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Objective: To develop and validate radiomics models on non-enhanced CT for 
discrimination of arteriovenous malformation (AVM) related hematomas from 
hypertensive intracerebral hematomas.

Materials and methods: A total of 571 patients with acute intraparenchymal 
hematomas and baseline non-enhanced CT scans were retrospectively analyzed, 
including 297 cases of AVM related hematomas and 274 cases of hypertensive 
intracerebral hematomas. The patients were divided into training and validation 
cohorts in a 7:3 ratio with a random seed. A total of 1,688 radiomics features 
of hematomas were extracted from non-enhanced CT. Then, the least absolute 
shrinkage and selection operator (LASSO) regression was applied to select features 
and construct the radiomics models. In this study, a radiomics-based model was 
constructed that based on the radiomics features only. Furthermore, a combined 
model was constructed using radiomics features, clinical characteristics and 
radiological signs by radiologists’ evaluation. In addition, we compared predictive 
performance of the two models for discrimination of AVM related hematomas 
from hypertensive intracerebral hematomas.

Results: A total of 67 radiomics features were selected to establish radiomics 
signature via LASSO regression. The radiomics-based model was constructed 
with 2 classifiers, support vector machine (SVM) and logistic regression (LR). 
AUCs of the radiomics-based model in the training set were 0.894 and 0.904, in 
validation set were 0.774 and 0.782 in SVM classifier and LR classifier, respectively. 
AUCs of the combined model (combined with radiomics, age and calcification) 
in the training set were 0.976 and 0.981, in validation set were 0.896 and 0.907 in 
SVM classifier and LR classifier, respectively. The combined model showed greater 
AUCs than radiomics-based model in both training set and validation set.

Conclusion: The combined model using radiomics, age and calcification 
showed a satisfactory predictive performance for discrimination of AVM related 
hematomas from hypertensive intracerebral hematomas and hold great potential 
for personalized clinical decision.
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Introduction

Intracerebral hemorrhage is the most severe form of stroke due to 
its high rate of mortality exceeding 50% (Brouwers et al., 2014; Poon 
et al., 2014). Non-enhanced CT scan is the preferred initial imaging 
modality for patients presenting to the emergency department with 
suspected acute intracerebral hemorrhage (Heit et al., 2017). The most 
common cause of spontaneous intraparenchymal hematomas is 
hypertension (Balami and Buchan, 2012). However, early 
discrimination of another common cause, arteriovenous 
malformations (AVM) (Fukuda et  al., 2017), is of more clinical 
significance, since excision or embolization of the ruptured AVM 
nidus is necessary to prevent re-hemorrhage. Currently, discriminating 
AVM related hematomas from hypertensive intracerebral hematomas 
on nonenhanced CT is challenging for the naked eye by radiologists. 
Angiography is the gold standard for diagnosing AVM, including CT 
angiography (CTA) and digital subtraction angiography (DSA). 
However, compared to non-enhanced CT scans, angiography is a 
more time-consuming and invasive procedure that requires contrast 
injection and patient compliance.

Radiomics is a quantitative analysis that utilizes high-throughput 
methods to extract a vast array of imaging features from radiological 
medical images. Radiomics is widely employed in phenotypic subtype 
classification as well as prognostic predictions of solid tumors (Wang 
et al., 2019; Li et al., 2022). In recent years, non-enhanced CT based 
radiomics have also been utilized to predict hematoma expansion after 
intracerebral hemorrhage, and all models in these studies 
demonstrated excellent predictive performance (Xie et al., 2020; Song 
et  al., 2021). However, no study has focused on building a 
non-enhanced CT based radiomics model to differentiate AVM 
related hematomas from hypertensive intracerebral hematomas. AVM 
related hematomas exhibit greater compositional heterogeneity due to 
the presence of malformed vasculature within the hematomas, and the 
hematoma may be surrounded by dilated veins that can cause border 
indentation. Therefore, we postulate that non-enhanced CT based 
radiomics, an emerging technique for analyzing the shape and texture 
features of lesions (Gillies et al., 2016), can achieve a good predictive 
performance in discriminating AVM related hematomas from 
hypertensive intracerebral hematomas. Therefore, the aim of this 
study was to construct and validate a radiomics prediction model 
based on non-enhanced CT images in discriminating AVM related 
hematomas from hypertensive intracerebral hematomas.

