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Introduction:During electroencephalography (EEG)-basedmotor imagery-brain-

computer interfaces (MI-BCIs) task, a large number of electrodes are commonly

used, and consume much computational resources. Therefore, channel selection

is crucial while ensuring classification accuracy.

Methods: This paper proposes a channel selection method by integrating the

e�cient channel attention (ECA) module with a convolutional neural network

(CNN). During model training process, the ECA module automatically assigns

the channel weights by evaluating the relative importance for BCI classification

accuracy of every channel. Then a ranking of EEG channel importance can be

established so as to select an appropriate number of channels to form a channel

subset from the ranking. In this paper, the ECA module is embedded into a

commonly used network for MI, and comparative experiments are conducted on

the BCI Competition IV dataset 2a.

Results and discussion: The proposed method achieved an average accuracy

of 75.76% with all 22 channels and 69.52% with eight channels in a four-class

classification task, outperforming other state-of-the-art EEG channel selection

methods. The result demonstrates that the proposedmethod provides an e�ective

channel selection approach for EEG-based MI-BCI.

KEYWORDS

brain-computer interface, motor imagery, channel selection, deep learning, attention

mechanism

1. Introduction

A brain-computer Interface (BCI) provides an interface between users and

external devices by converting brain signals into commands (Fadel et al., 2020).

Electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic

resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS), et al., are

commonly used to acquire signals from the brain (Herrera-Vega et al., 2017; Berger et al.,

2019; Saha et al., 2021). Among these techniques, EEG is currently one of the most popular

brain-imaging techniques for its non-invasive nature, portability, and low cost (Abiri et al.,

2019; Aggarwal and Chugh, 2022). EEG-based BCI can be applied to various tasks, such as

seizure detection, workload, motor imagery (MI), and emotion recognition (Das Chakladar

et al., 2020; Lashgari et al., 2020; Gu et al., 2021). In the MI task, subjects are asked to

imagine human movements without performing them. EEG signals generated during this

process are collected, and the intention can thus be recognized (Chaisaen et al., 2020; Khan

et al., 2020). MI-BCI has numerous applications for aiding the elderly and disabled (Lazarou

et al., 2018; Palumbo et al., 2021; Saibene et al., 2023).
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MI-BCI is built on the fact that the brain evokes event-

related synchronization (ERS) and event-related desynchronization

(ERD) at different locations over the scalp when imagining body

movements (Lu et al., 2017; Zhang et al., 2021). Researchers have

progressively placed more and more electrodes on the subject’s

scalp to record signals for more detailed information, making

channel selection a critical stage for EEG-based BCI (Abdullah

et al., 2022). Channel selection aims to identify a small subset

of channels that involves the most classified information. It can

reduce computational costs and the interference of irrelevant EEG

channels. Thus, the most important issues in channel selection

are: how many channels are suitable, and which channels should

be selected. This work focuses on the number of channels, that

is ensuring the high recognition accuracy while minimizing the

channel subset.

Researchers have been making many effort to find a suitable

channel selection method. These methods can be generally

classified as filtering, wrapper, embedded, and hybrid techniques.

Utilizing wrapper techniques for channel selection demands a

substantial computational resource investment. Tang et al. (2022)

introduced the sequential backward floating search (SBFS) method

into EEG channel selection. While significant improvements have

been made to reduce training time, it still necessitates ∼2,000

seconds or more to complete channel selection. Therefore, this

paper focuses on filtering and embedded techniques. The filtering

technique is independent of subjects and classifiers, high-speed,

stable, and does not consume significant computational resources

(Baig et al., 2020), and the embedded technique can be used with

deep learning techniques. Most filtering techniques are performed

based on the statistical information of the EEG signal. Tam et al.

(2011) proposed a channel selection method based on common

spatial pattern (CSP) filter coefficient ranking for MI classification,

called CSP-rank. They conducted a 20-session experiment with

64-channel EEG from five chronic stroke patients and found that

the average classification accuracy of CSP-rank for 8–38 electrodes

remained above 90%. Twenty-two electrodes achieved the highest

average accuracy of 91.70%. Arvaneh et al. (2011) adopted a new

filtering approach with a pre-specified subset channel selection

scheme. They proposed a sparse common spatial pattern (SCSP)

algorithm instead of CSP for optimal EEG channel selection. The

results show that the SCSP algorithm outperformed the existing

algorithms, including Fisher discriminant, mutual information,

support vector machine and CSP. If the goal is to minimize

the number of channels while maintaining comparable average

accuracy to using all channels, SCSP achieved 79.07% accuracy

with an average of 8.55 channels on the first dataset and 79.28%

accuracy with an average of 7.6 channels on the second dataset.

Shi et al. (2023) proposed an EEG channel selection method based

on sparse logistic regression (SLR). This method was compared

to conventional channel selection based on correlation coefficients

(CCS) using a 64-channel two-class MI dataset. In the scenarios

of selecting 10 channels and 16 channels, the accuracy achieved

by the proposed method were 86.63 and 87.00%, respectively,

demonstrating a performance advantage of 4.33 and 2.94% over

CCS.

