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Using brain activity directly as input for assistive tool control can circumventmuscular 
dysfunction and increase functional independence for physically impaired people. 
The motor cortex is commonly targeted for recordings, while growing evidence 
shows that there exists decodable movement-related neural activity outside of 
the motor cortex. Several decoding studies demonstrated significant decoding 
from distributed areas separately. Here, we combine information from all recorded 
non-motor brain areas and decode executed and imagined movements using 
a Riemannian decoder. We  recorded neural activity from 8 epilepsy patients 
implanted with stereotactic-electroencephalographic electrodes (sEEG), while 
they performed an executed and imagined grasping tasks. Before decoding, 
we excluded all contacts in or adjacent to the central sulcus. The decoder extracts 
a low-dimensional representation of varying number of components, and classified 
move/no-move using a minimum-distance-to-geometric-mean Riemannian 
classifier. We show that executed and imagined movements can be decoded from 
distributed non-motor brain areas using a Riemannian decoder, reaching an area 
under the receiver operator characteristic of 0.83 ± 0.11. Furthermore, we highlight 
the distributedness of the movement-related neural activity, as no single brain 
area is the main driver of performance. Our decoding results demonstrate a first 
application of a Riemannian decoder on sEEG data and show that it is able to 
decode from distributed brain-wide recordings outside of the motor cortex. This 
brief report highlights the perspective to explore motor-related neural activity 
beyond the motor cortex, as many areas contain decodable information.
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Introduction

Motor neuron diseases, aging-related diseases and accidents can lead to losing a part of 
or complete muscle control: in the Netherlands alone, 415.000 people are experiencing severe 
physical disability (2011) (de Klerk et al., 2012; Jongh et al., 2021). A main predictor of their 
life satisfaction is their functional independence (Scott Richards et al., 1999; van Leeuwen 
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et  al., 2011), which could be  regained with appropriate assistive 
tools. An intuitive way to increase functional independence again is 
to circumvent muscular dysfunction by using brain activity directly 
as input for control of assistive tools (Daly and Huggins, 2015; Gilja 
et al., 2015). To achieve this, decoding studies target the primary 
motor cortex to capture movement-related neural activity 
(Pandarinath et al., 2017; Flesher et al., 2021; Moses et al., 2021; 
Chaudhary et  al., 2022). For example, implantations of 
microelectrode arrays (MEA) in the hand-knob area of the human 
primary motor cortex have resulted in state-of-the-art decoders that 
can decode imagined handwriting at speeds comparable to regular 
smartphone typing (Willett et al., 2020). However, the motor-related 
activity from the motor cortex may not capture the full extent of the 
motor system (Gallego et al., 2022), as descending motor neurons 
and concrete motor commands originate from other brain areas than 
the primary motor cortex as well (Strick et al., 2021). Furthermore, 
motor-related activity is more widespread than previously thought 
(Steinmetz et al., 2019).

Accordingly, multiple invasive studies reported decoding of 
motor-related activity outside of the motor cortex in humans, and 
found significant decoding results from multiple cortical and 
sub-cortical areas, such as the ventral premotor cortex (Wandelt et al., 
2022), posterior parietal cortex (Andersen et al., 2019; Wang et al., 
2020; Li et al., 2022), somatosensory cortex (Wandelt et al., 2022), 
supramarginal gyrus (Li et al., 2022; Wandelt et al., 2022), temporal 
areas (Breault et al., 2019), insula (Breault et al., 2019; Li et al., 2022), 
hippocampus (Breault et  al., 2019; Li et  al., 2022), basal ganglia 
(Mamun et al., 2015) and subthalamic nucleus (Shah et al., 2018). So 
far, all non-primary motor decoding studies show promising results 
by decoding significantly above chance from many areas individually. 
Leveraging all brain-wide information by including all channels may 
increase decoding power.

However, including all channels increases the risk of a poor 
decoder fit. The increased dimensionality may leave too little data to 
for the decoder to train on. Furthermore, including neural activity 
from brain wide areas might include more channels that do not hold 
any movement-related information, decreasing the signal-to-noise 
ratio. To address this dimensionality issue, techniques like principal 
component analysis can be  used to acquire a low-dimensional 
representation of the neural data (Gallego et al., 2018). Furthermore, 
techniques such as Riemannian decoders (Congedo et al., 2017) used 
in surface EEG, known for its low signal to noise ratio, may 
be applicable to sEEG data as well.