Materials and methods

Patients and data acquisition

The present study was approved by the Institutional Review 
Boards of the Second Affiliated Hospital of Zhejiang University School 
of Medicine, and the written informed consent was waived. 

We searched our retrospectively maintained database for consecutive 
patients with acute hypertensive and AVM related spontaneous 
intracerebral hemorrhage between June 2011 and December 2022. All 
patients received baseline non-enhanced CT scans. Patients with 
artifacts in their CT images or on anticoagulation/antiplatelet therapy 
were excluded. Other causes of bleeding, such as moyamoya disease, 
intracranial aneurysms, cerebral amyloid angiopathy, or neoplastic 
related bleeding have been excluded in all confirmed patients. In total, 
274 cases of hypertensive intraparenchymal hematomas and 297 cases 
of AVM related hematomas were included. Baseline nonenhanced CT 
images were acquired after admission to our hospital with either 
Siemens or GE medical systems. The scanning energy was 120 or 140 
KVP and smart mAs were used. Slice thickness was 5 mm and the 
pixel spacing was 0.45 × 0.45 mm2 or 0.49 × 0.49 mm2.

Hematomas segmentation and radiomics 
feature extraction

The segmentation of hematomas was performed using 3D-Slicer 
software (version 4.13.0, www.slicer.org) by a radiologist with 5 years 
of experience in neuroimaging. Volume of interest (VOI) were semi-
automatically delineated on each slice of the CT image containing the 
entire lesion. Then, the segmentations were validated by another 
radiologist with 10 years of experience in neuroimaging in a cohort of 
30 randomly selected patients. Interobserver intraclass correlation 
coefficient (ICC) > 0.75 was deemed to have a good reliability or 
reproducibility (Gstoettner et al., 2007).

A total of 1,688 quantitative imaging features were extracted from 
CT images with Radcloud platform (Huiying Medical Technology Co., 
Ltd., http://radcloud.cn) (Nie et al., 2020, 2021). The 1,688 radiomics 
features were extracted from each original and filtered segmentation 
and divided into five groups: (Brouwers et  al., 2014) intensity 
[histogram-derived first-order statistics (n = 18)]; (Poon et al., 2014) 
shape (n = 14); (Heit et al., 2017) textural matrix [i.e., the gray-level 
co-occurrence matrix (GLCM), Gray Level Dependence Matrix 
(GLDM), gray-level run length matrix (GLRLM), gray-level size-zone 
matrix (GLSZM), and the neighborhood gray-tone difference matrix 
(NGTDM), n = 75]; (Balami and Buchan, 2012) wavelet-based 
transform (n = 744), and (Fukuda et  al., 2017) other transforms 
(n = 837). The details of the radiomics features are shown in 
Supplementary Table S1.

Machine learning-based radiomics 
prediction model construction

The validation set and training set were separated by random 
method with ratio 3:7, and the random seeds is 314. The statistical 
analysis was performed in Radcloud platform. As described above, a 
large number of image features may be computed. However, all these 
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extracted features may not be useful for a particular task. Therefore, 
dimensionality reduction and selection of task-specific features for 
best performance are necessary steps. To reduce the redundant 
features, the feature selection methods included the least absolute 
shrinkage and selection operator (LASSO) were used for this purpose. 
For LASSO model, L1 regularizer was used as the cost function, and 
the error value of cross validation is 5, and the maximum number of 
iterations is 1,000.

Based on the selected features, the radiomics-based models were 
constructed with 2 classifiers, support vector machine (SVM) and 
logistic regression (LR), and the validation method was used to 
improve the effectiveness of the model. A combined model was also 
constructed which combined with the radiomics features, clinical 
characteristics and radiological signs. To assess the predictive 
performance, the receiver operating characteristic (ROC) curve, 
namely, area under curve (AUC) was used both in training set and 
validation set, respectively. And four indicators including P 
[precision = true positives / (true positives+ false positives)], R 
[recall = true positives / (true positives+ false negatives)], f1-score 
[f1-score = P*R*2/ (P + R)], support (total number in test set) to 
evaluate the performance of classifier in this study.