In recent years, deep learning techniques have shown

advantages in big data processing. Several attempts have been

made to explore an optimal embeded channel selection method.

Zhang et al. (2021) proposed a deep learning-based approach to

automatically select the relevant EEG channels while recognizing

twoMI states. A sparse squeeze-and-excitation (SE) module is used

to learn EEG channels’ contribution to MI classification, which

developed into an automatic channel selection strategy. The results

show that this method indicates a 3.30% improvement compared

to CSP in their private dataset. Strypsteen and Bertrand (2021)

employed a concrete selector layer to optimize both the channel

selection and the network weights in an end-to-end manner. This

layer uses a Gumbel-softmax method to deal with the discrete

parameters inherent to a subset selection problem. It can freely

specify the number of channel subsets by modifying the loss

function so that the network does not pick the same channels as

much as possible. Their method was evaluated on two EEG tasks:

motor execution and auditory attention decoding. The Gumbel-

softmax performs at least as well as (often better than) state-of-the-

art methods: mutual information for motor execution and greedy

channel selection with the utility metric for auditory attention

decoding. These studies show that using deep learning techniques

instead of traditional signal processing methods is credible and can

substantially improve performance.

This paper proposes a new method for EEG channel selection

by introducing efficient channel attention (ECA) modules into

a convolutional neural network (CNN) (Wang et al., 2020).

An ECA module can recalibrate the channels based on feature

interdependencies, allowing the network to learn each EEG

channel’s importance to classification for each subject and improve

performance. Using the proposed approach, a personalized optimal

channel subset can be obtained based on the order of channels

in the learned channel importance ranking. This ensures that the

channel subset includes the most discriminative channels for each

subject. The main contributions of this work are as follows:

1. An innovative method is proposed to find an optimal channel

subset for each subject with the ECA module. The subset is

formed based on the importance of each channel for that

subject in the MI classification process. Researchers can easily

adjust the number of channels according to actual needs and

hardware conditions.

2. ECA modules are added between the convolutional layers

of the CNN to recalibrate feature interdependencies between

channels adaptively. A CNN structure called ECA-DeepNet

based on DeepNet (Schirrmeister et al., 2017) is proposed, and

classification accuracy of the network improves with minimal

computational cost.

The rest of the paper is organized as follows. Section 2 describes

the detail of the ECAmodule and the proposed method for channel

selection. Section 3 presents the experimental results to validate

and compare the method with state-of-the-art methods. Some

discussions are given in Section 4.

2. Materials and methods

This section presents a detailed description of the proposed

channel selection method. As depicted in Figure 1, the entire

process consists of four main steps: (1) training the proposedmodel

with the data from the subject, (2) extracting the channel weights
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FIGURE 1

Overview of the proposed channel selection method.

from the channel attention (CA) layer of the trained network, (3)

ranking the importance of each channel based on the extracted

weights, and (4) selecting a certain number of channels from the

ranking to form an optimal channel subset for that subject.

2.1. Dataset and data preprocessing

To analyze the EEG signals and evaluate the proposed method,

the publicly available MI-EEG dataset “BCI Competition IV dataset

2a (BCIC IV 2a dataset)" is introduced (Brunner et al., 2008). This

dataset comprises four different MI tasks: the movement of the left

hand, right hand, feet, and tongue. Each task lasts for 4 s from

cue onset to the end of the task, and no feedback is provided. The

dataset contains 22-channel EEG data from nine subjects, and each

subject has two sets of data, namely the training set and testing set.

Each set includes 288 trials of MI data, with 72 trials for each of the

four tasks. The EEG data were initially sampled at a frequency of

250 Hz and filtered with a bandpass filter between 0.5 and 100 Hz,

as well as a notch filter at 50 Hz.

The EEG signals were preprocessed as follows. A bandpass filter

between 1 and 40 Hz was applied to reduce the effect of eye blinking

and extract the information related to MI. An exponential moving

average with a decay factor of 0.999 was applied to each channel

to normalize the continuous data. The data was then segmented

into four-second time windows with a sliding window over the time

period from −0.5 to 4 s for each trial. After cropped by the sliding

window, there are 864 samples for each subject in the training set

and testing set separately, with 216 samples for each of the four

tasks. Each sample consists of MI data from 22 channels, and each

channel contains 1,000 sampling points.

2.2. Channel attention layer

To perform channel selection, evaluating the correlation

between channels is necessary. Irrelevant channels are deemed

redundant and not included in the channel subset. The ECA

module is a channel attention module based on the attention

mechanism (Wang et al., 2020). It can learn the interdependencies

among different feature maps from the channel dimension and

adaptively adjust the channel features by assigning weights to each

channel. By placing the ECA module as the first layer of the

network, it can learn the interdependence among EEG channels.