Here, we expand from decoding movement from individual 
non-motor brain areas to including all available information. 
We capture whole-brain activity by recording data from stereotactic-
electroencephalographic (sEEG) electrodes implanted in epilepsy 
patients. Combined over participants these electrodes cover the 
whole brain and provide a high-spatial and temporal resolution 
(Herff et  al., 2020). To ensure we  only include data from 
non-primary motor areas, we remove all electrode contacts around 
the central sulcus bilaterally. We reduce the dimensionality of the 
signal into a low-dimensional representation and apply a 
Riemannian decoder that directly classifies based on the covariance 
matrix of this representation (Figure 1A). We show significant above 
chance performance for both executed and imagined movements 
for nearly all number of principal components (Figure 2), without 
the need for areas surrounding the central sulcus.

Methods

Participants

Eight participants were included in this work (age 35.8 ± 14.2 years, 
mean ± SD; 5 male, 3 female, Supplementary Table S1). All participants 
are refractory epilepsy patients undergoing presurgical assessment for 
resection surgery. They were implanted with sEEG electrodes for two 
to three weeks to monitor seizures and identify the epileptogenic zone. 
The electrode placement and trajectories were determined solely 
based on their clinical needs. Participants were implanted with 5 to 14 
electrodes containing 42 to 125 recordable contacts.

Tasks

Each participant was asked to continuously open and close their 
hand for 3 s per trial follow by a 3 s rest period. 30 trials were cued per 
hand, resulting in 60 move and 60 rest trials (Figure 1A). The stimuli 
were presented in random order on a laptop screen that was resting on 
the participants lap or on a table in front. We  ran the protocol for 
executed and imagined grasping movements. Participants were 
instructed to move only their hands and to keep the rest of their body 
still during executed grasping. For imagined movements, the participants 
were asked to remain completely still, and the experimenter visually 
checked if the participants adhered to the instruction. We did not use 
stricter or more objective methods like electromyography (EMG) to 
measure any micro-movements or increased muscle tension (Sburlea 
and Muller-Putz, 2018). In our experience, participants often find it 
challenging to imagine movements. Therefore, we always preceded the 
imagined grasping task with the executed grasping task to provide the 
participant with a fresh memory of the kinematic and proprioceptive 
sensation of a grasping movement. We assumed it was easier for our 
participant to recall a mental image of the grasping movement, helping 
them to perform the imagery task as good as possible. Additionally, the 
experimenter briefly introduced two potential imagery strategies: 
kinesthetic or visual (Hanakawa, 2016), but the participants were free to 
use any strategy that they thought was most effective for them.

Ethical approval

The experimental protocol was approved by the institutional 
review board of Maastricht University and Epilepsy Center 
Kempenhaeghe (METC 2018-0451). All experiments were in 
accordance with the local guidelines and regulations and under 
supervision of experienced healthcare staff. All participants joined the 
study voluntarily and gave written informed consent.

Data recording

Neural activity was recorded by platinum-iridium sEEG electrodes 
(Microdeep intracerebral electrodes; Dixi Medical, Beçanson, France) 
using two stacked 64-channel Micromed SD LTM Amplifiers 
(Micromed S.p.A., Treviso, Italy). The electrodes are 0.8 mm in 
diameter and contain 5 to 18 contacts. The contacts are 2 mm in length, 
have a 1.5 mm intercontact distance, and are referenced to a white 
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FIGURE 1

(A) Overview experimental protocol. (B) Contact locations of all participants warped onto an average brain. Each color represents contacts from one 
participant. (C) Low dimensional representation of the average movement (blue) and rest (orange) trial for one participant. For both trajectories, the 
covariance matrix of the first three components is shown in the colored boxes. These covariance matrices are used as input for the Riemannian decoder. 
The trajectories shown are smoothed by a low pass filter, the unsmoothed trajectories are shown in Supplementary Figure S1. Note that the trajectories 
are clearly separated in the space spanned by the first three components.