Results

A total of 571 patients (373 men and 198 women; mean age, 
47.6 years ±18.97; range, 5–94 years) were included in this study. The 
training set comprised 265 males and 134 females (median age, 49 
years; Range, 7–93 years), and the validation set included 108 males 
and 64 females (median age, 48.5 years; Range, 5–94 years). Both in 
the training and validation set, there were no significant differences in 
age and gender between training set and validation set. Age was 
significantly different between AVM related hematomas and 
hypertensive hematomas both in training set and validation set 
(p < 0.001), the sex did not differ significantly between the two groups. 
In the training and validation set, calcification was significantly 
different between AVM related hematomas and hypertensive 
hematomas (p < 0.001) (Table 1). Calcification was more commonly 
seen in AVM related hematomas than hypertensive hematomas 
(Table 1). A total of 67 features were selected from 1,688 features using 
LASSO method (Figure 1; Supplementary Table S2). Based on the 
selected features, there are several supervised learning classifiers 
available for classification analysis, which creates models that attempt 
to separate or predict the data with respect to an outcome or 
phenotype. In this study, the predicted models were constructed with 
SVM and LR classifiers, and the validation method was used to 
validate the effectiveness of the models. ROC curve analysis results 

were showed in Table 2 for training set and Table 3 for validation set. 
When training with SVM classifier, the AUC of radiomics-based 
model and combined model in training set were 0.894 (95% CI: 
0.858–0.932; sensitivity = 0.83 and specificity = 0.82) and 0.976 (95% 
CI: 0.953–0.999; sensitivity = 0.95 and specificity = 0.95), and the AUC 
of validation set were 0.774 (95% CI: 0.705–0.843; sensitivity = 0.72 
and specificity = 0.71) and 0.896 (95% CI: 0.841–0.951; 
sensitivity = 0.88 and specificity = 0.8), respectively (Figure 2). When 
training with LR classifier, the AUC of radiomics-based model and 
combined model in training set were 0.904 (95% CI, 0.866–0.942; 
sensitivity = 0.82 and specificity = 0.82) and 0.981 (95% CI, 0.958–
1.000; sensitivity = 0.94 and specificity = 0.95), and the AUC of 
validation set were 0.782 (95% CI, 0.713–0.851; sensitivity = 0.73 and 
specificity = 0.71) and 0.907 (95% CI, 0.854–0.960; sensitivity = 0.88 
and specificity = 0.82), respectively (Figure 2). The AUCs of SVM and 
LR had no significant difference in both datasets. The combined 
model showed a better performance than radiomics-based model in 
both training set and validation set (Figure  2). In addition, 
we summarized four indicators (precision, recall, f1-score, support) 
for each classifier in Tables 4, 5.

Discussion

In this study, we extracted and analyzed 1,688 radiomics features 
to provide a more comprehensive depiction of the internal 
heterogeneity of hematomas. After processing, a total of 67 features 
were finally selected, including the radiomics features of the shape, 
first order, gray-level co-occurrence matrix (GLCM), gray-level size 
zone matrix (GLSZM), gray level run length matrix (GLRLM), gray 
level dependence matrix (GLDM), and neighbouring gray tone 
difference matrix (NGTDM). Then, we constructed and evaluated two 
predictive models (radiomics-based model and combined model) to 
non-invasively distinguish AVM related hematomas from hypertensive 
intracerebral hematomas using non-enhanced CT based radiomics. 
Compared to radiomics-based model, the combined model using 
radiomics, age and calcification showed a better performance and hold 
great potential for personalized clinical decision.

The timely implementation of surgical or interventional 
procedures has a positive impact on the outcomes of patients with 
AVM, whereas delayed intervention beyond 48 h after symptom onset 
may result in worsened effects. Therefore, prompt screening for 
further operation is recommended for patients with AVM instead of 
conservative treatment as those with hypertensive intracerebral 
hematomas. However, it is challenging for the naked eye by 
radiologists to discriminate AVM related hematomas from 
hypertensive intracerebral hematomas on nonenhanced CT (Figure 3). 

TABLE 1 Clinical characteristics and radiological signs in training and validation set.

Dataset Training set Validation set

AVM Hypertension p AVM Hypertension p

Patients, No. (%) 207 (51.9%) 192 (48.1%) – 89 (51.7%) 83 (48.3%) –

Age, median (Range) 34 (7–83) 59 (24–93) <0.001 33 (5–83) 59 (33–94) <0.001

Sex, M/F 139/68 126/66 0.52 58/31 50/33 0.50

Calcification, No. (%) 47 (29.4%) 2 (1.1%) <0.001 15 (20.3%) 2 (2.5%) <0.001

No. (%), the numbers before parentheses represent the actual numbers and the numbers.
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FIGURE 1

Lasso algorithm on feature select. (A) Lasso path; (B) MSE path; (C) coefficients in Lasso model. Using Lasso model, 67 features which are correspond 
to the optimal alpha value were selected.