Specifically, it scores the importance of each EEG channel. It assigns

weights to strengthen the crucial channels while weakening the

influence of less important channels on the rest of the model. This

score also serves as the basis for subsequent channel selection. As

a result, this layer is referred to as the channel attention (CA)

layer here. The ECA module’s efficiency lies on avoiding channel

dimensionality reduction and enabling appropriate local cross-

channel interactions. Next, the working mechanism of the ECA

module will be explained, illustrating on how it achieves these

two objectives.

The input of the ECA module is denoted as X ∈ R
W×H×C,

whereW,H and C are width, height and channel dimension.When

the ECA module serves as the CA layer, the input is the EEG

data, and at this point, W = 1. The ECA module first calculates

the aggregated features y ∈ R
1×1×C along the channel dimension

without dimensionality reduction, which is represented as

y = g(X) =
1

WH

W,H
∑

i=1,j=1

Xi,j, (1)

where g(X) is channel-wise global average pooling (GAP). This

operation aggregates feature maps of the EEG sample across time-

space dimensionsW×H, producing channel-wise statics embedded

with the global distribution of feature responses. In general, channel

attention can be learned by

w = σ (Wy), (2)

where W involves C × C parameters, and σ is a Sigmoid function.

However, the ECA module employs a band matrix Wk to learn

channel attention:












w1,1 · · · w1,k 0 0 · · · · · · 0

0 w2,2 · · · w2,k 0 · · · · · · 0
...

...
...

...
. . .

...
...

...

0 · · · 0 0 · · · wC,C−k+1 · · · wC,C













, (3)

whereWk is a k×C parameter matrix with much fewer parameters

than W. As in Equation (3), the weight of yi only considers the

interaction between yi and its adjacent k neighbors, and it will be

more efficient to make all the channels share the same learning

parameters, i.e.,

wi = σ (

k
∑

j=1

wiyij), y
i
j ∈ �

k
i , (4)

where �k
i indicates the set of k adjacent channels of yi. Such a

strategy can be easily implemented by fast 1D convolution with a

kernel size of k, which can be described as

w = σ (Conv1dk(y)), (5)

where Conv1d is 1D convolution.
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Since the ECA module aims to capture local cross-channel

interaction appropriately, the kernel size k of 1D convolution must

vary with different channel dimensions C. High channel dimension

needs longer range interaction, and low channel dimension has

shorter range interaction. Therefore, the kernel size k should be

adaptively determined by channel dimension C, i.e.,

k = ψ(C) =

∣

∣

∣

∣

log2(C)

2
+

1

2

∣

∣

∣

∣

odd

, (6)

where |k|odd indicates the nearest odd number of k.

However, when the ECA module is used as the CA layer, it

is required to no longer focus on local, but capture global cross-

channel interactions in order to learn feature interdependencies

between EEG channels thoroughly. This is because EEG channels

interact between both adjacent and non-adjacent channels,

especially within corresponding regions of the contralateral brain

hemisphere. Therefore, the 1D fast convolution in the CA layer

is replaced by a fully connected layer. The number of neurons in

this fully connected layer matches the channel dimension C, thus

avoiding the influence of dimension reduction on channel attention

learning, i.e.,

wCA = σ (WCAy+ b), (7)

where WCA represents the weight parameter matrix of the fully

connected layer, and b is the bias coefficients. This fully connected

layer will incur additional computational costs, but it ensures that

the CA layer considers all channels when learning the importance

of each channel. Then channel weights with the same length as

channel dimensionC are obtained, and the ECAmodule will output

the recalibrated feature maps along the channel dimension without

altering the dimensions of the input samples, i.e.,

Y = w(CA) · X,Y ∈ R
W×H×C (8)

Figure 2 illustrates the overview of an ECA module. After

aggregating feature maps using GAP, the ECA module uses a 1D

fast convolution with adaptive kernel size k, followed by a Sigmoid

function to learn the channel attention. Finally, input features are

recalibrated from the channel dimension by assigning weights.

2.3. ECA modules in DeepNet

In addition to placing the ECA module as the CA layer to

learn the importance of EEG channels, positioning the ECAmodule

between the convolutional layers of the network also serves to

highlight significant feature maps and suppress irrelevant ones,

thereby improving classification performance. To demonstrate

the effects, this paper integrates the ECA modules into DeepNet

(Schirrmeister et al., 2017), which is one of the most highly

cited open-source models (Dai et al., 2020). It splits the first

convolutional layer into a first convolution across time and

a second convolution across space (electrodes), exploiting the

ERS and ERD phenomena more effectively. Four ECA modules

are added between convolution layers, and an additional ECA

module is set before the first layer to act as the CA layer.

Termed as ECA-DeepNet, the complete architecture is depicted in

Figure 3.

Exponential linear units (ELUs) (Clevert et al., 2016), denoted

as Equation (9), are selected as activation functions since they can

speed up the learning process and improve classification accuracy.

ELU(x) =

{

x, if x > 0,

ex − 1, otherwise.
. (9)

The detailed parameters of the proposed ECA-DeepNet

architecture are given in Table 1. Note that the number of filters

in four convolution-max-pooling blocks are changed from (25, 50,

100, 200) to (32, 64, 128, 256) to fit the mapping as shown in

Equation (6) better.

