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msemalign: a pipeline for serial 
section multibeam scanning 
electron microscopy volume 
alignment
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Serial section multibeam scanning electron microscopy (ssmSEM) is currently 
among the fastest technologies available for acquiring 3D anatomical data 
spanning relatively large neural tissue volumes, on the order of 1  mm3 or larger, 
at a resolution sufficient to resolve the fine detail of neuronal morphologies and 
synapses. These petabyte-scale volumes can be analyzed to create connectomes, 
datasets that contain detailed anatomical information including synaptic 
connectivity, neuronal morphologies and distributions of cellular organelles. 
The mSEM acquisition process creates hundreds of millions of individual image 
tiles for a single cubic-millimeter-sized dataset and these tiles must be aligned 
to create 3D volumes. Here we introduce msemalign, an alignment pipeline that 
strives for scalability and design simplicity. The pipeline can align petabyte-scale 
datasets such that they contain smooth transitions as the dataset is navigated in 
all directions, but critically that does so in a fashion that minimizes the overall 
magnitude of section distortions relative to the originally acquired micrographs.

KEYWORDS

multibeam, alignment, serial section electron microscopy, pipeline, SEM

Introduction

Over the last decades, interest in the collection of ever larger EM volumes for connectomics 
research has grown. In order to reach petabyte-scale datasets with reasonable acquisition 
durations, some form of parallelized acquisition is required. Serial section multibeam scanning 
electron microscopy (ssmSEM) is among the fastest technologies currently available for 
collecting cellular and synaptic resolution anatomy data of relatively large tissue volumes. Our 
approach is to use a customized sectioning technique (Fulton et al., 2023) along with parallel 
EM micrograph acquisition using the Zeiss multiSEM (Eberle et al., 2015). Such mSEMs image 
by scanning multiple beams in parallel over slightly overlapping regions, meaning that 2D 
sections are subdivided into many small image tiles (each 15.5 × 13.5 μm2). As an example, using 
these techniques to create an EM volume from a cubic mm of tissue cut with 35 nm section 
thickness and imaged at 5 nm pixel size results in about 1 petabyte of data, which consists of on 
the order of 100 million individual 2D-overlapping image tiles. Assembling a cohesive 
volumetric dataset from this quantity of individual image tiles requires computationally aligning 
them with respect to each other. Such an alignment is a computational challenge because: (1) 
section deformations that occur during cutting and placement on a wafer are non-linear, (2) 
artifacts (debris, charging artifacts, holes, etc…) and missed sections can occur during the 
sectioning and acquisition, and (3) the shear amount of data involved requires efficient 
algorithms and scalability to parallelized hardware resources. In particular it is important that 
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the alignment of EM datasets can proceed at a similar speed (or faster) 
relative to the acquisition of the raw data, so that it does not become 
the major bottleneck for EM-based connectomics. For the 
aforementioned reasons, several alignment packages and pipeline 
designs have been developed in recent years.

Here we describe msemalign, a software package and pipeline for 
aligning ssmSEM tissue volumes. At the time that our development 
on msemalign began, our pipeline drew inspiration in particular from 
two existing approaches (Schaefer et al., 2006; Saalfeld et al., 2012), for 
which we  initially encountered some problems adapting to our 
acquisition format and scaling. Thus, we created msemalign, a pipeline 
mostly designed with classic image processing techniques, focused on 
aligning and correcting artifacts based on the specifics of our 
sectioning and acquisition methodologies and designed to be scalable 
using high performance computing (HPC) resources up to petabyte-
scale datasets. Existing state-of-the-art aligners have been designed 
with an emphasis on modularity and scalability (Vescovi et al., 2020; 
Mahalingam et al., 2022), which is important for scaling to even larger 
datasets. However, for labs with reasonable but modest HPC resources, 
financing and/or implementing and maintaining such multifaceted 
storage and database systems may be prohibitive. Therefore we took 
inspiration from approaches using a combination of image-feature 
based (Saalfeld et al., 2010, 2012; Khairy et al., 2018; Mahalingam 
et al., 2022) and cross correlation based (Bock et al., 2011; Briggman 
et  al., 2011; Scheffer et  al., 2013) image registration techniques. 
Although msemalign is less comprehensive than existing toolsets 
designed for more general bioimaging applicability (Cardona et al., 
2012), it is kept lean and dependency-light by focusing on alignments 
for serial sections acquired with GAUSS-EM (Fulton et al., 2023) and 
imaged with a mSEM. Again with an emphasis on simplicity, we opted 
for a solution which employs robust outlier detection. This allows us 
to employ a series of linear system solvers, based on large systems of 
coordinate differences, as opposed to solutions involving non-linear 
solvers (Saalfeld et al., 2012), machine learning (Macrina et al., 2021), 
or frequency-domain registration (Wetzel et al., 2016) and still obtain 
good alignments.

At least three other approaches have been described for aligning 
petascale serial-section EM datasets (Vescovi et al., 2020; Macrina 
et al., 2021; Mahalingam et al., 2022). These solutions are modular, 
with components and alignment information being communicated 
between components via database solutions. We have focused instead 
on simplicity, i.e., no database requirements, but instead simply 
serializing alignment information and writing iteratively refined 
aligned stacks to disk. Most of msemalign utilizes traditional image 
processing techniques, thus simplifying the compute time and 
oversight of training paradigms typically required by machine-
learning-based approaches (Macrina et al., 2021; Mahalingam et al., 
2022). We have also focused heavily on improvement of our ssmSEM 
acquisition, resulting in datasets with greatly reduced incidence of 
cracks (tears) and folds and of partial sections. Thus, any sections that 
are heavily deformed, in our case a small percentage of sections 
containing tears, can be corrected using a semi-automated technique. 
This also allows for a simplification of the alignment relative to 
approaches required for datasets containing many cracks or folds on 
practically every section (Macrina et al., 2021).

A well-aligned volume comprises two major features: (1) 
continuity of tissue structures (membranes, organelles, etc.) in all 
directions, and (2) minimal deformation of the original section 

images. Often only the first item is considered as being important, for 
example, one of the most common methods to qualitatively assess 
alignment quality is by examining XZ or YZ reslices of aligned volume 
data. Although this is important, it is not the only consideration, 
because without constraining the magnitude of warping to be applied, 
it is possible to create an aligned volume that has very smooth 
transitions as the dataset is navigated in any direction, but that also 
contains unrealistic warping of the original raw data. Thus, a good 
alignment is one that meets the traditional definition of alignment, so 
that structures can easily be traced in the volume, but that does so by 
applying the minimal amount of distortions to the acquired images. 
Overall msemalign is a heavily constrained but fully elastic aligner. 
This allows tissue sections to be  warped non-linearly, in order to 
recover from deformations that occur during sectioning, but prevents 
over-warping that may heavily alter morphologies relative to their 
state in the original tissue volume. All code required for running and 
scaling the pipeline is publicly accessible, including the main 
component package msemalign.

Materials and methods

Aligned volumes

The zebrafish retina dataset was sectioned with 35 nm thickness 
into 2,592 sections and collected onto three silicon wafers. A total of 
19 sections were excluded due to more severe artifacts, so the aligned 
dataset contains 78,750 × 75,344 × 2,573 voxels. The final volume 
crops some perimeter from the originally imaged micrographs, which 
include bare resin, iron/resin mixture or silicon wafer areas. The 
aligned volume is publically available.1 We  have also used the 
msemalign package to align two larger ssmSEM datasets with final 
aligned sizes of 370 TB (a 1 × 1.1 × 0.2 mm volume comprising 5,714 
sections) and 378 TB (a 0.75 × 1.2 × 0.26 mm volume comprising 
7,495 sections).

