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Objectives: A growing body of evidence suggests that age-related hearing loss 
(HL) is associated with morphological changes of the cerebral cortex, but the 
results have been drawn from a small amount of data in most studies. The aim 
of this study is to investigate the correlation between HL and gray matter volume 
(GMV) in a large number of subjects, strictly controlling for an extensive set of 
possible biases.

Methods: Medical records of 576 subjects who underwent pure tone audiometry, 
brain magnetic resonance imaging (MRI), and the Korean Mini-Mental State 
Exam (K-MMSE) were reviewed. Among them, subjects with normal cognitive 
function and free of central nervous system disorders or coronary artery disease 
were included. Outliers were excluded after a sample homogeneity check. In the 
end, 405 subjects were enrolled. Pure tone hearing thresholds were determined 
at 0.5, 1, 2, and 4  kHz in the better ear. Enrolled subjects were divided into 3 
groups according to pure tone average: normal hearing (NH), mild HL (MHL), 
and moderate-to-severe HL (MSHL) groups. Using voxel-based morphometry, 
we  evaluated GMV changes that may be  associated with HL. Sex, age, total 
intracranial volume, type of MRI scanner, education level, K-MMSE score, smoking 
status, and presence of hypertension, diabetes mellitus and dyslipidemia were 
used as covariates.

Results: A statistically significant negative correlation between the hearing 
thresholds and GMV of the hippocampus was elucidated. Additionally, in group 
comparisons, the left hippocampal GMV of the MSHL group was significantly 
smaller than that of the NH and MHL groups.

Conclusion: Based on the negative correlation between hearing thresholds and 
hippocampal GMV in cognitively normal old adults, the current study indicates 
that peripheral deafferentation could be  a potential contributing factor to 
hippocampal atrophy.
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1. Introduction

Age-related hearing loss (ARHL) is one of the most common 
sensory impairments in elderly subjects. ARHL is characterized by 
difficulties in speech understanding in acoustically adverse settings, 
delayed central auditory processing, and compromised sound 
localization (Gates and Mills, 2005). Due to the high prevalence and 
its impact on everyday life, ARHL is a great social burden. In subjects 
over 65 years of age, one in three suffer from hearing loss (HL), and in 
those over 80, HL affects more than a half (Roth et al., 2011; Homans 
et al., 2017). ARHL is the leading cause of years lived with disability 
for population over 70 years of age (Collaborators, 2021). Due to 
population growth and aging, the number of people living with HL is 
expected to rise by 56.1%, from 1.57 billion in 2019 to 2.45 billion in 
2050 (Collaborators, 2021). Therefore, the social burden of ARHL is 
expected to rise continuously.

In addition to the high prevalence of presbycusis, ARHL has 
received considerable attention associated with cognitive decline. An 
expanding array of research indicates a correlation between ARHL 
and both cognitive deterioration and an increased risk for dementia 
(Lin et al., 2011, 2013; Deal et al., 2017). Furthermore, the Lancet 
Commission on Dementia Prevention identified ARHL as the most 
significant modifiable risk factor for dementia (Livingston 
et al., 2017).

Although the relationship between ARHL and cognitive decline 
has been confirmed in many epidemiological studies, how the two are 
linked remains unclear. Recently, many studies have attempted to 
elucidate the mechanism, including through analysis of brain imaging 
data. Structural imaging studies have been conducted to identify the 
association between HL and brain volumes of auditory- and 
non-auditory regions of the brain. However, there are stark disparities 
among studies. The auditory cortex has been the most frequently 
investigated region, but even the volumetric changes in the auditory 
cortex have shown inconsistent results among studies (Lin et al., 2014; 
Giroud et al., 2017; Rigters et al., 2017; Ren et al., 2018; Eckert et al., 
2019). Also, other studies have evaluated the association between HL 
and a more extensive set of regions known to support auditory 
perception, such as the cingulate cortex, amygdala, and hippocampus, 
but the relationship between HL and cortical reorganization has not 
been fully elucidated yet (Uchida et al., 2018; Armstrong et al., 2019; 
Belkhiria et al., 2019, 2020).