TABLE 2 ROC results with SVM and LR classifiers of combined model and radiomics-based model in training set.

Classifiers Model AUC 95% CI Sensitivity Specificity

SVM
Combined model 0.976 0.953–0.999 0.95 0.95

Radiomics-based model 0.894 0.858–0.932 0.83 0.82

LR
Combined model 0.981 0.953–0.999 0.95 0.95

Radiomics-based model 0.904 0.866–0.942 0.82 0.82
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Older age, and a history of hypertension are commonly used as 
diagnostic consideration for hypertensive intracerebral hematomas. 
However, many patients of intracerebral hemorrhage arrive at the 
emergency room in a coma and cannot even provide their age or 
history of hypertension. In addition, cerebral angiography studies 

suggest that these above clinical and imaging features may not always 
be reliable indicators (Josephson et al., 2014; van Asch et al., 2015). 
Therefore, radiomics-based classification model actually provided 
additional supplementary diagnostic for identifying AVM 
related hematomas.

TABLE 3 ROC results with SVM and LR classifiers of combined model and radiomics-based model in validation set.

Classifiers Model AUC 95% CI Sensitivity Specificity

SVM
Combined model 0.896 0.841–0.951 0.88 0.8

Radiomics-based model 0.774 0.705–0.843 0.72 0.71

LR
Combined model 0.907 0.854–0.960 0.88 0.82

Radiomics-based model 0.782 0.713–0.851 0.73 0.71

FIGURE 2

ROC curves of SVM and LR methods to classification. The radiomics based model ROC curve of training set, the AUCs of SVM and LR were 0.894 and 
0.904, respectively (A). The radiomics based model ROC curve of validate set, the AUCs of SVM and LR were 0.774 and 0.782, respectively (B). The 
combined model ROC curve in training set, the AUCs of SVM and LR were 0.976 and 0.981, respectively (C). The combined model ROC curve in 
validation set, the AUCs of SVM and LR were 0.896 and 0.907, respectively (D).

TABLE 4 The results of precision, sensitivity, F1-score, support of 
combined model and radiomics-based model in training set.

Indicators
Combined model

Radiomics-based 
model

SVM LR SVM LR

Precision 0.95 0.95 0.83 0.83

Sensitivity 0.95 0.94 0.83 0.82

F1-score 0.95 0.94 0.83 0.83

Support 207 207 207 207

TABLE 5 The results of precision, sensitivity, F1-score, support of 
combined model and radiomics-based model in validation set.

Indicators
Combined model

Radiomics-based 
model

SVM LR SVM LR

Precision 0.82 0.84 0.73 0.73

Sensitivity 0.88 0.88 0.72 0.73

F1-score 0.85 0.86 0.72 0.73

Support 89 89 89 89
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FIGURE 3

A case of AVM related hematoma, man, 42  years old, presented with unconsciousness for 4  h. Non-enhanced CT showed a hematoma in the right 
basal ganglia (A). CT angiography (B) and volume rendering technique (C) showed a malformed vascular mass. A case of hypertensive intracerebral 
hematoma, man, 47  years old, presented with slurred speech with left limb weakness for 5  h. Non-enhanced CT showed a hematoma in the right basal 
ganglia (D). CT angiography (E) and volume rendering technique (F) showed no abnormality.

Radiomics, utilizing diverse machine learning techniques to 
construct predictive models, can non-invasively reflect the internal 
heterogeneity of lesions for early diagnosis, differential diagnosis, and 
prognostic predictions. This approach has been extensively 
investigated in various cancer studies (Artzi et al., 2019; Wang et al., 
2019; Li et al., 2022). AVM related hematomas are more likely to 
be irregular and heterogeneous due to the presence of calcification 
and malformed vasculatures embedded in the hematomas, whereas 
hypertensive intracerebral hematomas are more likely to have a 
uniform shape. These imaging feature can be reflected by radiomics 
features. So far, radiomics analysis of vascular diseases has primarily 
focused on identifying and stratifying the stability of vessel plaques 
(Shi et  al., 2018; Kolossváry et  al., 2019), predicting cerebral 
hematomas expansion (Xie et  al., 2020; Xu W. et  al., 2020), and 
identifying tumorous intracerebral hemorrhages (Choi et al., 2015; 
Nawabi et al., 2020). These previous studies have demonstrated that 
radiomics features may have the potential to objectively quantify the 
shape of hematomas and the heterogeneity of hematomas. In this 
study, three radiomics features belonging to the shape and many 
radiomics features belonging to the first order, GLCM, GLDM, 
GLRLM, GLSZM, and NGTDM that described the heterogeneity of 
the hematoma may be  associated with AVM related hematomas 
(Supplementary Table S2). The non-enhanced CT based radiomics 
model may present potential benefits such as reduced contrast and 
radiation exposure, as well as faster treatment times that could lead 
to improved outcomes. In our study, we  found that age and 