Runtimes

Our compute cluster at the time of alignment contained two 
partitions, one CPU-only partition containing 26 nodes with 40 cores 
each (1,040 CPU cores) and one CPU-GPU hybrid partition 
containing 28 nodes with one NVIDIA 2080Ti GPU and 20 cores 
(560 CPU cores) each. Using these resources and excluding the time 
involved in computationally solving the section ordering, the entire 
pipeline for aligning the zebrafish retina dataset ran in 109 h. We have 
included a detailed breakdown of the workflow steps as the 
percentage contribution to the total runtime (Table  1). We  have 
upgraded to a new cluster containing three partitions, two CPU-only 
partitions, one containing 80 nodes with 48 cores each (3,840 CPU 
cores) and one containing 24 nodes with 72 cores each (1,728 CPU 
cores) and one CPU-GPU hybrid partition containing 84 nodes with 
four NVIDIA Quadro RTX 6000 GPUs and 48 cores (4,032 CPU 
cores) each. Extrapolating the runtime on the older smaller cluster by 

1 https://webknossos.mpinb.mpg.de/links/4ig-0q1evJ649zfo
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directly scaling by the percentage of pixels in zebrafish retina dataset 
(1,000 TB / 14 TB), the runtime on a 1 PB dataset would 
be approximately 47 days. Because the CPU/GPUs are more modern, 
and IO/memory bandwidth and size are also larger on the newer 
cluster, this estimate represents an upper bound. The primary 
bottlenecks of the msemalign pipeline currently are the computation 
of normalized cross-correlations for the 3D fine and ultrafine 
alignments, the many Random Sample Consensus (RANSAC) 
iterations required for robust 2D vector field outlier detection and the 
final export at 4 nm. The major parameters that can be adjusted in 
order to reduce run time for the 3D cross correlations and outlier 
detection steps are the spacing of the grid points, the number of 
neighbors, the number of template angles and the size of the source 
and destination crops. These steps, in particular utilizing more output 
blocks for the final export at 4 nm, are easily further scalable with 

more hardware resources. Ultimately the primary bottleneck for the 
4 nm export steps is disk IO because aligned stacks currently must 
be  written to disk after the region (2D), fine and ultrafine 
alignment steps.

Code availability

The msemalign package2 that implements the pipeline is released 
along with two associated packages: swarm-scripts3 and rcc-xcorr.4 Most 
of the parallelization of the pipeline is done without communication, 
i.e., separate python processes work on different portions of the dataset 
in each step and do not require inter-node communication. The 
swarm-scripts package is a collection of scripts that can be used along 
with the msemalign pipeline as a most basic method of scaling onto a 
cluster that uses SLURM scheduling software, by essentially specifying 
different command lines for each step with parameters that indicate 
what part of the data that the current script should process. The 
majority of this parallelization is done by processing sections in 
parallel, with some portions also parallelized blockwise per section. 
The msemalign and rcc-xcorr packages are implemented using scientific 
Python. Most components of the pipeline also include per-node 
parallelization, accomplished using Python multiprocessing.

Normalized cross correlations

Both the msemalign and rcc-xcorr packages contain routines for 
computing the normalized cross-correlations (nxcorr) that are 
utilized during both the 2D and 3D alignments. Cross correlations 
are computed in the frequency domain, and then normalized in the 
spatial domain using pre-computed image integrals (Lewis, 1995). 
Both packages offer GPU implementations, which typically offer 
speedups (runtime comparisons are documented in the rcc-xcorr 
package) if the input images are large enough (bigger than about 
1,000 pixels per side). Images are always preprocessed before the 
template matching using nxcorrs. Preprocessing parameters depend 
on the input image pixel size, but for 16 nm input the image 
preprocessing steps with parameters are: (1) contrast normalization 
using Contrast Limited Adaptive Histogram Equalization (CLAHE) 
with a clip limit of 30 and a tile size of 32 × 32, (2) conversion to 32 
bit floating point, (3) whitening using a Laplacian of Gaussian (LOG) 
filter with sigma equal to 4, and (4) normalization by subtracting the 
mean and dividing by the standard deviation scaled by the square 
root of the number of image pixels, Zero-Normalized Cross 
Correlation (ZNCC). We found that all of these steps were useful in 
reducing the overall number of outlier cross correlations.

2D coordinate alignment

Multi-field-of-view (mFOV) tiles collected for the zebrafish 
retina dataset were 3,876 × 3,376 pixels (15.5 × 13.5 μm2 at 4 nm). 

2 https://github.com/mpinb/msemalign

3 https://github.com/mpinb/swarm-scripts

4 https://github.com/mpinb/rcc-xcorr

TABLE 1 Table showing the percentage of the total runtime that is 
required for each step.

Steps are shown in bold along with corresponding percent contributions to the total runtime. 
Steps are broken down into substeps (not-bolded), which are also shown as the percentage of 
total runtime for the whole pipeline. The substep names share those of the msemalign 
package pipeline files that are used to automate the workflow submission to a compute 
cluster.
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Cross correlations between neighboring images were performed 
by using the entire destination image as the main image and a 
crop of the nearest quarter of the neighboring source image as the 
template image. Cross correlations for any tiles that had grayscale 
variance below 1 (very low contrast, for example fully zero 
images) had their associated deltas automatically assigned as 
outliers. For the first pass of the alignment tolerances were 768 × 
768 nm2 for intra-mFOV comparisons and 15,440 × 13,440 nm2 
for inter-mFOV comparisons, almost the size of a full tile because 
mFOVs could sometimes overlap by almost a full file. For the 
second pass, the tolerances around each median delta were 64 × 
64 nm2 for intra-mFOV comparisons and 4,480 × 4,480 nm2 for 
inter-mFOV comparisons. A much larger inter-mFOV tolerance 
is necessary because errors in stage movement can in the worst 
cases accumulate to about 4–5 μm.

2D gradient and brightness correction

The two pass tile gradient and brightness correction relies on 
heuristics to determine outlier tiles. Because the overall brightness and 
contrast varies between sections, the heuristics must rely on the initial 
measure of the overall section histogram, and use that to determine a 
suitable range for considering tiles as inliers. Most outlier tiles are 
rejected simply by their mode relative to ranges determined from the 
overall section histogram. Additionally however, connected 
components are applied to each tile for all pixels above and below 
threshold values determined from the histogram, and some further 
tiles are rejected if they contain any large components (more than 20% 
of the image, for example) that are below this threshold. This is useful 
in rejecting tiles that might only partially overlap with the dark silicon 
wafer background, or tiles that contain many darkly stained 
membranes. Including either of these can cause artifacts in the final 
mean tiles. Mean tiles for the first pass are box filtered with a box size 
of 1 × 1 μm2. Larger sizes are not useful, because the gradient removal 
method is also useful for removing artifacts involved with the overlap 
area between tiles being image twice, and this overlap size is typically 
1–2 μm. After the filtering, tiles are divided by their mode in order to 
create the gradient factor scale correction. For the second pass, the 
heuristics remain the same, but are now based on histograms 
computed from the gradient corrected tiles. Instead of filtering after 
the average tiles are created, the mode value of each tile is taken and 
then the overall image mode is subtracted from this, resulting in the 
tile brightness correction factors.

For the final sub-tile-based brightness correction, tiles are typically 
broken into 3 × 3 sub-tiles and histograms are computed and compared 
using ZNCC. Adjacency matrices created for the histogram shift linear 
system solver (LSS) are typically generated using the top  32 best 
matching histograms, resulting in a total number of neighbors that is 
32 times the number of sub-tiles. For this reason, adjacency matrices 
could become prohibitively large for larger tissue sections (longer than 
about 200 μm per side), so for these sections sub-tiles were divided into 
randomized groups of 5,000 sub-tiles (without replacement) and the 
correction factors for the groups were solved independently. In order 
to prevent disconnected components in the adjacency matrix, 
minimum spanning trees of the graphs containing all pairwise 
comparisons and edge weights given by the corresponding correlation 
distances were computed. Edges from the minimum spanning trees 

were forcibly added, even if some of the edges were above the minimum 
correlation distance threshold for the histograms to be considered 
neighbors. The solved correction factors are single brightness offset 
correction factors for each sub-tile. Therefore, in order to avoid edge 
artifacts at the subtile boundaries, the solved brightness correction 
factors are fit with a 2D polynomial surface for each tile before being 
applied to the image tiles. This means the final correction factor is a 
smooth 2D polynomial surface for each tile. For the final section image 
montaging, feathering, or “ramps,” between tiles was used with a ramp 
distance of approximately 0.5 μm for ramps between tiles within the 
same mFOV and 3 μm for ramps between mFOVs.

Tissue detection

The tissue in the EM sections was detected using a convolutional 
neuronal network closely following the UNet architecture 
(Ronneberger et al., 2015) with a single output class implemented in 
PyTorch (Falcon, 2019; Paszke et al., 2019). Our architecture differed 
from the original in three ways: (1) we used zero padding such that 
input and output of each convolution had the same image dimensions 
and thus removed the necessity of cropping in the skip connections; 
(2) dropout with factor 0.5 was introduced for the convolution prior 
to the last max pooling step and the convolution prior to the first 
upsampling operation to prevent overfitting (Srivastava et al., 2014); 
(3) we used the sigmoid non-linearity in the output convolution for 
probability outputs.