2.4. Proposed channel selection method

The channel selection method proposed in this paper is

based on the weights within the CA layer of the network.

As described in Section 2.2, during the network training on

a subject’s EEG data, the CA layer automatically learns the

attention between channels, assigning corresponding weights based

on the importance of each EEG channel in the classification

task. More important channels are assigned higher weights,

while less important channels are assigned lower weights.

Therefore, ECA-DeepNet can be used to train a model for

each subject on BCIC IV 2a dataset. The channel weights w

in the CA layer of each model can be collected after the

training process.

After reordering channels by the extracted weights, the

importance ranking of EEG channels for each subject can be

described as

Ri = [ch1, ch2, ..., chC],wch1 > wch2 > ... > wchC , (10)

where chj is the channel name with the j-th largest wch. Finally,

the optimal channel subset for subject i can be obtained from the

ranking Ri, i.e.,

Si = Ri[1 :Nc] = [ch1, ch2, ..., chNc ], (11)

where Nc is the number of channels in the channel subset.

Researchers can freely determine the size of the channel subset Nc

according to their specific needs.

3. Results

3.1. Hyperparameter optimization

Structural hyperparameters of the ECA-DeepNet architecture

have been specified and presented in Table 1. For the

hyperparameter optimization, the open-source framework

Optuna was employed in this paper (Akiba et al., 2019). This

framework uses the Tree-structured Parzen Estimator (TPE) to

progressively reduce the parameter search space until it finds the

optimal value. The hyperparameter search space in the network is

shown in Table 2.

This study aims to find the optimal subject-specific

classification model. Therefore, each subject obtained a

corresponding set of best hyperparameters with and without
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channel selection during the hyperparameter search. When

searching, the training set of BCIC IV 2a dataset was re-split into

a training set and a validation set in a radio of 8:2. The best-

performing set of hyperparameters was determined based on the

highest accuracy on the validation set. Additionally, experiments

took place on NVIDIA TITAN V GPUs. To ensure the replicability

of results across all experiments, a consistent random seed of

20200220 was employed. Table 3 represents the results of best

hyperparameters tuning by Optuna for each subject in BCIC IV

2a dataset.

3.2. Performance of the proposed channel
selection method

The proposed method incorporates channel attention learning

process and classification during model training through the CA

layer. Due to this unique feature, the method can be classified as

an embedded technique. To evaluate the channel selection ability

of the proposed method, it was compared with two other state-of-

the-art embedded techniques: Gumbel-softmax (GS) layer and the

automatic channel selection (ACS) layer (Strypsteen and Bertrand,

2021; Zhang et al., 2021).

The network architecture was identical to that of ECA-

DeepNet, except for replacing the CA layer with the GS or

ACS layer for comparison. The ACS layer is based on another

attention module, the SE module (Hu et al., 2018), which

has been proven effective and commonly used in many fields

(Park et al., 2020; Liu et al., 2021; Zhang and Zhang, 2022).

It can be used for channel selection comparison following the

steps proposed in this paper. Considering the potential adverse

effects between the ECA and SE modules, network with all ECA

modules replaced with SE modules was also compared, and it is

named All-SE.

When the CA layer is used for channel selection, the

relationship between the number of input channels, average

classification accuracy, and prediction time of the model is

illustrated in Figure 4. As the number of channels increases,

the prediction time and classification accuracy were gradually

increasing. The average accuracy curve started to flatten when

more than eight channels were involved and the increase

in accuracy became slow when more than 14 channels

were involved. The aim of this study is to maintain the

FIGURE 2

Diagram of an ECA module. When the ECA module is utilized as the CA layer, 1D fast convolution is substituted with a fully connected layer.

FIGURE 3

Proposed ECA-DeepNet architecture. The dimension of all layers are depicted as well.
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TABLE 1 Architecture of the proposed ECA-DeepNet.