In this regard, we sought to investigate the correlation between 
volumetric changes of the cerebral cortex and ARHL using whole-
brain exploratory analysis in a large series of subjects. Also, by 
controlling numerous variables that can affect brain volume, the 
HL-related changes in the cerebral cortex in the current study were 
minimally biased by other factors.

2. Materials and methods

2.1. Subjects

This is a single-center retrospective cohort study. 
We  retrospectively reviewed subjects who visited Seoul National 
University Hospital Healthcare System Gangnam Center from 
January 2017 to June 2020. A total of 576 adults who were older than 
50 years and had undergone pure tone audiometry, brain magnetic 

resonance imaging (MRI), and the Korean Mini-Mental State Exam 
(K-MMSE) were initially screened. Subjects with cognitive decline 
(K-MMSE score < 24) (n = 101), central nervous system (CNS) 
disorders (n = 13), coronary artery disease (CAD) requiring 
percutaneous coronary intervention or coronary artery bypass 
grafting (n = 51) were excluded from the study, along with outliers 
from a voxel-based morphometry (VBM) sample homogeneity test 
(n = 10) (Kang et al., 1997). Four subjects had both CNS disorder and 
CAD. As a result, 405 eligible subjects were finally enrolled in this 
study. The pure tone audiometric thresholds were calculated by 
averaging thresholds at 0.5, 1, 2, and 4 kHz of the better ear. Enrolled 
subjects were divided into three groups according to pure tone 
average based on the WHO’s grades of hearing impairment: normal 
hearing (NH, <25 dB), mild hearing loss (MHL, ≥25 dB and <40 dB), 
and moderate-to-severe hearing loss (MSHL, ≥40 dB) (World Health 
Organization, 1991). The study was approved by the Institutional 
Review Board of the Clinical Research Institute at Seoul National 
University Hospital (IRB No. 2009-011-1154).

2.2. Image acquisition

The subjects underwent brain structural MRI using one of three 
types of scanner: 1.5 T brain MRI (i) Achieva (179 subjects; Philips 
Medical Systems, Best, The Netherlands), (ii) MAGNETOM Espree 
(105 subjects; Siemens, Erlangen, Germany) or 3 T brain MRI (iii) 
MAGNETOM Skyra (121 subjects; Siemens, Erlangen, Germany). 
Structural images were acquired with (i) 3D T1 weighted TFE 
sequence with repetition time (TR) = 7.5 ms, echo time (TE) = 3.4 s, flip 
angle (FA) = 8°, voxel size = 1.0 × 1.0 × 1.0 mm3, slice thickness = 1 mm, 
160 sagittal slices, field of view (FOV) = 240 mm, (ii) 3D T1 weighted 
TFL sequence with TR = 1,020 ms, TE = 4.29 s, FA = 15°, voxel 
size = 0.9 × 0.9 × 1.0 mm3, slice thickness = 1 mm, 160 sagittal slices, 
FOV = 240 mm, or (iii) 3D T1 weighted MPRAGE sequence with 
TR = 1,600 ms, TE = 2.84 s, FA = 9°, voxel size = 0.5 × 0.5 × 1.0 mm3, slice 
thickness = 1 mm, 192 sagittal slices, FOV = 240 mm.

2.3. Preprocessing of MRI images for VBM 
analysis

VBM analysis of the T1-weighted images was performed using the 
Computational Anatomy Toolbox (CAT121) implemented in 
Statistical Parametric Mapping 12 (SPM122) software using MATLAB 
(R2020b). For pre-processing, default settings according to the 
standard protocol were used. All scans were segmented into gray 
matter (GM), white matter, and cerebrospinal fluid and spatially 
normalized to Montreal Neurological Institute (MNI) stereotactic 
space using DARTEL (diffeomorphic anatomical registration through 
an exponentiated Lie algebra) algorithm. Then, normalized GM 
images were modulated (i.e., scaled by the amount of expansions and 
contractions that has occured during spatial normalization), so that 
voxel-wise gray matter volumes (GMV) remains the same as in 

1 http://www.neuro.uni-jena.de/cat/

2 http://www.fil.ion.ucl.ac.uk/spm/
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individual native space. After segmentation, a quality check was 
conducted. The normalized segmented images were smoothed using 
an 8-mm FWMH Gaussian kernel. We used an absolute masking 
threshold of 0.1.