During training, the data was augmented with flip and transpose 
operations, intensity augmentations [i.e., multiplication with uniform 
random values in [0.8, 1.2), addition of uniform random values in 
[−0.2, 0.2) and Gaussian noise (zero mean, unit variance)]. Prior to 
the padding and cropping of the samples to the network input size of 
256 × 256 pixels, each section was normalized to zero mean and unit 
variance. All augmentations and the normalization were implemented 
such that zero values were preserved.

The network was trained with 320 samples for 25,000 steps (each 
step with a batch size of one), the binary cross entropy loss function, 
the Adam optimizer with default parameters and a learning rate of 
10−6 (Kingma and Ba, 2015). The validation dataset consisted of 80 
samples. Ground truth samples were manually annotated by labeling 
tissue areas in full sections or sub-sections using webKnossos 
(Boergens et al., 2017). The labeling time depends of the ratio of tissue 
to background (e.g., bare Epon or silicon wafer) to be labeled and 
typically requires at most a few minutes per section. For inference, 
we used the best checkpoint with respect to the validation loss. The 
final tissue mask was generated by thresholding the inference output. 
We  chose the threshold such that it minimized the binary cross 
entropy on a test set. Inference and training was performed with a 
downsampled pixel size of 1,024 × 1,024 nm2.

3D rough alignment

Although other feature detection algorithms are possible, the 
rough alignment and order solving utilized Scale Invariant Feature 
Transform (SIFT). Keypoints and descriptors in further downsampled 
images, typically 128 or 256 nm resolution, were detected using the 
opencv (Bradski, 2000) implementation with the default parameters. 

https://doi.org/10.3389/fnins.2023.1281098
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Features were matched by using the Lowe ratio test (Lowe, 2004), with 
the ratio of the second closest neighbor to the closest neighbor equal 
to 1.42, a conservative threshold. Matching keypoints were fit with 
constrained affine models using linear regression (least squares) with 
Random Sample Consensus (RANSAC) (Fischler and Bolles, 1981). 
During the initial order-solving, rigid affines were always utilized (see 
Constrained Affine Transformations below) with a RANSAC tolerance 
of 5.12 μm. For the zebrafish retina dataset, rigid affines with the same 
tolerance were also used for computing the rough alignment. For the 
zebrafish retina dataset, neighbors were considered as a bad match if 
the number of matching SIFT features, meaning they were considered 
matching by both the Lowe ratio test and by the affine RANSAC, fell 
below a threshold of 32 matches. In addition, heuristics were applied 
to prevent some spurious matches, which were maximum allowable 
translation for the affine fit and a minimal radial distribution of the 
keypoints. For the zebrafish retina only the maximum translation 
heuristic was utilized with a value of 196 μm.

For application of the rough alignment LSS, uniformly spaced 
(hexagonal layout) grid points were utilized with a spacing of 25 μm. 
The grid points for all neighbor comparisons (four neighbors in each 
direction of the section ordering) were evaluated with the fitted affine 
transforms, effectively converting the affine transforms into 2D vector 
fields. Any grid points that were more than 60 μm way from a 
matching SIFT point were discarded before application of the rough 
alignment LSS. Before application of the rough alignment LSS, all 
vector fields were converted to use the centroid positions of the grid, 
i.e., the Voronoi points. We found that solving the centroids instead of 
the actual grid locations resulted in more 2D smoothness of aligned 
images. For the zebrafish retina (35 nm section thickness), the rough 
alignment LSS was applied blockwise in z, using overlapping blocks of 
721 sections (25 μm) of context and for each block of 241 sections 
(8 μm) being solved. For each block solution, the per-section and 
per-grid point resolved x,y deltas were fitted with a line (including 
offset) and this trend was removed from the deltas for each resolved 
grid point independently. This can be done for the rough alignment 
LSS because the adjacency matrix in this case is linear, i.e., the indices 
into the adjacency matrix increased were the exact relative 
z-coordinates of the sections being solved.

Constrained affine transformations

The msemalign package allows fitting affine transformations 
at various levels of constraint. Fitting full affine transformations 
in 2D results in 6 total free parameters (including translation) 
and is done easily by applying a linear regression (least squares). 
Analytical solutions that find affine fits with constraints are 
particular instances of the more general Procrustes analysis. 
Specifically, affine transformations can be decomposed into the 
4 sequential operations of rotation (angle), scaling (x and y), 
shearing (x and y) and translation (x and y). Translation is easily 
solved as the difference between source and destination point 
means after the 2 × 2 (unaugmented) affine matrix is computed. 
If both scale and shear are constrained to be zero, this is known 
as the orthonormal Procrustes problem, or rigid-body alignment. 
An optimal solution is given by the Kabsch–Umeyama algorithm, 
implemented in the msemalign package. This algorithm can also 
allow for a scale parameter, but it must be the same scale in x and 

y. Introducing an intermediate level of constraint, specifically 
that allows different scales in x and y, but does not allow for 
shear, is a more complicated analytical problem known as the 
orthogonal but not orthonormal Procrustes problem (Everson, 
1997). Although analytical solutions do not exist in higher 
dimensions, the 2D problem can be  expanded out from the 
involved matrices and solved analytically. This provides an 
optimal solution that specifically allows for different scale factors 
in x and y, but does not fit any shear. For tissue sectioning it is 
physically realistic to require different scale factors in x and y, 
because compression of the sections occurs in the direction of 
cutting rather than in the orthogonal direction, and the amount 
of compression can vary between sections.

3D fine alignment

For the zebrafish retina dataset, grid points chosen for computing 
nxcorrs were again uniformly (hexagonal arrangement) spaced with 
a spacing of 16 μm. For alignments with a larger xy area per section, 
we found it better to use a larger spacing, 24 or 32 μm, mostly because 
we prefer the initial fine alignment to be relatively rigid (enforced by 
the affine filtering of the vector fields) up to the scale of about 100 μm. 
We  found that non-linear deformations on average only became 
substantial at distances beyond 100 μm, meaning that most physical 
deformations that result from the sectioning are still locally rigid. At 
each grid location neighboring slices were cropped centered on the 
grid locations to run nxcorr-based template matching. For the 
zebrafish retina, source (image) crops were 32 μm and destination 
(template) crops were 4.8 μm. Four sections in each direction of the 
section ordering were used as neighbors for each section. To help 
reduce outlier deltas and account for any tissue where there happen 
to be more local non-linearities in the deformations, for example 
torqueing of the tissue, template matching is done by rotating the 
templates through a range, for the zebrafish retina dataset with [−15, 
15] in increments of 3 degrees. For sections that have artifacts such 
as tears or large folds, or bad image deformations that are larger than 
about 50 μm, the msemalign would try to correct these first and in 
isolation, before any 3D alignment is attempted. With good artifact 
correction, this simplifies the 3D alignment, but still allows inclusion 
of sections that would otherwise need to be excluded.

Outlier detection in the 2D vector fields for the fine alignment 
relies on a series of heuristic methods. The initial test is simply to apply 
RANSAC to a model of an affine transformation containing quadratic 
terms and use the RANSAC classification of outliers. Typically a looser 
RANSAC tolerance is utilized, for the zebrafish retina dataset 12 μm. 
The final step is to re-consider some outliers that maybe have been 
rejected by this model by comparing each delta against the angle and 
magnitude deviation of the most similar vectors in the neighborhood. 
For the zebrafish retina dataset, the diameter of this neighborhood was 
57 μm. Any grid points that were flagged as outliers are then replaced 
with estimates based on a model of rigid image deformation, Moving 
Least Squares (MLS) (Schaefer et al., 2006), which was easily adopted 
for interpolation / extrapolation instead of deformation. The replaced 
outlier deltas are weighted by 0.5 relative to the inlier deltas when 
applying the delta LSS.

For initial fine alignment we applied an affine filter (discussed in 
results) with a box size of 61 μm. The delta LSS for the fine alignment 

https://doi.org/10.3389/fnins.2023.1281098
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essentially works the same as for the rough alignment, except that 
we  found it useful to weight the input deltas depending on the 
neighbor distance. The relative weights used for the n ± 1 up to n ± 4 
comparisons were 1.0, 1.0, 0.4, and 0.1, respectively.