Block Layer Filters Size of kernel Output Activation Parameters

Input 22× 1,000

Reshape 22× 1,000× 1

CA-Layer 22× 1,000× 1 506

Reshape 1× 1,000× 22

1 Conv-Time 32 10× 1 32× 991× 22 Linear 320

Conv-Spat 32 1× 22 32× 991× 1 Linear 22,528

BatchNorm-1 32× 991× 1 64

Activation-1 32× 991× 1 ELU

Pool-1 3× 1 32× 330× 1

ECA-1 32× 330× 1 4

dropout-1 32× 330× 1

2 Conv-2 64 10× 1 64× 321× 1 Linear 20,480

BatchNorm-2 64× 321× 1 128

Activation-2 64× 321× 1 ELU

Pool-2 3× 1 64× 107× 1

ECA-2 64× 107× 1 4

dropout-2 64× 107× 1

3 Conv-3 128 10× 1 128× 98× 1 Linear 81,920

BatchNorm-3 128× 98× 1 256

Activation-3 128× 98× 1 ELU

Pool-3 3× 1 128× 32× 1

ECA-3 128× 32× 1 6

dropout-3 128× 32× 1

4 Conv-4 256 10× 1 256× 23× 1 Linear 327,680

BatchNorm-4 256× 23× 1 512

Activation-4 256× 23× 1 ELU

Pool-4 3× 1 256× 7× 1

ECA-4 256× 7× 1 6

Conv-Classifier 4 7× 1 4× 1× 1 Linear 7,172

Activation-4 4× 1× 1 Logsoftmax

Reshape 4

high accuracy while minimizing the number of input EEG

channels. Taking into account the trade-off between real-

time requirements and accuracy in MI-BCI, this study takes

eight channels as an illustrative case to analyze the channel

selection method from all 22 channels and compare different

methods.

Table 4 demonstrates the classification accuracy for each

subject after selecting eight channels by different channel selection

methods. In Table 4, the standard deviation (STD) of accuracy

across nine subjects was calculated to evaluate the method’s

robustness across different subjects. Results show that the CA layer

achieved optimal channel selection performance in most subjects,

with its average eight-channel accuracy of 69.52%, indicating a

13.81%, 5.46% and 3.17% improvement compared to the GS

layer (55.71%), All-SE (64.06%), and the ACS layer (66.35%). The

proposed method showed a large improvement in the accuracy of

subject No. 4 (up to 7.17%) and No. 7 (up to 12.97%).

In addition, a 5-fold cross-validation on the training set was

also carried out to further assess the robustness and stability of

the proposed method. The results of cross-validation are consistent

with those of the hold-out method, demonstrating that the CA

layer exhibited superior channel selection capabilities compared to

other methods.

Figure 5 shows changes in average accuracy before and after

using different channel selection methods. The average accuracy

decreased by 18.46% (GS layer), and 7.82% (ACS layer) after
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selecting eight channels from 22 channels. The CA layer performed

the best, reducing the number of channels by 63.64% at the cost of

a 4.65% decrease in classification performance.

To further evaluate the channel selection capability of the

proposed method for different number of channels, its average

TABLE 2 Search space for hyperparameters.

Name Range Type

Dropout rate (0, 0.9) Discrete (0.1)

Optimizer AdamW, Adadelta, and

Adagrad

Choice

Learning rate (10−5 , 10−1) Continuous (exponential

distribution)

Batch size (4, 8, 16, 32, 64) Choice

Weight decay (10−5 , 10−4 , 10−3 , 10−2) Choice

The content in brackets in “Type” column is supplementary to the details, “Discrete (0.1)”

indicates a discrete variable with a step size of 0.1 and “Continuous (exponential distribution)"

indicates that the continuous variable follows an exponential distribution.

performance across all subjects was compared with other channel

selection methods for different channel subset size. Specifically,

comparisons were made for subsets of 10, 12, 14, and 16 channels.

These specific channel subset sizes were chosen because accuracy

significantly degraded when the number of channels was less than

eight, while exceeding 16 channels may impact real-time processing

speed, as shown in Figure 4. The hold-out and training set cross-

validation results of these comparisons are presented in Table 5.

The results indicate that the CA layer consistently demonstrated

optimal or near-optimal channel selection capabilities in all

scenarios, substantiating the effectiveness and practicality of the

proposed method for channel selection in MI-BCI.

3.3. Position of the selected channels

When the number of electrodes (or channels) is determined,

which channels should be selected is a long-standing issue when

decoding EEG signals. Figure 6 illustrates the electrode distribution

TABLE 3 Hyperparameters for each subject in BCIC IV 2a dataset.

Subject Hyperparameters before/after channel selection

Dropout rate Optimizer Learning rate Batch size Weight decay

No.1 0.5/0.2 AdamW/AdamW 1.049E-3/8.234E-5 32/16 1E-5/1E-2

No.2 0.3/0.5 AdamW/AdamW 1.922E-4/2.852E-3 4/16 1E-3/1E-3

No.3 0.5/0.6 Adagrad/AdamW 9.036E-3/2.362E-2 8/4 1E-4/1E-2

No.4 0.4/0.3 AdamW/AdamW 2.940E-4/2.159E-4 16/8 1E-4/1E-2

No.5 0.4/0.2 AdamW/AdamW 5.330E-5/6.413E-4 4/16 1E-4/1E-4

No.6 0.4/0.4 AdamW/AdamW 2.639E-4/6.915E-4 4/16 1E-4/1E-4

No.7 0.7/0.3 Adagrad/AdamW 1.181E-2/3.533E-4 16/8 1E-2/1E-5

No.8 0.3/0.5 Adagrad/AdamW 2.276E-2/1.058E-3 16/4 1E-5/1E-2

No.9 0.4/0.2 AdamW/AdamW 5.243E-4/2.092E-3 16/16 1E-2/1E-2

FIGURE 4

Relationship between the number of input channels, average classification accuracy, and prediction time of the model with the

ECA-DeepNet method.
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TABLE 4 Classification accuracies (%) for eight channels with the GS layer, All-SE, ACS or CA layer.