2.4. Statistical analysis

Multiple regression analysis was performed to evaluate 
correlations between hearing thresholds and GMV. Sex, age, total 
intracranial volume (TIV), type of MRI scanner, education level, 
MMSE score, hypertension, diabetes mellitus, dyslipidemia, and 
smoking status were used as covariates to minimize bias while 
evaluating correlations between hearing thresholds and GMV. The 
differences in GMV between the three groups were evaluated with 
factorial analysis with the type of MRI scanner and group according 
to PTA as factors. By analyzing the data in this way, inter-scanner 
differences were adjusted for as described in previous literature 
(Pardoe et al., 2008). Again, sex, age, TIV, education level, MMSE 
score, hypertension, diabetes mellitus, dyslipidemia, and smoking 
status were used as covariates. The post-hoc test was performed using 
the Mann–Whitney U test with Bonferroni correction. All results were 
corrected for multiple comparisons to a significant level of voxel-level 
p < 0.05, family-wise error (FWE)-corrected, and a cluster size >10 
voxels was adopted. Because all continuous clinical and demographic 
data (better ear hearing level, TIV, and MMSE) were not normally 
distributed (confirmed by the Shapiro-Wilks test, p < 0.05 for all 
continuous parameters), we compared the three groups using the 
Kruskal-Wallis test for the continuous data and the χ2-test for the 
categorical data. All statistical analyses were performed with the SPSS 
23 (IBM Corporation, New York, USA) package using a two-sided test 
with a significance level of 0.05.

2.5. Covariates

In statistical analysis, 10 covariates (sex, age, TIV, type of 
MRI scanner, education level, K-MMSE score, hypertension, 
diabetes mellitus, dyslipidemia, and smoking status) were 
adjusted. Variables that could potentially be confounders in the 
relationship between hearing thresholds and brain volume, and 
variables known to be associated with HL were used as covariates. 
Smoking status was based on self-report. The diagnosis of 
hypertension, diabetes mellitus, and dyslipidemia was established 
based on a history of a physician diagnosis, pharmacologic 
treatment, and self-report.

3. Results

3.1. Demographic and clinical 
characteristics

The demographic and clinical characteristics of 405 subjects 
are summarized in Table 1. Two hundred and forty-two subjects 
with a PTA < 25 dB were classified as the NH group, 91 subjects 
with a PTA ≥ 25 dB and < 40 dB were classified as the MHL group, 
and 72 subjects with a PTA ≥ 40 dB were classified as the MSHL 
group. There were no significant differences between the three 
groups with regard to sex, TIV, education level, dyslipidemia, and 
smoking status. The age of the NH group was significantly  
lower than that of the MHL and the MSHL groups. The K-MMSE 
score of the NH group was significantly higher than that of  
the MHL and the MSHL groups. The prevalence of hypertension 
and diabetes was higher in the MSHL group than in the 
NH group.

TABLE 1 Clinical and demographic characteristics of the three groups.

Normal
(n =  242)

Mild HL
(n =  91)

Mod to severe HL
(n =  72)

p-value

Age, mean (SD), years 65.09 (6.92) 70.79 (6.93) 73 (6.81) <0.001*

Sex, n (%) 0.091

Male 96 (39.7) 38 (41.8) 39 (54.2)

Female 146 (60.3) 53 (58.2) 33 (45.8)