Many parameters are adjusted for the ultrafine alignment. For the 
zebrafish retina ultrafine alignment, a much finer grid spacing of 
2.0 μm was used. Two neighbors were used for nxcorr-based template 
matching in each direction of the solved ordering. Source (image) and 
destination (template) crop sizes were 12.8 and 3.2 μm, respectively. 
The affine filtering was disabled for the ultrafine alignment, but 
instead ridge regression was utilized with the delta LSS with an L2 
regularization factor of 0.05.

Export

Both the fine and ultrafine exports are implemented blockwise using 
an inverse coordinate transform method as described in Results. This 
allows for scalability of the exports, particularly for the final export at 
4 nm. For square-mm-sized sections, the rough bounding box was 
typically divided into 4 × 4 blocks for 16 nm exports and 16 × 16 for the 
final 4 nm export. To avoid edge artifacts, the blocks required a very small 
amount of overlap, usually set to 8 pixels in x,y. For the fine and ultrafine 
warpings, coordinates corresponding to every pixel must be warped, 
meaning that the 2D vector fields that describe the warping must 
be  interpolated to be  pixel-dense. Although a more complicated 
interpolation algorithm (for example MLS) could be utilized, we found 
that simple bilinear interpolation was sufficient for interpolating between 
the vector field grid points and was also much less computationally costly. 
The exports were cropped to the bounding box of the grid points to avoid 
extrapolation. So that no tissue areas were cropped from any sections, 
grids points were always spaced to fully cover the tissue.

Blockwise exporting for 2D montaged sections is also supported. 
This case is relatively simple, as it can simply montage tiles that have 
coordinates within the block, again utilizing some overlap to avoid 
edge effects related to the tile feathering (for the zebrafish retina 
dataset 8 μm in x,y).

Results

The msemalign pipeline manipulates images downsampled from 
the pixel size in which they were acquired. Most typically, images are 
downsampled from the acquired pixel size of 4 nm to 16 nm. In order 
to economize on compute time, further downsampling may be possible 
without loss of alignment quality, depending on the tissue type. The 
transformations computed at 16 nm are scaled and then applied to the 
4 nm data to create the final aligned dataset export. Typically we section 
embedded tissue blocks at a nominal section thickness of 35 nm. 
Sections are collected onto silicon wafers using the GAUSS-EM 
methodology (Fulton et al., 2023), wherein the ordering of the sections 
from the tissue block is not preserved, and the sections are randomly 
oriented on wafers. The overall orientation angles of the sections are 
typically uniformly random. Regions of interest (ROIs) to be imaged 
are positioned over each section on a light microscope overview image 
of all sections on a wafer. The acquisition results in a collection of small 
image tiles (15.5 × 13.5 μm2, 4 nm pixel size, 8-bit grayscale) for each 
section, acquisition-based x,y image coordinates for each tile and 

coordinates of the ROI within the image coordinate space of each 
section. The total number of image tiles for an entire petabyte-scale 
dataset is on the order of 100 million.

The msemalign pipeline (Figure 1) can be divided into four major 
components: (1) 2D section alignment: creates single large mosaics of 
individual sections by aligning and balancing small image tiles, (2) 3D 
rough alignment: uses image features to recover the ordering of the 
sections [if applicable (Fulton et al., 2023)] and then roughly align the 
2D section images using a single affine transformation per section, (3) 
3D fine alignment and ultrafine alignment: iteratively refine the rough 
alignment by computing template-based correspondences between 
neighbors at fixed grid locations, and (4) export: applies inverses of the 
computed transformations block-wise on output grid coordinates to 
create the final elastic transformation that warps each section into 3D 
alignment. The following sections discuss each of these major 
components in detail.

2D alignment

The 2D alignment procedure is tied to the acquisition format of 
the data acquired by the Zeiss mSEM microscope (Eberle et al., 2015), 
containing 91 electron beams arranged as a hexagon that 
simultaneously image tissue sections. After an area encompassing the 
91 beams, known as a multi-field-of-view (mFOV), is imaged, the 
sample stage is moved in order to acquire images for the next adjacent 
mFOV. mFOVs are then tiled to acquire images covering the 
previously defined ROI (Figure 2C). The tiles within each mFOV are 
overlapped with one another by about 1–2 μm based on beam 
coordinates, and between mFOVs by about 10 μm based on stage 
coordinates. The process is repeated until image tiles that cover the 
ROIs of all serial sections on a wafer are acquired. The msemalign 2D 
alignment assumes the mFOV structure and associated hexagonal 
layout of the tile images, although it could easily be  adapted for 
alternative tile layout patterns. Most of the 2D alignment is concerned 
with finding optimal translations and brightness gradient corrections 
of the individual beam tile images so that the final section images 
appears as smooth single large image mosaics in which tile 
boundaries are no longer visible.

The x,y coordinates of individual tiles and the hexagonal layout of 
the tiles within and between mFOVs is used to determine the nearest 
neighbors for each tile. The process is parallelized by loading tiles for a 
single mFOV, but including perimeter tiles from neighboring mFOVs 
(Figure 2A). With the exception of tiles around the edges of an mFOV, 
the hexagonal layout dictates that each tile has 6 immediate neighbors. 
Typically a full tile is compared against the closest quarter crop of the 
neighboring tile (Figure  2A, blue boxes) using normalized cross 
correlation (nxcorr). The peak matching location of the nxcorr is used 
to find optimal x,y deltas between the image tile centers (Figure 2B). 
Using normalized cross correlations as a template matching method 
usually produces the optimal matching location, but still generates 
some outliers that are not. Typically this occurs for one of two reasons: 
(1) the tiles being compared contain very little structure, for example 
in areas of the serial sections that either do not contain tissue or are in 
the center of cell bodies or blood vessels; (2) topographies in the 
resulting cross correlation image that are not peak-like, for example 
ridges or plateaus (Scheffer et  al., 2013; Buniatyan et  al., 2017). 
Ultimately some type of optimizing solver must be applied to the x,y 
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deltas obtained between neighboring tiles in order to compute optimal 
tile positions for all tiles in each section. For our purposes we have 
chosen a linear solver that we call the linear system solver (LSS), which 
is used at multiple steps throughout the pipeline. This solver is only 
robust to small amounts of noise and thus can be overwhelmed by any 
significant percentage of outlier cross correlation x,y deltas. For this 
reason, outlier x,y deltas must be  detected and replaced with a 
reasonable estimate delta before application of the 2D x,y delta LSS.

Outlier x,y deltas from the neighboring 2D cross correlations are 
detected using a two-pass procedure. In the first pass, deltas are 
compared against those expected based on overlap parameters from 
the acquisition, either for tiles within the same mFOV (intra-mFOV) 
or between mFOVs (inter-mFOV). Because the inter-mFOV 
comparisons are subject to positioning errors in stage movements, 
which are much larger than intra-mFOV errors in the 91 beam 
positions, the tolerance for the inter-mFOV comparisons must 
be greater. Still, during the first pass relatively large tolerances are used, 
primarily because stage-movement associated errors are not known a 
priori. Thus, the first pass only removes egregious outliers. Deltas from 
the first pass are used to compute median x,y deltas for each adjacent 

tile (Figure 2D) using a series of mFOVs that were acquired sequentially 
in time (but can be from different sections). The median deltas then 
serve two purposes: first as the values around which to apply a tighter 
tolerance for rejection of outliers and second as replacement x,y deltas 
for all detected outliers. This second pass then removes additional 
outliers and replaces outliers detected in both the first and second pass 
with a reasonable median replacement value.