FIGURE 2

Decoder performance for different movement tasks, frequency features and number of components. The rows show the results of the executed or 
imagined movement task and the columns each frequency feature set used as input for the decoder. The x-axis depicts the amount of principal 
components extracted from the data set and the y-axis the AUC score. The light grey lines show the individual average scores over all folds per 
participant and the black circles are the average scores for each number of components. A filled black circle represents an average score that is 
significantly above chance (corrected for multiple testing), whereas an empty circle is not significant. The grey shaded area shows the standard 
deviation over participants and the dotted line the chance level (0.5 AUC).
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matter electrode that did not show epileptic activity, visually 
determined by the epileptologist. All recordings and stimuli were 
synchronized using LabStreamingLayer (Kothe, 2014). For clarity, 
throughout this work we refer to ‘electrode’ as the implanted shaft and 
‘contact’ for each location on each electrode where activity is measured.

Imaging

The anatomical locations for each contact were determined using 
the img pipe Python package (Hamilton et al., 2017) and parcellation 
based on the Destrieux atlas (Destrieux et  al., 2010). To do so, 
we  coregistered a pre-implantation anatomical T1-weighted MRI 
scan, parcellated using Freesurfer,1 and a post-implantation CT scan. 
For visualization purposes, the electrodes were warped to average 
brain from the CVS average-35 atlas in MNI152 space.

To remove motor cortical areas we excluded all contacts of which 
the determined anatomical label contained the word ‘motor’ or 
‘central’ (Supplementary Data 1). This was a strict exclusion of 
contacts, meaning that contacts in white matter close to the central 
sulcus and primary (sensori-)motor cortex are removed as well. Note 
that the white matter anatomical labels in the Destrieux atlas are based 
on proximity to labeled grey matter area, introducing some 
uncertainty of the exact location.

Electrode coverage

In total, 956 contacts on 82 electrodes were implanted in our 
participants, with electrodes containing a minimum of 5 and a 
maximum of 18 contacts per electrode (Figure 1B). All contacts across 
participants covered 59 unique grey matter areas with 448 contacts, 
where the superior insular sulcus is covered the most (n = 25) followed 
by the superior temporal sulcus (n = 23) and the middle frontal gyrus 
(n = 23). The remaining contacts are located in white matter (n = 408) 
or unknown areas (n = 100). Unknown areas are areas that could not 
be  identified due to various technical reasons. See 
Supplementary Figure S2 for a graphical overview of all areas. Because 
of a limited number of channels (n = 128) that can be recorded by the 
amplifiers, not all contact could be  recorded, reducing the total 
amount of recorded contacts by 71 (Supplementary Table S1). The 
selection of which contacts should be  included was made by the 
epileptologist for clinical reasons. The amount of recorded contacts 
left after motor and noise removal are shown in Supplementary Table S1.

Preprocessing

First, we removed all contact in areas in or adjacent to the central 
sulcus (Supplementary data 2 for a complete list of removed labels). 
Then, we evaluated the signal quality of each contact by assessing 
excessive noise. First, contacts were flagged if the 50 Hz frequency band 
power exceeded two times the interquartile range of the signal. 
Additionally, contacts with a z-scored log square mean value that was 

1 https://surfer.nmr.mgh.harvard.edu/

significantly higher (p < 0.05, assuming normal distribution) than the 
values in other contacts were flagged for abnormal amplitude 
(Supplementary Table S1). The remaining contacts were detrended, 
demeaned and band-stop filtered for 50 Hz line noise its and harmonics 
up to and including 200 Hz, using a finite impulse response filter 
implemented in the MNE python package (Gramfort et al., 2014). Then, 
we extracted beta (12–30 Hz) and high-gamma (55–90 Hz) envelope by 
taking the absolute of the Hilbert transform on the band-passed filtered 
signal. These frequency bands are chosen as they are known to 
be movement related and have shown to be effective in decoding studies 
(Combrisson et al., 2017; Shah et al., 2017; Moses et al., 2021; Miller 
et al., 2022). After preprocessing, the data was split into trials. Left and 
right hand movement trials were combined into a single movement class.