Subject Hold-out sccuracy (%) Training set cross-validation accuracy (%)

GS layer All-SE ACS layer CA layer GS layer All-SE ACS layer CA layer

No.1 51.27 65.27 77.89 76.85 54.79± 16.03 69.55± 2.85 71.55 ± 4.01 70.62± 4.71

No.2 31.36 47.68 48.37 47.10 34.71± 9.46 50.92± 3.05 52.66± 4.80 53.96 ± 6.39

No.3 81.36 82.63 83.68 88.54 71.77± 5.76 80.32± 4.73 77.98± 5.22 82.52 ± 2.71

No.4 42.36 54.62 55.67 62.84 41.66± 5.30 52.18± 4.87 53.34± 5.63 55.75 ± 7.95

No.5 46.99 57.06 55.67 61.11 45.59± 2.89 52.99± 3.23 52.68± 5.51 59.37 ± 1.96

No.6 36.34 51.27 52.89 54.62 38.67± 4.70 53.23 ± 3.43 52.33± 2.38 48.96± 1.78

No.7 65.39 64.46 69.32 82.29 66.43± 7.06 64.57± 2.81 65.52± 1.87 78.11 ± 2.47

No.8 68.98 73.72 75.23 73.26 59.07± 6.75 75.23± 5.59 75.01± 3.59 78.02 ± 5.28

No.9 77.31 79.86 78.47 79.05 68.04± 4.83 79.76± 4.46 79.64± 2.71 83.13 ± 4.23

Average 55.71 64.06 66.35 69.52 53.41± 6.97 64.31± 3.89 64.52± 3.97 67.82 ± 4.17

STD 18.15 12.55 13.23 13.80 13.78 12.34 11.85 13.38

The best value in each row is denoted in boldface.

FIGURE 5

Classification accuracies (%) comparison for each subject in BCIC IV 2a dataset from 22 to eight channels using di�erent channel selection methods.

TABLE 5 Average classification accuracies (%) across all subjects for 10, 12, 14, and 16 channels with the GS layer, All-SE, ACS or CA layer.

Number Hold-out accuracy (%) Training set cross-validation accuracy (%)

of channels GS layer All-SE ACS layer CA layer GS layer All-SE ACS layer CA layer

10 57.24 64.84 69.31 71.14 47.74± 5.47 65.19± 5.21 67.25± 4.85 67.65 ± 3.95

12 54.29 67.81 72.80 71.41 46.65± 5.82 66.16± 4.45 69.67± 5.10 69.93 ± 5.57

14 52.93 69.08 72.22 73.40 47.55± 4.45 65.78± 4.39 69.56± 4.31 71.84 ± 4.17

16 53.43 70.84 73.48 73.64 47.03± 5.05 67.01± 4.29 70.22± 5.01 70.43 ± 3.83

The best value in each row is denoted in boldface.

of the eight-channel subset obtained using the proposedmethod for

each subject on BCIC IV 2a dataset.

The optimal eight-channel subsets varied among each subject.

Subjects No.3, No.7, and No.9 exhibited a tendency toward the

parietal region (near electrode Pz), responsible for processing

somatosensory information, in their eight selected channels. On

the other hand, subject No.1 showed a preference for the frontal

region (near electrode Fz), associated with motor control and

execution, in his eight selected channels. For the remaining

subjects, the electrodes were distributed across both parietal and

frontal lobe regions. This indicates that both the parietal and

frontal regions, in addition to the motor cortex, play crucial roles
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FIGURE 6

Position of each subject’s personalized channel subset in 10–20 system for BCIC IV 2a dataset. The channels marked in green are the

selected channels.

in the MI process. Furthermore, the eight-channel subset for

most subjects were concentrated near the central sulcus region

(electrodes C3, C4, Cz), which is considered to have the most

evident ERD/ERS phenomena and is most commonly used for MI

classification.

3.4. Performance of ECA modules

To evaluate the performance of ECA modules on classification

accuracy, comparative experiment was taken among EEGNet

(Lawhern et al., 2018), which is also a highly-cited model, DeepNet,

ECA-DeepNet, and SE-DeepNet. All 22 channels and eight

channels selected by proposed method were used for the

comparison, and the hold-out and training set cross-validation

results are shown in Tables 6, 7.

It can be found that incorporating ECA modules into the

network effectively improved the classification accuracy, and it

outperformed the SE module in eight out of nine subjects with

both 22 channels and eight channels. The average accuracies of

ECA-DeepNet, SE-DeepNet, DeepNet, and EEGNet were 75.76,

72.58, 73.89, and 72.06% respectively with 22 channels and 69.52,

67.03, 64.79, and 62.44%, respectively, with eight channels. The

results of cross-validation align with this finding, demonstrating

that ECA-DeepNet achieved optimal classification performance in

most cases.