After detection and replacement of outliers, all x,y deltas for a 
given section are input into the 2D x,y delta LSS (Figure 2E). The LSS 
without regularization simply finds a linear regression solution (a least 
squares solution) for an over-specified system. The system consists of 
a matrix describing the neighbors, or adjacencies, which contains 
exactly two nonzero values in each row, one and minus one. This 
effectively creates a difference between neighboring tiles in each row. 
This matrix is multiplied by the unknown “global” x,y coordinates, the 
differences of which are the previously measured x,y deltas. A 
weighting matrix can be  applied so that, in the case of the 2D 
alignment, outlier deltas that have been replaced with median values 
are given a lesser weighting. Although over-specified, the system will 
typically not have a unique solution, and solutions can contain offset, 

FIGURE 1

Flowcharts showing an overview of the major steps involved in the entire msemalign pipeline.
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linear trend, or low frequency oscillation biases. For the case of the 
adjacency matrixes that result from neighboring comparisons in a 
hexagonal 2D tessellation created by the mSEM tiles, the only bias 
we observed was an offset. This can simply be removed by subtracting 
the mean value of the solution, resulting in global coordinates that are 
used to montage the tile images into a large image mosaic of the entire 
section (Figure 2F, aligned mosaic of a single mFOV), with the x,y 
coordinate origin near the center of the mosaic image. The residuals 
remaining between the solved x,y deltas and those input to the 2D x,y 
delta LSS provide an indication of the overall quality and continuity of 
the mosaic. The mean value of the overall residual distribution for the 
2D alignment of the zebrafish retina dataset (Figure 2G) was 1 pixel 
(16 nm) and 99% of the residuals were below 5.9 pixels (95 nm).

2D gradient and brightness correction

The mSEM acquisition is subject to artifacts that stem from 
inhomogeneous areas in the electron collection scintillator and from 
electron optical inhomogeneities between the 91 electron beams. This 
results in visible artifacts in the montaged section images. Tiles within 
each mFOV can contain brightness gradients within single tiles and 
brightness offsets between tiles. The net result is a section image that 
has a clear repeating pattern (that is consistent between mFOVs 
within a section) which reflects these gradients and brightness 
differences (Figure  3A). In the worst cases it may be  difficult to 
observe the tissue itself in the overview of each section image because 
the image is dominated by this pattern of artifacts.

FIGURE 2

Detailed flowchart of the steps involved in the 2D image tile registration. (A) All image tiles for a single mFOV (in this case with 61 tiles, outlined in solid 
red) and with tiles for two of the closest rings included from the 6 neighboring mFOVS (dashed red lines). (B) Schematic showing the neighbors for a 
single tile and example of the x,y deltas. The blue line corresponds to deltas as calculated by comparing the blue highlighted areas in (A). (C) mFOVs for 
an entire section with the overlapping areas between tiles and between mFOVs highlighted in red. (D) Example of median deltas calculated across all 
mFOVs for a single section. Red circle shows a zoomed inset of the intra-mFOV median deltas. (E) Matrices illustrating the x,y delta LSS representing 
just the tiles depicted schematically in (B). (F) Example of the tiles shown in (A) after they have been positioned based on the solved coordinates. 
(G) Distribution of residuals from the x,y delta LSS.
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The gradient and brightness correction is performed using a 
two pass method, the first pass corrects for intra-tile gradients 
and the second pass for inter-tile brightness offsets. The 
procedure does not require solved tile positions, therefore the 
correction steps can be run in parallel with the alignment steps 
(Figure 2). In the first pass, tiles corresponding to the same intra-
mFOV positions are averaged together, resulting in an “average 
91-tile mFOV” for each section. The inclusion of tiles into the 
average is subject to exclusion heuristics that will reject, for 
example, any tiles that are mostly saturated near the ends of the 
overall section grayscale histogram. We noted that the gradients 
are mostly linear within the middle of the grayscale range, 
meaning that averaging mFOV tiles results in a good estimate of 
the gradients for each tile, as long as each section has a sufficient 
number of mFOVs. The estimates are only consistent when 
averaging tiles within the same section because, for each section, 
a beam alignment to the detector and autofocusing/
autostigmation are performed that can change the gradient 
pattern within each mFOV. The average tiles are then blurred and 
divided by their respective modes, creating scale factor images 
for each tile (Figure 3B). The corresponding tiles in each mFOV 
are divided by the scale factors to correct for the gradients. The 
tiles corrected by the first pass are then averaged again using the 
same procedure. This time, however, the mode for each tile is 
calculated to correct for brightness differences between tiles. The 
difference around the mean mode is used as a brightness offset 
correction factor (Figure 3C, single integer grayscale value per 
tile) that is used to correct the remaining brightness offsets 
between tiles.

We observed that some differences at tile boundaries may still 
remain due to slight differences in the grayscale histograms of 
neighboring tiles, so we employ a third procedure on top of the 
two pass correction method. This procedure computes histograms 
for sub-tiles within each tile. All possible pairwise histograms are 
then compared to one another using normalized cross correlation 
between the histograms (not the images). This results in a large 
set of cross correlation distances (where 0 indicates identical 
histograms) and their associated lags (Figure  3D). The cross 
correlation distances are rank ordered, and then the top-n 
matches are selected and considered as “neighbors” in the 
adjacency matrix (Figure 3E, high correlation sub-tiles) of the 
histogram shift LSS. These adjacencies multiplied by the 
unknown optimal sub-tile brightness values equal the 
corresponding computed lags. In order to prevent the possibility 
of unconnected components in the adjacency matrix, a minimum 
spanning tree is calculated over the entire graph of correlation 
distances, and any corresponding edges required to connect the 
minimum spanning tree are added to the adjacency matrix. With 
this addition, we  observed that the histogram shift LSS only 
demonstrates an offset bias. This bias is removed by subtracting 
the overall mean from the solved brightness values, resulting in 
per-subtile integer brightness offsets. These offsets are then 
removed from the corresponding sub-tiles.

Finally, the 2D section images are montaged, using the solved 
coordinates and after applying all gradient and brightness correction 
factors. A feathering technique is used to blend the tile borders 
together. The feathering is computed by applying 2D ramps at all of 
the overlap locations, with the length of the ramp set as a parameter, 

and different depending on if the feathering is being applied to tiles 
within the same mFOV or between different mFOVs. The end result 
of the 2D alignment portion of the msemalign pipeline is a stack of 
2D aligned and brightness/gradient corrected section images 
(Figure 3F). Primarily due to the difficulty of inverting the feathering 
procedure when montaging, in the current msemalign 
implementation this image stack is exported and stored on disk at a 
pixel size of 16 nm (~63 TBytes for a 1 PByte dataset acquired 
at 4 nm).

3D contrast and brightness correction

Our current acquisition automation strategy does not optimize 
EM acquisition parameters such as dwell time for each individual 
section (although sections can be re-imaged if needed post-hoc). This 
means that small variations in section thickness that can occur when 
cutting ultrathin sections at a nominal thickness of 35 nm results in 
variability of the dynamic range and therefore variability in the 
contrast of the section images. This necessitates a further correction, 
balancing the overall brightness and contrast among the section 
images. We found that contrast balancing methods such as matching 
to a uniform grayscale distribution or automatically scaling each 
image to the full range did not work well, in part because each image 
section can contain areas of image data that is not from the tissue of 
interest. These areas include resin-only areas, areas of iron particles 
(Fulton et al., 2023), debris or charging artifacts and locations entirely 
outside of the sections (e.g., the silicon wafer substrate). This can skew 
the result of histogram matching procedures such that the matching 
is not optimal within the tissue containing regions of each section. 
We  found that it is best to disregard non-tissue containing areas, 
which therefore necessitates a method of masking out these areas of 
the image.

In order to avoid manual labeling the tissue areas within each 
section image, we utilized a simple machine learning method to 
generate masks of tissues areas for all sections (Figure 4A). The 
procedure involves manually labeling tissue areas in a small subset 
of sections as training data for a 2D U-Net (Ronneberger et al., 
2015). All sections are then run through an inference pass of the 
trained U-Net to automatically generate tissue masks for the entire 
dataset. Once the masks are generated, they are applied to the 
histogram measurement for each section, so that only pixels from 
within tissue areas are included (Figure  4B). Finally, a selected 
section that already had high contrast when it was acquired is used 
as a template histogram, and a histogram matching algorithm 
(Bourke, 2011) is then applied to all sections. This results in 
essentially no change for sections that already had high contrast, 
but a substantial improvement and consistency with other sections 
for sections that originally had lower contrast when they were 
imaged (Figure 4C).