Decoder

A decoder was trained and tested for [3, 5, 10,…, 50] principle 
components and beta, high-gamma and beta + high-gamma bands. One 
participant had less than 50 contacts and could therefore not be evaluated 
with 50 components. Each component and band combination was trained 
and evaluated as follows: first, the data was split using 10-fold cross 
validation. On the training data, the data was standardized over all 
included trials per fold and a principal component analysis was performed. 
The learned transformation was subsequently used to transform the 
training and test fold to the specific amount of principal components. 
After transformation into the components space, the sample covariance 
matrix for each trial was calculated and regularized by the Ledoit and Wolf 
(2004). Figure 1C shows the average behavior per class for one participant. 
The covariance matrices are used as input for the Riemannian decoder. 
Then, the geometric mean per class was calculated based on the Kullback–
Leibler divergence. Trials were then classified by selecting the class with 
the shortest distance to class geometric mean. For the calculations, we used 
the pyRiemann implementation (Barachant, 2015).

Evaluation

We evaluated the decoder by the area under the receiver operator 
characteristics (AUC). We tested statistical significance against chance 
level (mean AUC = 0.5) using a one sample t-test and corrected for 
multiple testing using Bonferroni correction. For the control analysis 
for motor cortical areas, we  used a Wilcoxon signed rank-test 
(Bonferroni corrected, n = 66, Supplementary Table S2) to compare the 
difference in performance with and without motor cortical areas. 
We compared the Riemannian decoder with a common spatial pattern 
(Koles et  al., 1990) and linear discriminant analysis (CSP-LDA) 
decoder. Covariance matrices estimated during the CSP analysis were 
regularized using Ledoit-Wolf regularization (Ledoit and Wolf, 2004). 
After spatial filtering, the average power for each CSP was calculated. 
We used the MNE implementation of CSP (Gramfort et al., 2014).

Results

Our classifier was able to decode executed movements from rest 
periods significantly above chance for all number of principal components 
and frequency features, except beta using 3 or 5 components. The highest 

https://doi.org/10.3389/fnins.2023.1283491
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://surfer.nmr.mgh.harvard.edu/


Ottenhoff et al. 10.3389/fnins.2023.1283491

Frontiers in Neuroscience 05 frontiersin.org

performance was achieved by combining beta and high-gamma activity 
with 45 principal components (0.83 ± 0.11 AUC ± SD, Figure 2). Using only 
beta or high-gamma reached 0.81 ± 0.12 and 0.75 ± 0.10, respectively. For 
the imagined movement task, the decoder reached above chance 
performance for most number of components for both beta and beta + 
high-gamma. However, including only high-gamma produced barely any 
significant decoding results. Lower number of principal components did 
not reach above chance decoding, specifically: 3 and 5 in beta, 3, 5, or 10 in 
beta + high-gamma. Overall, decoding imagined movements yielded 
lower performance than decoding executed movements. The maximum 
performance for imagined movements using beta, high-gamma or beta + 
high-gamma was 0.68 ± 0.08, 0.63 ± 0.08 and 0.66 ± 0.06, respectively. The 
decoder performed comparable to a CSP-LDA decoder, where the latter 
performed better with fewer CSPs (<±25) and the former with more 
components (>±25, Supplementary Figure S2).

For high-gamma and beta + high-gamma in executed movements, 
the decoder was able to decode significantly above chance for all 
number of principal components. For beta, at least 10 were required. In 
the imagined tasks, at least 10 components were required as well for beta 
power. For high-gamma however, only 30 and 40 components were 
sufficient. Combining both beta and high-gamma showed that at least 
15 components were required. Overall, it seems that 10 to 15 
components are sufficient to reliably decode movement in both tasks. 
Increasing the amount of components gradually increases performance, 
where the maximum performance is between 35 to 50 components. 
However, the increase in performance per extra component decreases 
as more components are added, and stabilizes at about 25 components.

In this work, we included all available contacts in the decoding 
pipeline, except those around the central sulcus. When visualizing the 
contribution of each electrode to the first principal components, a 
distributed pattern is visible (Figure 3, red and yellow for high and low 
contribution, respectively). While there are a few regions contributing 
more to the first component than others, mostly posterior areas, it 
seems like motor-related information is distributed throughout the 
brain. Specifically considering that at least 3 to 10 components are 
required for above chance decoding.

Discussion

Here, we demonstrate that a Riemannian decoder is able to decode 
both executed and imagined movements using a low-dimensional 
representation from distributed brain-wide recordings. Furthermore, 
we show that non-motor brain areas contain sufficient information for 
our decoder to predict movement significantly above chance.