calcification had significant differences between AVM related 
hematomas and hypertensive intracerebral hematomas. Patients with 
AVM related hematomas were younger than patients with 
hypertensive hematomas. Calcification was more commonly seen in 
AVM related hematomas than hypertensive hematomas. Therefore, 
we  further developed a combined model which combined with 
selected radiomics features, age and calcification. Expectedly, the 
combined model showed a satisfactory predictive performance for 
discrimination of AVM related hematomas from hypertensive 
intracerebral hematomas. In the future, the combined model based 
on non-enhanced CT may present an appealing complementary 
alternative for emergency department physician in accurately 
identifying AVM related hematomas.

There were several limitations in this study. Firstly, this study 
lacked independent external validation cohort. In the future, external 
multi-center validation cohorts are needed. Secondly, this study is a 
retrospective study. In the future, prospective cohorts should 
be further collected to validate the radiomics model. Thirdly, although 
hypertension and AVM are the two most common causes of 
spontaneous intraparenchymal hematomas, several relatively rare 
causes, such as cerebral amyloid angiopathy are not included in our 
study. Therefore, the constructed model in our study can only 
be applied specifically for distinguishing the two most common causes 
of spontaneous intraparenchymal hematomas. Lastly, in this study, the 
semiautomatic method was used for hematomas segmentation. Future 
research could investigate the potential of artificial intelligence in 
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facilitating rapid and comprehensive segmentation (Xu J. et al., 2020; 
Yao et al., 2020).

In summary, non-enhanced CT is a non-invasive and time-saving 
technique that does not require contrast injection. Non-enhanced CT 
based radiomics and combined models were developed and validated 
in this study, which provides a valuable tool for the individualized risk 
prediction of AVM related hematomas, which may serve as a 
promising tool to complement the conventional procedures for the 
clinical decision-making process in the future.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

The studies involving humans were approved by the Ethics 
Committee of the Second Affiliated Hospital, Zhejiang University 
School of Medicine. The studies were conducted in accordance with 
the local legislation and institutional requirements. The participants 
provided their written informed consent to participate in this study.

Author contributions

HX: Data curation, Formal analysis, Investigation, Resources, 
Writing – original draft. FD: Formal analysis, Investigation, 
Methodology, Writing – original draft. RZ: Investigation, 
Methodology, Writing – original draft. XY: Formal analysis, 
Investigation, Writing – original draft. PX: Data curation, 
Investigation, Writing – original draft. YT: Data curation, 
Investigation, Writing – original draft. PH: Supervision, Visualization, 

Writing – review & editing. CW: Conceptualization, Funding 
acquisition, Methodology, Supervision, Validation, Visualization, 
Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported by National Natural Science Foundation of China (Grant 
No. 82302135), Zhejiang Medical Health Science and Technology 
Project (Grant No. 2023RC023), and Zhejiang TCM science and 
technology plan (Grant No. 2022ZQ056).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnins.2023.1284560/
full#supplementary-material

References
Artzi, M., Bressler, I., and Ben, B. D. (2019). Differentiation between glioblastoma, 

brain metastasis and subtypes using radiomics analysis. J. Magn. Reson. Imaging 50, 
519–528. doi: 10.1002/jmri.26643

Balami, J. S., and Buchan, A. M. (2012). Complications of intracerebral haemorrhage. 
Lancet Neurol. 11, 101–118. doi: 10.1016/S1474-4422(11)70264-2

Brouwers, H. B., Chang, Y., Falcone, G. J., Cai, X., Ayres, A. M., Battey, T. W., et al. 
(2014). Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA 
Neurol. 71, 158–164. doi: 10.1001/jamaneurol.2013.5433