3D coarse/rough alignment and order 
solving

Once large 2D section images have been created for the entire 
dataset, typically organized in the same way they were acquired, i.e., 
one section set per silicon wafer, the 3D alignment can proceed. In 
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contrast to some previous alignment procedures (Saalfeld et  al., 
2012), we did not find it useful to consider both 2D and 3D alignment 
simultaneously, but instead rely on good 2D section montages to 
further constrain the 3D alignment so that it is only concerned with 
inter-section image warping, and not intra-section translation of 
individual image tiles. Before the acquisition, sections are typically 
collected onto several silicon wafers, each containing several 
thousand sections. At this point, if the GAUSS-EM acquisition 
procedure was utilized, the section ordering from within the original 
tissue block must be recovered for each wafer (Fulton et al., 2023). 
Alternatively, if the section ordering is already known, the remainder 
of the msemalign pipeline is no longer dependent to the particular 
serial sectioning or the SEM acquisition methodologies used, but can 
instead operate directly on a stack of 2D serial section images.

The rough alignment begins by re-orienting all the sections 
by the angle and center determined by the acquisition ROIs, 
termed coarse alignment (Figure 5). Because the coarse alignment 
is based on ROIs that were placed using a light microscope 
overview (0.913 μm pixel size) of each wafer, they are subject to 
positioning and calibration errors with respect to the EM-pixel 
space. The coarse alignment provides a reasonable starting point 
for the 3D alignment, but the variability associated with the ROI 

placement and calibration can still result in offset errors as large 
as 100 μm translation and/or 15 degrees rotation. Therefore, a 
further heavily constrained rough alignment is performed that 
computes single global affine transformations for each section, 
termed the rough alignment. After the coarse alignment is 
applied, all images are cropped to the same bounding box, the 
rough bounding box. The size of the rough bounding box is 
chosen conservatively so that no tissue areas of any section are 
cropped out.

3D rough alignment

Coarsely aligned 2D sections are downsampled further, and 
image features are computed on the downsampled images. Although 
several alternatives are available, the msemalign pipeline currently 
only utilizes Scale Invariant Feature Transform (SIFT) features. 
SIFT features comprise keypoints, pixel locations of salient features 
in the images, and descriptors, a 128-bit vector that encodes local 
information around the keypoint, in particular in a manner that is 
robust to local affine transformations (Lowe, 2004). SIFT descriptors 
from different images are matched to each other by computing the 

FIGURE 3

Detailed flowchart of the steps involved in the 2D tile gradient and brightness correction. (A) Example section image showing the pattern of tile 
gradient and brightness mismatches that repeats across the mFOVs. (B) Output of the first pass mFOV averaging method illustrating the gradients 
measured for each tile relative to their mode. (C) Output of the second pass mFOV averaging method depicting the relative brightness measure for 
each tile. (D) Examples of two normalized histograms from sub-tiles used for the final refinement of the gradient and brightness correction. The red 
line shows the lag (left) that corresponds to the minimum correlation distance for the normalized cross correlation between the histograms (right). 
(E) Exampled matrices for the linear system solved by the histogram shift LSS in order to calculate the fine sub-tile brightness corrections. (F) Same 
section image as in (A) but after all the tile gradient and brightness corrections have been applied.
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nearest neighbors between the descriptor spaces of the two images 
and then applying a threshold to the ratio of the distances to the 
nearest neighbor and to the second nearest neighbor, the Lowe ratio 
test (Lowe, 2004). The mapping of matching SIFT descriptors is not 
necessarily one-to-one, meaning that a destination image descriptor 
could be the nearest neighbor to multiple source image descriptors. 
Spurious matches, i.e., matches that do not really correspond to 
matching locations between images, are also possible. Therefore 
after potential matches are identified with the Lowe ratio test, the 
matching keypoints are fit with an (optionally constrained) affine 
model using the Random Sample Consensus (RANSAC) algorithm 
(Fischler and Bolles, 1981). The RANSAC algorithm removes 
outliers that do not fit within a parameterized tolerance to the affine 
model. Applying the affine transformation to the source keypoints 
from one section image maps them closely to the matching 
keypoints in a destination image that is a direct neighbor in the 
section ordering (Figure 6A).

The SIFT matching and RANSAC affine procedure is 
performed for the nearby neighbors of each section in the section 
stack, i.e., i ± n neighbors where n is a free parameter. Once all of 
these affine transformations have been calculated, they are 
evaluated on a fixed grid of points spanning the rough alignment 
bounding box (Figure  6B), creating 2D vector fields for each 
section comparison. A LSS is applied to the x,y deltas in the 
vector fields created by evaluating the affine transformations, but 
applied independently per grid point. In the case of the rough 
alignment delta LSS, the adjacency matrix represents neighbor 
comparisons for the entire z-stack for a single grid point 
(Figure  6C). The adjacency matrix multiplied by the “vector” 
coordinates for the unknown grid point are equal to the deltas 
measured at that grid point (Figure 6D). We found that the rough 
alignment delta LSS is susceptible to all forms of the potential 
biases (see Constrained Affine Transformations below). The 
solution to the rough alignment delta LSS essential reconciles all 

FIGURE 4

(A) Flowchart and schematic of the tissue detection portion of the msemalign pipeline showing the 2D U-Net architecture. Training tissue masks are 
manually labeled (left blue overlays), but the majority of the tissue masks are generated (right blue overlays) by an inference pass of the trained U-Net. 
(B) Flowchart of the 3D section image brightness and contrast correction, accomplished by using histogram matching to a manually selected high 
contrast section template histogram. (C) Samples before and after correction showing corresponding changes to a high contrast and a lower contrast 
section.
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the neighbor comparisons to create a single warping vector field 
for each section. The msemalign strategy is to constrain warping 
at each step as much as possible, in order to gradually bring 
sections into alignment and thereby constrain the overall 
magnitude of the final warping that needs to be applied to each 
section. Consistent with this theme, instead of applying a warping 
based on the computed vector fields, the vector fields are refit 
with affine transformations. This produces a single global affine 
transformation for each section, the rough alignment.

Constrained affine transformations

We observed that the rough alignment delta LSS is susceptible 
to offset, linear trend and low frequency oscillation biases. Likely 
the system is less constrained in comparison to the delta LSS 
utilized for the 2D alignment, because the graph that describes 
the neighbors (adjacencies) has a one dimensional (along Z) 
instead of planar (across X,Y) topology. This is because the rough 
alignment delta LSS is applied to the grid points independently, 
so nothing about the 2D position of the grid points is encoded 
into the adjacency matrix. In order to overcome the biases, linear 
trends (including offsets) are also fit and removed from the 
solution to each grid point before refitting the vector fields for 
each section with an affine transformation. When the affine 
transformations are decomposed into rotation, scale, shear and 
translation elements, it is evident that the procedure produces 
reasonable affine transformations (Figure  7A, full affine). On 
careful examination, however, two further issues become evident: 
(1) a low frequency oscillation, for the depicted dataset this 
occurs mostly in the scale fits, and (2) excessive shear components 
of the affine transform. We addressed the first issue by modifying 

the application of the rough alignment delta LSS so that it 
resolved deltas in overlapping blocks in z for each grid point, 
instead of all sections simultaneously. For the second issue, some 
sections become heavily sheared when fit with the full affine 
transformation, which reflects an unrealistic global deformation 
for our sectioning methodology (Figure 7B). We addressed the 
shear overfitting issue by finding the optimal solution for 2D 
affine transformations that constrain the shear to be exactly zero. 
An analytical solution of this application of the orthogonal, but 
non-orthonormal Procrustes problem (Everson, 1997) can 
be derived for 2D transformations. The decomposition of this 
more heavily constrained rough alignment procedure result in 
reduction of the low frequency oscillations and indeed resulted 
in exactly zero shear in the affine decompositions (Figure 7A, 
constrained affine).