TIV, mean (SD), cm3
1433.20 (144.05) 1437.93 (140.52) 1446.26 (145.24) 0.620

Education, mean (SD), years 14.15 (2.74) 14.02 (3.57) 13.73 (3.52) 0.778

MMSE, mean (SD) 27.22 (2.40) 26.64 (1.69) 26.45 (1.84) <0.001*

PTA, mean (SD), dB 16.85 (4.79) 31.19 (4.19) 49.89 (9.17) <0.001*

Hypertension, n (%) 84 (34.7) 41 (45.1) 39 (54.2) <0.008*

Diabetes Mellitus, n (%) 39 (16.1) 17 (18.7) 21 (29.2) <0.047*

Dyslipidemia, n (%) 111 (45.9) 50 (54.9) 36 (50.0) 0.326

Smoking, n (%) 0.131

Never-smoker 189 (78.1) 72 (79.1) 49 (68.1)

Ex-smoker 17 (7.0) 7 (7.7) 5 (6.9)

Current-smoker 36 (14.9) 12 (13.2) 18 (25)

Mod, moderate; HL, hearing loss; SD, standard deviation; n, number; TIV, total intracranial volume; MMSE, mini-mental state examination; PTA, pure tone audiometry.
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3.2. Correlation analyses between GMV 
and HL

Whole-brain voxel-level linear correlation analyses revealed that 
the volume of the left hippocampus (peak MNI x, y, z 
coordinates = −29, −9, −18; peak z-value = 5.43) was negatively 
associated with hearing threshold (Figure 1).

3.3. Group comparison of GMV

The factorial analysis found that the left hippocampus (peak MNI 
x, y, z coordinates = −24, −18, −23; peak z-value = 5.06) showed a 

significant difference between the groups (Figure 2A). On post-hoc 
analysis, the MSHL group showed significantly decreased left 
hippocampal volume compared to that of the MHL (p < 0.001) and the 
NH groups (p < 0.001). There were no significant differences between 
the MHL group and the NH group (Figure 2B).

4. Discussion

While evidence suggests that peripheral HL is associated with 
accelerated cognitive decline and elevated dementia risk (Lin et al., 
2011, 2013; Deal et al., 2017) the underlying mechanism remains 
unclear. As part of elucidating this mechanism, the present study 

FIGURE 1

(A) Whole-brain voxel-level linear correlation analysis indicates that the volume of the left hippocampus (peak MNI x, y, z coordinates  =  −29, −9, −18; 
peak z-value  =  5.43) is negatively associated with hearing threshold. (B) Scatter plot depicting the negative linear correlation between the GMV of the 
left hippocampus and hearing threshold.

FIGURE 2

(A) The left hippocampus (peak MNI x, y, z coordinates  =  −24, −18, −23; peak z-value  =  5.06) showed a significant difference between the groups. 
(B) On post-hoc analysis, the moderate to severe hearing loss group showed significantly decreased left hippocampal volume compared to that of the 
mild hearing loss (MHL) (p  <  0.001) and the normal hearing (NH) groups (p  <  0.001). There were no significant differences between the MHL group and 
the NH group. Asterisks (*) indicate a statistically significant difference with a p-value of less than 0.05.
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observed an inverse relationship between hearing thresholds and 
hippocampal GMV, a structure critically involved in dementia 
development, even among subjects with normal cognitive function.

Consistent with our study, two recent investigations, including a 
cohort study, have reported associations between HL and diminished 
hippocampal volume as well as accelerated volume decline (Uchida 
et al., 2018; Armstrong et al., 2019). Moreover, hippocampal atrophy 
is an indicator of neurodegeneration, as a proxy of neuronal loss, and 
is closely tied to accelerated volume reduction in both adults 
experiencing cognitive decline and those diagnosed with Alzheimer’s 
Disease (AD) (Jack et al., 2002; de Leon et al., 2004; Shi et al., 2009; 
Del Sole et al., 2016). Importantly, hippocampal atrophy may occur 
even before the onset of clinical AD symptoms (Lewczuk et al., 2015; 
McConathy and Sheline, 2015). Given these considerations, it is 
plausible that the effect of HL on cognitive decline might be mediated 
through changes in the hippocampus.