Our results support the notion that movement-related activity is 
widespread throughout the brain and that extracting a lower-
dimensional representation is effective to capture this distributed 
activity (Stringer et  al., 2019; Gallego et  al., 2022). So far, studies 
decoding motor-related activity from distributed recordings have 
investigated contributions per contact or grouped cortical areas 
(Andersen et al., 2019; Li et al., 2022; Wandelt et al., 2022). Here, 
we expand to include neural activity from all brain regions, excluding 
those surrounding the central sulcus. Using this approach, we were 
able to decode significantly above chance for almost all participants. 
Specifically, when using beta & high-gamma as input power bands, 
we  were able to decode above chance, regardless of electrode 
configuration (Figure 2).

Although our decoder was able to predict movements, the used 
methods include any signal that is relevant for the classification task, 
and no selection is made based on a mechanistic presumption. Thus, 
the relevant information may also include any other motor related 
signal, like motor planning, sequencing or decision-making, as well as 
non-motor information such as attention, stimulus processing, 
stimulus comprehension or spatial information. The used paradigm 
does not allow us to make an inference of the contents of the neural 
signals. Nonetheless, looking at the contributions per electrode 
indicates that it is not a single area driving the performance, but the 
combination of many different non-motor areas (Figure 3). This is 
supported by the observation that multiple different electrode 
configurations resulted in above chance decoding (Figures 1B, 2).

The performance of our Riemannian decoder demonstrates that 
this type of decoder is applicable to the distributed recordings of 
sEEG. The presented pipeline is simple and near non-parametric. 
While there are multiple variations of Riemannian decoders (Yger 
et al., 2017), the only parameter we choose was the distance metric 
[Kullback–Leibler, based on Chevallier et al. (2021)], and the number 
of principal components. When using Riemannian decoders the 
dimensionality should preferably to be  low. During training, the 
decoder calculates the geometric mean between all sample covariance 
matrices per class, which is an optimization problem that scales 
exponentially with increased dimensions.

Furthermore, using a low-dimensional representation combines 
information from all contacts, which separately might not have 
enough information for sufficient decoding. Since the information is 
distributed throughout the brain, the loss of single contacts likely only 
has a minor influence on overall decoding performance. This is 
especially useful in the eventual target population, were 
neurodegenerative diseases might cause specific brain areas to stop 
contributing information, or electrode degradation can decrease the 
recorded activity from a contact.

Limitations

All our participants are diagnosed with refractory epilepsy, a 
condition of which it is unclear how it influences our decoding results. 
During the monitoring phase in which we perform our measurements, 
our participants are expected to have as much seizures as possible, 
albeit no seizures occurred during one of the experimental sessions. 
After a few days of settling in the monitoring center, medication is 
reduced and eventually the participants are stimulated in various 
forms to elicit seizures. Therefore, participants often feel drowsy and 
experience post-ictal discharges. We try to reduce influences as much 
as possible by visiting as early in their treatment as possible, but we are 
dependent on the clinical schedule of the patient. Lastly, our decoder 
is evaluated on a trial-based paradigm, and thus cannot be applied in 
real-time decoding applications in its current form.

Conclusion

Both executed and imagined movements can be decoded from 
distributed non-motor brain areas using a lower dimensional 
representation from sEEG electrodes. We  demonstrate that a 
Riemannian decoder captures relevant movement-related information 
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that is spread throughout the brain, which hold enough information to 
predict movement. Future work may focus on optimizing Riemannian 
methods on distributed data, and application in an online paradigm.
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FIGURE 3

Multi-angle view of all contacts of all participants warped to an average brain for either the beta or high-gamma frequency in the imagined movement 
task. All contacts in motor cortical areas are excluded. The color indicates the contribution of that contact to the first principal component, scaled to 
the explained variance of that component. Yellow means low contribution and red mean high contribution. The image shows that orange and red 
colors are not bound to a specific area, illustrating the wide distribution of information. Note that here only the contributions to the first principal 
components are shown and that sufficient decoding requires at least 3 components (Figure 2). Furthermore, to visualize all contacts, the electrodes are 
non-linearly warped onto an average brain. This may result in contacts appearing to be in or around the central sulcus. This is an unpreventable visual 
artifact, and all locations are determined in the patient’s native space.
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