3D fine alignment

The 3D fine alignment proceeds after application of the 
rough alignment (global affine transformations per section) as 
essentially a constrained but fully elastic aligner. The nature of 
the deformations that occur during serial sectioning and section 
placement on the wafers can be local and non-linear, thus the 
rough alignment is not sufficient even for trained experts to trace 
neurites. There may still be  misalignments present whose 
magnitudes are up to tens of microns. Therefore, we proceed with 
a finer alignment, which is accomplished in a straight forward 
manner, by computing a warping vector field that would 
be required for each section to warp it onto a neighboring (i ± n) 
section. The advantages of using comparisons beyond the direct 
neighbors in the section ordering are twofold: (1) any artifacts 

FIGURE 5

(A,B) Two different sections overlaid with the acquisition ROI (left) and how they appear after the coarse alignment (right) that rotates the sections by 
the angle of the ROI and translates the center of the ROI to the center of the cropped image (the rough bounding box).
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present in one or two sections can bridged without creating 
discontinuities in the alignment; (2) using more than just the 
direct section neighbors contributes to the “z-rigidity” of the 
alignment, meaning it helps to reduce, in particular, trend or low 
frequency oscillations in the final warping (as previously 
discussed in 3D Rough Alignment). Multiple nxcorrs are 
performed between neighboring (i ± n) sections at fixed grid 
locations relative to the rough bounding box. It has been 
suggested that this approach fails if the raw EM data frequently 
contains discontinuities in the form of small folds or cracks 

(Macrina et al., 2021). We have solved this issue mostly on the 
experimental side (Fulton et al., 2023), such that we see a very 
low incidence of small folds or cracks in our raw EM micrographs. 
Template matching using nxcorr is performed on cropped regions 
from each image, a larger crop from the source image and a 
smaller crop from the destination image. The grid points are 
uniformly spaced (hexagonal layout) (Figure 8A). Tissue masks 
and acquisition ROIs can be optionally applied at this point, both 
as a method for saving compute time and also for reducing outlier 
cross correlations. If applied, cross correlations are only 

FIGURE 6

Detailed flowchart of the rough alignment, excluding steps required for solving the section ordering (light gray). (A) SIFT keypoints for two example 
neighboring sections in the zebrafish retina in their original locations based on the coarse alignment (left, blue and red points) and then after an affine 
transform is calculated and applied to the source keypoints (right). (B) Schematic demonstrating how the vector fields generated from the fitted affine 
transformations are solved independently per grid point (red circles depict a single grid point being solved) by applying the rough alignment delta LSS. 
Only the vector fields computed for a single section with two neighbors in each direction are shown. (C) Schematic similar to (B) but showing deltas 
computed from two different sections. (D) Matrices containing variables from the schematic in (C) that are solved by the rough alignment delta LSS.
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computed at locations within both scaled versions of the tissue 
mask and ROI (Figure 8A, blue dots). This step results in vector 
fields for all possible neighbor comparisons, where the vector at 
each grid location represents how far the source image would 
need to be translated in order to match the destination image at 
that grid point. Despite the ROIs and masks, outlier cross 
correlations are still possible, due to either a lack of structure (for 
example within cell bodies or blood vessels) or due to non-peaky 
topographies in the cross correlation images.

The procedure for removing outlier deltas in the 2D vector fields 
is composed of a series of heuristic steps that ultimately enforce 2D 
smoothness of the vector fields (Figure 8B). The principal step of the 
outlier detection utilizes RANSAC to fit the deltas to a polynomial 
affine model (typically second order), where outlier points from the 
best RANSAC fit are classified as outliers. The percentage of 
remaining inliers is a useful metric for detecting gaps or jumps 
between sections and also for assessing in general how many sections 
could be missed sequentially before leading to an alignment problem. 

This metric is simply the number of inliers deltas for a particular 
neighbor comparison divided by the number of grid points within 
the ROI and tissue mask. For an example dataset, the percentage 
drops to 40% and below when comparing the ±4 neighbors 
(Figure  8C). This also serves as a justification for not including 
further neighbors beyond four. Once the outliers are detected, they 
should be replaced with reasonable replacement x,y deltas. Without 
replacing outliers, the final alignment solutions can be very jumpy, 
particularly in areas where inlier deltas become very sparse. 
We replace all outliers by using the moving least squares (MLS) rigid 
image deformation algorithm (Schaefer et al., 2006), which is easily 
modified for interpolation / extrapolation of outlier deltas. The MLS 
algorithm results in realistic replacements for the outliers deltas 
(Figure 8D), and additionally, as opposed to classical interpolation, 
extrapolates points that are outside of the convex hull of inliers much 
more reasonably.

After 2D vector fields have had all outlier x,y deltas estimated, 
the complete vector fields are further constrained to enforce 2D 

FIGURE 7

(A) Plots showing the variables decomposed from the solved rough affine transformations: angle, translation, scale and shear. The left plots show the 
decomposed values when full affine transformations were fit by utilizing all z-location deltas simultaneously. The right plots show the decomposed 
values when using a constrained affine that does not fit shear and when the rough alignment delta LSS is applied using overlapping blocks in z. (B) A 
section after rough alignment was applied that contains excess shear (top) and one after the rough alignment where the shear has been constrained to 
equal zero (bottom).
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smoothness and local rigidity, using a method that we termed an 
“affine filter.” The affine filter fits the x,y deltas in overlapping 2D 
windows with an affine transformation, and then replaces each 
center x,y delta with the one produced by the fit. In this sense it is 
similar to an image processing box filter, but filters vector fields and 

not images. This step is useful at reducing any unrealistic over-
warpings that may occur at this stage in the alignment; since the 
crop size for the source images is typically chosen to be  about 
48 μm, any deltas of this size that are not consistent with 
neighboring deltas will produce extreme warpings that make the 

FIGURE 8

Detailed flowchart of the fine (and ultrafine) alignment. (A) Example of alignment grid points overlaid on a section image along with the original ROI 
(dashed red line) and ROI scaled by 110% (solid red line). Blue grid points are inside the area determined by the intersection of the scaled-ROI and a 
dilated version of the tissue mask. Red points are outside of this area. (B) Vector fields for neighbor comparisons of an example section. Blue points are 
inliers after the outlier detection, red points are outliers with their corresponding vectors removed, and gray points are points for which cross 
correlations were not computed [red points in (A)]. (C) Plot depicting the percentage of outliers for an entire dataset and averaged for neighbor 
comparisons in both directions at the specified neighbor distances. (D) Same vector fields in (B), but with the points that were detected as outliers in 
(B), the red points, and also the points at which no cross correlations were computed, the gray points, replaced with values estimated using the MLS 
rigid deformation algorithm. (E) Schematic showing two example sections for a single grid point with corresponding deltas and the vectors to 
be solved. (F) Matrices containing variables from the schematic in (C) that are solved by the fine alignment delta LSS which generates the fine (or 
ultrafine) alignment. (G) Distribution of solved deformation vector magnitudes from the fine and ultrafine delta LSS.
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FIGURE 9

Detailed flowchart of the artifact correction steps. (A) Example 
section containing a large tear. (B) Illustration of the tear (blue) and 
control points (connected with line segments) in a zoomed portion 
of the same tear. (C) Result of segmenting the image area into halves 
(purple and green) on either side of the tear (blue). The manual 
control points and line segments connecting them are overlaid in 
black. The intersection of the line segments and the tear centerline 
are also marked (x’s along the tear centerline). (D) Same section as in 
(A) after the tear has been healed (left) and a zoomed view of the 
healed tear (right) showing some small gaps remaining at some 
locations between control points.

aligned data appear either extremely compressed or stretched. 
These smoothed vector fields are then reconciled independently per 
grid point using a fine alignment delta LSS (Figure  8E). This 
application of the fine alignment delta LSS (Figure 8F) is essentially 
identical to that of the rough alignment, except instead of a linear 
regression, a ridge regression may be  utilized. Ridge regression 
includes an L2 regularization as another method of constraining the 
elastic alignment and prevent overwarpings. For the initial fine 
alignment (as opposed to subsequent refinements, i.e., the ultrafine 
alignment), the L2 regularization may not be necessary since the 
affine filtering has already constrained the vector fields to be locally 
smooth. The distribution of deformation vector magnitudes 
resulting from the fine and ultrafine alignment LSS (Figure 8G) 
demonstrates how well the msemalign package minimizes 
distortions. For the fine alignment of the zebrafish retina dataset the 
mean magnitude was 52.9 pixels (846 nm) and 99% of the 
magnitudes were below 133.6 pixels (2,138 nm). For the ultrafine 
alignment the mean magnitude was 7.4 pixels (118 nm) and 99% of 
the magnitudes were below 28.2 pixels (451 nm).

Once the fine alignment is completed, the msemalign pipeline 
currently requires that the images be exported, either at 4 nm, by 
simply scaling the transformations, or more typically again at 16 nm 
(~63 TBytes for a 1 PByte dataset). In what we term the ultrafine 
alignment, these images are then presented as input to the same 3D 
Fine Alignment once again, but with different parameters. Primarily a 
much denser alignment grid and much smaller crop sizes in the 
source and destination images are chosen.