The hippocampus plays a multifaceted role in information 
processing and memory, with the right hippocampus generally 
implicated in spatial navigation and visual memory, while the left 
hippocampus predominantly engages in perception, learning and 
recall of speech (Ezzati et al., 2016; Billig et al., 2022). Our results 
specifically implicate the left hippocampus, consistent with its known 
lateralization. The hippocampus certainly receives and operates on 
auditory information (for a review, see Billig et  al., 2022), and its 
pyramidal place cells (O’Keefe and Dostrovsky, 1971) can map out 
dimensions of sound as they do for space, at least in rodents (Aronov 
et al., 2017). The hippocampus is also active during auditory working 
memory (Bishop and Miller, 2009; Davis et al., 2011; Kumar et al., 
2016; Lad et al., 2020; Kumar et al., 2021) and may provide predictive 
information to superior temporal sites during continuous speech 
listening (Michelmann et al., 2021). Given the challenges in speech 
recognition under acoustically challenging conditions associated with 
ARHL (Tun et  al., 2002; Best et  al., 2010), coupled with the left 
hippocampal functions, it could be hypothesized that the cognitive 
load on the left hippocampus may be elevated in individuals with 
ARHL. It has been suggested that excessive activation of hippocampal 
neurons could lead to hippocampal degeneration and a worsening of 
AD pathology (de Haan et al., 2012; Beckmann et al., 2020). In this 
context, Griffiths et al. emphasized the possibility of a bidirectional 
relationship between medial temporal lobe dysfunction and HL, 
which could interact with AD pathology (Griffiths et al., 2020). Such 
a relationship is suggested to be mediated by the decline in spectral 
and temporal resolution in ARHL that complicates speech-in-noise 
analysis, thereby necessitating heightened hippocampal activity 
(Gordon-Salant et al., 2007; Pichora-Fuller et al., 2007). This theory 
might explain the findings of the present study and the previous two 
studies (de Haan et al., 2012; Beckmann et al., 2020).

Alternatively, impaired adult hippocampal neurogenesis (AHN) 
could serve as an explanatory factor for the inverse association 
between hearing thresholds and hippocampal GMV. The hippocampus 
is one of the few areas of the brain where neurogenesis persists even 
during adulthood (Ernst and Frisen, 2015). Recent literature suggests 
that compromised AHN may contribute to hippocampal atrophy 
(Anand and Dhikav, 2012; Schloesser et al., 2014; Schoenfeld et al., 
2017). Compromised AHN is observed in the early stages of AD, even 
before clinical symptoms and amyloid deposition occur (Lazarov and 
Hollands, 2016; Liu et  al., 2021). Multiple AD pathology-related 
factors, including tau protein and Aβ, among others, disturb AHN and 

exacerbate cognitive deficits (Mu and Gage, 2011; Hollands et al., 
2017; Liu et al., 2021). In animal studies, noise-induced hearing loss 
(NIHL) has been shown to decrease AHN and impair memory (Kraus 
et al., 2010;Liu et al., 2016; Shukla et al., 2019), with these effects 
persisting up to 12 months after noise exposure evidenced by increased 
hippocampal tau-phosphorylation, which may inhibit AHN (Pristera 
et al., 2013; Komuro et al., 2015; Park et al., 2018; Houben et al., 2019). 
Since NIHL is a prominent type of acquired HL and shares 
pathophysiological mechanisms with ARHL, the findings from NIHL 
studies could be applied to ARHL (Yang et al., 2015; Hederstierna and 
Rosenhall, 2016; Liberman, 2017). Notably, the cited animal studies 
propose that HL, rather than noise trauma per se, modulates 
neurogenesis (Liu et al., 2016; Shukla et al., 2019). This assertion is 
further corroborated by a study using a conductive hearing loss (CHL) 
mouse model, which also demonstrated a reduction in AHN following 
CHL (Kurioka et  al., 2021). Recent evidence indicates that 
neurogenesis-related pathways including cellular differentiation and 
morphogenesis during development, among others, are associated 
with hippocampal atrophy (Horgusluoglu-Moloch et  al., 2019). 
Accordingly, the resultant smaller hippocampal volume could be a 
consequence of HL-modulated AHN. In addition, various factors such 
as environmental enrichment, exercise, stress, and social isolation 
affect AHN (Gould et al., 1997; Kempermann et al., 1997; Lemaire 
et al., 2000; van Praag et al., 2000; Kreisel et al., 2014; Voss et al., 2019), 
suggesting that HL-induced stress and social isolation could indirectly 
contribute to AHN and hippocampal atrophy.