Themost influential factor leading to the difference between the

ECAmodule and SEmodule is that the ECAmodule avoids the side
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TABLE 6 Classification accuracy (%) with all 22 channels for EEGNet, DeepNet, SE-DeepNet, ECA-DeepNet methods.

Subject Hold-out accuracy (%) Training set cross-validation accuracy (%)

EEGNet DeepNet SE-DeepNet ECA-DeepNet ECA-DeepNet EEGNet DeepNet SE-DeepNet ECA-DeepNet ECA-DeepNet
without CA layer without CA layer

No.1 75.34 83.45 86.69 85.06 82.40 74.09± 3.74 77.32± 4.14 74.88± 4.40 77.77 ± 4.43 76.29± 3.21

No.2 56.07 53.82 51.74 54.05 52.9 49.30± 5.65 54.61± 6.87 53.02± 8.53 59.17 ± 6.91 56.97± 7.72

No.3 91.84 88.77 84.72 90.85 91.43 85.66 ± 5.47 82.27± 3.50 80.09± 3.23 82.97± 3.26 82.97± 2.02

No.4 61.80 63.08 62.04 67.93 64.12 51.99± 4.28 54.38± 7.80 53.12± 7.17 57.64 ± 5.66 57.05± 9.07

No.5 63.71 67.01 67.59 70.60 66.78 56.36± 5.21 61.10± 3.94 63.53± 6.60 66.87± 5.67 67.23 ± 2.48

No.6 57.46 57.99 57.29 59.38 59.60 53.16± 5.33 58.55± 4.85 54.02± 6.42 66.80 ± 5.37 59.74± 4.06

No.7 81.07 90.16 87.85 92.36 90.27 78.82± 4.72 82.98 ± 3.79 79.73± 4.12 82.30± 2.03 80.00± 5.08

No.8 80.55 77.31 76.27 78.47 79.86 81.49± 3.42 80.21± 2.36 81.71± 3.81 81.72 ± 1.56 80.89± 3.66

No.9 80.72 83.45 79.05 83.10 80.90 83.81 ± 2.40 81.37± 1.89 80.32± 1.27 80.11± 3.88 82.75± 1.17

Average 72.06 73.89 72.58 75.76 74.17 68.30± 4.47 70.31± 4.35 68.94± 5.06 72.82 ± 4.31 71.54± 4.27

STD 12.62 13.69 13.41 13.60 13.93 15.24 12.73 12.87 10.24 11.28

The best value in each row is denoted in boldface.

TABLE 7 Classification accuracy (%) with eight channels for EEGNet, DeepNet, SE-DeepNet, and ECA-DeepNet methods.

Subject Hold-out accuracy (%) Training set cross-validation accuracy (%)

EEGNet DeepNet SE-DeepNet ECA-DeepNet ECA-DeepNet EEGNet DeepNet SE-DeepNet ECA-DeepNet ECA-DeepNet
without CA layer without CA layer

No.1 77.77 78.99 73.03 76.85 75.57 71.66± 3.74 69.34± 3.44 69.70± 3.07 70.62± 4.71 72.00 ± 2.62

No.2 47.04 49.65 43.28 47.10 45.13 46.33± 5.82 50.93± 6.99 54.77 ± 6.67 53.96± 6.39 54.28± 7.16

No.3 85.41 86.80 87.73 88.54 84.60 78.26± 3.19 84.02 ± 3.21 82.88± 3.61 82.52± 2.71 83.67± 2.13

No.4 57.98 65.63 57.87 62.84 59.38 55.89 ± 4.33 49.29± 4.51 53.69± 6.68 55.75± 7.95 53.44± 7.67

No.5 50.34 55.03 59.72 61.11 59.60 49.08± 3.16 55.91± 1.96 57.75± 3.00 59.37 ± 1.96 53.67± 9.20

No.6 46.88 44.61 51.38 54.62 52.89 48.25± 3.42 45.14± 2.29 45.61± 4.73 48.96 ± 1.78 48.85± 3.54

No.7 62.32 61.80 79.39 82.29 76.50 64.47± 3.63 75.32± 3.88 76.38± 2.48 78.11± 2.47 81.35 ± 3.50

No.8 60.24 64.93 73.37 73.26 75.57 66.19± 3.34 76.62± 5.09 76.62± 4.31 78.02 ± 5.28 77.68± 4.18

No.9 73.95 75.69 77.54 79.05 79.05 75.93± 3.64 81.02± 8.28 80.34± 4.39 83.13 ± 4.23 80.68± 2.88

Average 62.44 64.79 67.03 69.52 67.59 61.78± 3.81 65.29± 3.58 66.42± 4.33 67.83 ± 4.17 67.29± 4.77

STD 13.90 13.90 14.64 13.80 13.60 12.32 15.00 13.62 13.38 14.41

The best value in each row is denoted in boldface.
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effects of dimensionality reduction on channel attention prediction.

