneous measures 
of connectivity. Delirium is associated with a decrease in EEG 
measured functional connectivity between scalp electrodes, especially 
within the alpha band. Multiple studies have demonstrated the 
feasibility of the use of EEG to study functional connectivity in 
patients with delirium. More research regarding the feasibility of 
portable multi-channels EEG setups is required for functional 

connectivity measures between different brain regions. Additionally, 
further research regarding the functional connectivity of the different 
motor subtypes of delirium is required.
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