In the group comparison of our study, the left hippocampal GMV 
of the MSHL group was smaller than that of the NH and MHL groups. 
The MHL group showed no significant difference from the NH group 
in hippocampal volume. The risk of incident dementia is increased 
more steeply with moderate to severe HL (Lin et al., 2011; Deal et al., 
2017). Moderate to severe HL seems to have a more significant effect 
on hippocampal atrophy and cognitive function deterioration. 
Hearing aid use slows the decline of episodic memory, one of the 
functions of the left hippocampus (Maharani et  al., 2018). Early 
intervention before moderate HL occurs might help prevent the 
progression of cognitive impairment. Additional research is required 
to assess the impact of early intervention on cognitive outcomes.

Studies on the association between HL and structural changes of 
the auditory cortex showed inconsistent results. Our results did not 
show any correlation between GMV of the auditory cortex and 
hearing thresholds. This aligns with prior research indicating that the 
effect of ARHL on the auditory cortex is minimal, while the process 
of aging exerts a substantial impact (Profant et al., 2013, 2014; Ouda 
et al., 2015; Profant et al., 2015, 2020). Conversely, some studies have 
shown a correlation between peripheral HL and GM atrophy in the 
primary auditory cortex (Peelle et al., 2011; Eckert et al., 2012; Lin 
et al., 2014; Ren et al., 2018; Uchida et al., 2018). ARHL is a term with 
a broad scope, and there are various subgroups within it according to 
the type or etiology of HL. The inclusion in these studies of patients 
with various types of HL without distinction might result in these 
inconsistent results.

There are some limitations in our study design. First, since this is 
a cross-sectional study, while a relationship between HL and 
hippocampus atrophy is revealed, a causal link between the two is yet 
to be  unveiled. However, while the results are correlational, and 
therefore do not directly demonstrate a causal relationship, we believe 
that the best interpretation is that hippocampal atrophy is a 
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consequence of moderate-to-severe HL; this would be consistent with 
existing evidence for HL causing impaired neurogenesis in 
hippocampus, as its eventual consequence, though could be the result 
of alternative structure–function relationships. Second, MRI obtained 
using scanners of different field strengths were included in this study. 
In case of a consistent bias, it might be viable to adjust the scanner 
type to enhance cross-site comparability. In our study, the scanner 
type was adjusted as a covariate in correlation analysis. In addition, to 
check the reliability of these results, a comparison between groups was 
performed using factorial analysis, as introduced by Pardoe et al. to 
correct inter-scanner differences in multi-site studies (Pardoe et al., 
2008). The factorial analysis also confirmed the association between 
HL and hippocampus atrophy.

The strengths of our study lie in its rigorous design and the use of 
a large sample size (n = 405). A key advantage is our meticulous 
approach to address potential biases and confounding factors. By 
carefully controlling for covariates such as age, sex, total intracranial 
volume, education level, cognitive status, hypertension, diabetes 
mellitus, dyslipidemia, and smoking status in our statistical analysis, 
we ensure robustness and validity of our findings. The substantial 
sample size further enhanced the study’s statistical power, allowing for 
a comprehensive and reliable investigation of the association between 
HL and brain structure, leading to more meaningful conclusions.

5. Conclusion

This study demonstrates a negative correlation between hearing 
thresholds and hippocampal GMV in cognitively normal old adults. 
This result suggested that peripheral deafferentation could be  a 
potential contributing factor to hippocampal atrophy.
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