The main difference between the two modules is that: To limit

model complexity, the SE module adjusts the dimensionality of

the two fully connected layers, i.e., by projecting channel features

into a low-dimensional space and then mapping them back. At

the same time, the ECA module chooses to implement it with 1D

fast convolution of kernel size k or an equivalently dimensioned

fully connected layer, maintaining the same channel dimensionality

(when used as the CA layer). The dimensionality reduction

operation in the SE module destroys the direct correspondence

between a channel and its weights, directly leading to SE modules

not achieving the same performance as ECA modules.

To evaluate the importance of the CA layer and ECA module

in ECA-DeepNet, the performance of ECA-DeepNet without the

CA layer was compared to both DeepNet and the complete ECA-

DeepNet. The comparison results are shown in Tables 6, 7. It can

be observed that removing either the CA layer or the ECAmodules

between the convolutional layers from ECA-DeepNet resulted in a

decrease in accuracy. Removing the CA layer led to a decrease in

accuracy by 1.59% with 22 channels and 1.93% with eight channels,

while removing all ECA modules resulted in a decrease in accuracy

by 1.87% with 22 channels and 4.73% with eight channels. The

results of cross-validation align closely with this conclusion. The

removal of the ECA module exhibited a more significant impact

with eight channels, possibly attributed to these eight channels

being selected by the ECA-DeepNet network. The characteristic of

the embedded channel selection method being trained alongside

the classifier determines that changes in the model structure will

result in a misalignment between the selected channels and the new

model. This misalignment had a relatively minor effect when only

the CA layer was removed, but it introduced a substantial adverse

impact when all ECA modules were eliminated.

4. Discussion

In this study, a novel embedded channel selection method

based on the ECA module is introduced for MI-BCI. The publicly

available BCIC IV 2a dataset was employed to compare and

evaluate the performance of this method through the hold-out

validation and training set cross-validation. The experimental

results reveal that, compared to the other two state-of-the-art

techniques, the proposed method achieved superior performance

in selecting channel subsets (Tables 4, 5). The ECA module,

functioning as an attention mechanism, not only serves for channel

selection but also contributes to the further enhancement of

network performance (Tables 6, 7).

A long-standing challenge pertains to the selection of channels

for the decoding of EEG signals when the number of channels

is pre-determined. Figure 6 illustrates that even among healthy

subjects, the optimal subset of eight channels can exhibit significant

variation. While the majority of these channels tended to cluster

around the central sulcus, for some individuals, the distribution

of eight channels extended to the frontal lobe region, while

others showcased distribution within the parietal lobe region, or

a combination across both regions. This observation indicates

the crucial role played by both the parietal and frontal lobes in

the process of MI-EEG decoding. This result is consistent with

anatomy and previous studies (Pfurtscheller and da Silva, 1999;

Hetu et al., 2013; Park and Chung, 2020), providing the theoretical

basis and interpretability to the channel subsets obtained through

the proposed method in this paper.

In this study, one of the chosen comparative methods was the

SE module (Hu et al., 2018), which is also an channel attention

module. The performance of the SE module fell short of the

ECA module in most cases (Tables 4–7). This disparity primarily

arises from the fact that the SE module introduces dimensionality

reduction when forming the bottleneck-like structure. This

reduction operation may result in loss of feature information

during the process of channel attention learning and disrupt the

direct correspondence between channels and attention weights.

In contrast, the ECA module usually employs 1D convolution

operations, allowing each channel to aggregate information from

surrounding channels. When it serves as the CA layer, a fully

connected layer that does not alter the channel dimension is

employed to learn channel attention. These designs enable a more

direct capture of interdependencies between channels.

EEG-based MI classification is a prominent research direction.

To enhance accuracy, researchers employ an increasing number of

electrodes to acquire more comprehensive information. However,

different channels contribute to the classification process in

distinct ways, and redundant channels may arise. Consequently,

an appropriate channel subset through channel selection becomes

highly necessary. This paper proposes a novel channel selection

method that integrates the ECA module with a CNN. During the

training process, the module automatically learns the importance

of individual channels based on feature interdependencies and

improves performance as well. Based on the extracted channel

weights after training, a ranking of channel importance is

established. Researchers can select appropriate channel subsets

for different subjects based on practical accuracy and hardware

requirements from the ranking. Using the BCIC IV 2a dataset,

the proposed method was compared with two state-of-the-art

embedded channel selection methods, namely ACS Layer and

GS Layer. The proposed method achieved an average accuracy

of 69.52% with eight channels, outperforming the other two

algorithms. The selected eight channels align with prior research

and anatomical knowledge. Furthermore, to evaluate the impact

of integrating the ECA module into a CNN, a comparison of

classification performance was conducted between EEGNet, the

original DeepNet, the proposed ECA-DeepNet, and SE-DeepNet.

The ECA-DeepNet achieved an accuracy of 75.76% with 22

channels and 69.52% with eight selected channels, exhibiting a

1.93 and 4.73% accuracy improvement over the original DeepNet.

The experimental results demonstrate that the ECA module not

only assists in channel selection but also improves classification

performance. Therefore, this paper introduces a feasible approach

for channel selection in EEG-based MI-BCIs.
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