Tear artifacts

Although the issue of small cracks and folds has mostly been 
resolved with our acquisition method, there is still some 
occurrence of more serious discontinuities in the raw data that 
we have termed tears. Tears may occur when debris builds up on 
the diamond knife edge and this in turn can result in a section 
being cut into typically two pieces (Figure 9A). Many of the tears 
are clean, meaning there is no tissue missing at the tear boundary 
and the halves can simply be stitched back together. In order to 
avoid excluding these sections from the alignment, which may 
otherwise be in fine condition, we use a semi-automated method 
to stitch the halves together. In general, the 3D alignment assumes 
that the original sections are not badly deformed. Knife tears can 
open up to a width of 100 μm or more, meaning that torn sections 
are very deformed relative to their neighbors. Therefore we fix any 
tear artifacts directly after the 2D alignment (i.e., torn section 
images after the 2D alignment are replaced with the corrected 
ones), before the 3D alignment steps.

The manual portion of the tear correction involves identifying 
the torn sections and then creating annotations using webKnossos 
(Boergens et al., 2017). Annotations were performed by choosing 
paired corresponding control points on either side of the tear, 
resembling stitches (Figure 9B). The remainder of the correction is 
automated. First the midline of the tear is estimated by interpolating 
the center points of the annotated stiches. The midline skeleton is 
then projected (by fitting the ends) in order to create a path that 
divides the section into two pieces (Figure 9C, green and purple). 

The paired correspondence points are interpolated on either side of 
the tear independently and the interpolated points serve as source 
control points. The interpolated midline points serve as destination 
control points. The MLS algorithm is then employed to warp each 
half of the image separately on either side of the midline. Deforming 
each half separately prevents the MLS algorithm from dealing with 
the discontinuity where the two halves are pulled together. Because 
it assumes local affine rigidity, it would not handle such 
discontinuities well if the warping were to be applied to the whole 
section at once. When the halves are reassembled, the tear has been 
mostly healed (Figure 9D).
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Final stack export

In order for the export to scale, particularly to the original 4 nm 
pixel size, the export of each section needs to be subdivided. Because 
the coarse and rough alignments are global per section and so that 
potentially multiple image transformations can be bundled as a single 
transformation, the export applies all transformations to pixel 
coordinates, starting with coordinates from a sub-block of the rough 
alignment bounding box. The rough bounding box represents a fixed 
reference frame, because, prior to the 3D alignment steps, all section 
images have been cropped to this size. The coordinates from a 
sub-block of the rough bounding box are then transformed with 
inverse transformations from each stage of the msemalign pipeline, 
but in the reverse order from which they were measured 
(Figures  10A–C). This procedure transforms the destination 
coordinates all the way back to the pixel space of the unoriented 
section images (the output of the 2D alignment), thus creating a 
destination to source image remapping. This remapping is then easily 
applied using general image warping tools available in many image 
processing libraries. As discussed, currently the msemalign pipeline 
runs the ultrafine alignment starting from an exported image stack 
of the fine alignment. Thus, after the ultrafine alignment is completed, 
this procedure is repeated, but only inverting the ultrafine 
transformations. The destination to source remapping is then applied 
using the fine alignment export images as the source (Figures 10D–F).

We applied the msemalign pipeline to a dataset of a larval zebrafish 
retina. The dataset was cut with 35 nm section thickness into 2,592 

sections. A total of 19 sections were excluded due to section quality, 
so the 4 nm aligned dataset contains 78,750 × 75,344 × 2,573 voxels, 
or ~ 14 TB. The aligned volume can be viewed at https://webknossos.
mpinb.mpg.de/links/4ig-0q1evJ649zfo.

Discussion

The msemalign package and pipeline is an alignment solution for 
ssmSEM datasets that is scalable to petabyte-sized EM datasets and 
focuses on design simplicity. Relative to more complex alignment 
software ecosystems, msemalign has relatively few dependencies and 
can produce quality alignments using mostly traditional image 
processing approaches. Instead of setting a goal of complete 
generalizability to many alignment problems, we focused msemalign 
on constraints that are realistic to the sectioning and acquisition of 
ssmSEM datasets.

With sufficient hardware resources, for example, a modest cluster 
with on the order of 1000s of CPU cores and 100 s of GPUs, the 
msemalign pipeline can be scaled to process petabyte-scale datasets in 
approximately the same amount of time as the acquisition. With the 
exception of the order solving [only applicable if using the 
methodology of Fulton et al. (2023)], which scales with the square of 
the number of sections per wafer, most components simply scale 
linearly with the size of the dataset to be aligned. In the current design, 
the temporary downsampled versions of the dataset must be written 
out 3 times in the pixel size at which it is being processed, i.e., 16 nm 

FIGURE 10

Detailed flowchart of the steps to export a final volume. (A) Section image of a temporary exported fine-aligned slice with an export block outlined in 
red. (B) 2D-aligned-only section image with an example of roughly how the block coordinates might be transformed (red outline). (C) A zoomed in 
area of the rough alignment (right) and the fine alignment (left) that have been centered on the same pixel. The difference between them (center) 
demonstrates what has changed between the rough and fine alignments. (D–F) Same as (A–C) but for the exporting the ultrafine based on an existing 
fine alignment export.
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(~63 TB for a 1 PB dataset acquired at a native 4 nm). These copies are: 
(1) the 2D aligned section stack, (2) the result of the fine alignment, 
and (3) the ultrafine alignment (the final export). The same temporary 
datasets must be  written for the full 4 nm export, however these 
exports can be done with subsets of sections at a time, avoiding the 
heavy cost of writing multiple temporary petabyte-scale copies at 
full resolution.

The msemalign pipeline is under active development and further 
improvements are planned. In particular, we recognize the limitations 
in writing multiple, albeit temporary, downsampled copies of large 
datasets to disk. Having alignments proceed by necessitating 
downsampled copies to be written to disk allows for design simplicity, 
but limits the ability to ultimately scale to exabyte-sized datasets. It 
would be relatively straight forward to remove the requirement of 
writing out the fine alignment which serves as the input to the 
ultrafine alignment step. For each block of the ultrafine alignment 
cross correlations, the data could be loaded and transformed, via the 
export mechanism. Then cross correlations could be performed on 
cropped regions of this data in memory-only. There would be  a 
relatively modest tradeoff for compute time in applying the 
transformations of the fine alignment. The final export would have to 
apply two inverse warpings to the coordinates, first the ultrafine 
inverse warpings and then the fine inverse warpings. Removing the 
requirement to write out the 2D aligned stack, such that the data 
needed for the 3D alignment is always loaded from the raw mSEM 
tiles, would introduce further complexity to the pipeline, mostly due 
to the feathering between images that is applied during the 2D 
montaging. The feathering utilizes ramps that are generated in 2D 
based on the final overlaps between images, which are only calculated 
after the images are overlaid at their solved coordinates. Storing a 
lookup of the feathering parameters would however be possible and 
would remove the current requirement of writing the 2D aligned stack 
to disk. On the other hand, we  routinely utilize the temporary 
downsampled versions of the dataset as quality controls of a particular 
dataset as it passes through the pipeline to identify any issues and tune 
parameters as needed.

A relatively simple enhancement to the rough alignment would 
be to compute image features using multiple algorithms (in addition 
to SIFT), match them separately and then pool them together. 
Different feature detection algorithms together can likely increase the 
number of matching keypoints, particularly in situations where 
multiple sequential sections are missing or between images that 
appear different due to section thickness variation.

The 3D contrast and brightness correction could be enhanced 
by using multiple template histograms from differently sampled 
points in the section ordering. Conventional histogram equalization 
uses a uniform grayscale histogram as the target histogram. This 
type of normalization, or with a localized adaptation such as 
CLAHE, is a more conventional method of contrast balancing EM 
data. These procedures, however, tend to equalize many actual 
tissue structure differences, leading to regions appearing more 
similar than they may appear in the original micrographs (for 
example collections of cell bodies versus neuropil, or ganglion cell 
bodies versus photoreceptors in the retina). Our approach of 
histogram matching to a template prevents this artifact of 
equalization and retains the look and feel of the original EM 
micrographs. However, for large z-stacks, assuming a constant 

histogram target is unrealistic. A possible enhancement would be to 
sample various high contrast sections along the section stack. These 
histograms could be smoothly resampled, so that a series of target 
histograms as a function of the section z-coordinate is created. This 
would further maintain something closer to the original grayscale 
distributions of the EM micrographs, but still balance and correct 
lower contrast sections.
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