Choi, Y. S., Rim, T. H., Ahn, S. S., and Lee, S. K. (2015). Discrimination of tumorous 
intracerebral Hemorrhage from benign causes using CT densitometry. AJNR Am. J. 
Neuroradiol. 36, 886–892. doi: 10.3174/ajnr.A4233

Fukuda, K., Majumdar, M., Masoud, H., Nguyen, T., Honarmand, A., Shaibani, A., 
et al. (2017). Multicenter assessment of morbidity associated with cerebral arteriovenous 
malformation hemorrhages. J. Neurointerv. Surg. 9, 664–668. doi: 10.1136/
neurintsurg-2016-012485

Gillies, R. J., Kinahan, P. E., and Hricak, H. (2016). Radiomics: images are more than 
pictures, they are data. Radiology 278, 563–577. doi: 10.1148/radiol.2015151169

Gstoettner, M., Sekyra, K., Walochnik, N., Winter, P., Wachter, R., and Bach, C. M. 
(2007). Inter- and intraobserver reliability assessment of the cobb angle: manual versus 
digital measurement tools. Eur. Spine J. 16, 1587–1592. doi: 10.1007/s00586-007-0401-3

Heit, J. J., Iv, M., and Wintermark, M. (2017). Imaging of intracranial Hemorrhage. J. 
Stroke 19, 11–27. doi: 10.5853/jos.2016.00563

Josephson, C. B., White, P. M., Krishan, A., and Al-Shahi, S. R. (2014). Computed 
tomography angiography or magnetic resonance angiography for detection of 

intracranial vascular malformations in patients with intracerebral haemorrhage. 
Cochrane Database Syst. Rev. 2014:Cd009372. doi: 10.1002/14651858.CD009372.
pub2

Kolossváry, M., Karády, J., Kikuchi, Y., Ivanov, A., Schlett, C. L., Lu, M. T., et al. (2019). 
Radiomics versus visual and histogram-based assessment to identify atheromatous 
lesions at coronary CT angiography: an ex  vivo study. Radiology 293, 89–96. doi: 
10.1148/radiol.2019190407

Li, G., Li, L., Li, Y., Qian, Z., Wu, F., He, Y., et al. (2022). An MRI radiomics approach 
to predict survival and tumour-infiltrating macrophages in gliomas. Brain 145, 
1151–1161. doi: 10.1093/brain/awab340

Nawabi, J., Kniep, H., Kabiri, R., Broocks, G., Faizy, T. D., Thaler, C., et al. (2020). 
Neoplastic and non-neoplastic acute intracerebral Hemorrhage in CT brain scans: 
machine learning-based prediction using radiomic image features. Front. Neurol. 11:285. 
doi: 10.3389/fneur.2020.00285

Nie, P., Yang, G., Wang, N., Yan, L., Miao, W., Duan, Y., et al. (2021). Additional value 
of metabolic parameters to PET/CT-based radiomics nomogram in predicting 
lymphovascular invasion and outcome in lung adenocarcinoma. Eur. J. Nucl. Med. Mol. 
Imaging 48, 217–230. doi: 10.1007/s00259-020-04747-5

Nie, P., Yang, G., Wang, Z., Yan, L., Miao, W., Hao, D., et al. (2020). A CT-based 
radiomics nomogram for differentiation of renal angiomyolipoma without visible fat 
from homogeneous clear cell renal cell carcinoma. Eur. Radiol. 30, 1274–1284. doi: 
10.1007/s00330-019-06427-x

Poon, M. T., Fonville, A. F., and Al-Shahi, S. R. (2014). Long-term prognosis after 
intracerebral haemorrhage: systematic review and meta-analysis. J. Neurol. Neurosurg. 
Psychiatry 85, 660–667. doi: 10.1136/jnnp-2013-306476

https://doi.org/10.3389/fnins.2023.1284560
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnins.2023.1284560/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2023.1284560/full#supplementary-material
https://doi.org/10.1002/jmri.26643
https://doi.org/10.1016/S1474-4422(11)70264-2
https://doi.org/10.1001/jamaneurol.2013.5433
https://doi.org/10.3174/ajnr.A4233
https://doi.org/10.1136/neurintsurg-2016-012485
https://doi.org/10.1136/neurintsurg-2016-012485
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s00586-007-0401-3
https://doi.org/10.5853/jos.2016.00563
https://doi.org/10.1002/14651858.CD009372.pub2
https://doi.org/10.1002/14651858.CD009372.pub2
https://doi.org/10.1148/radiol.2019190407
https://doi.org/10.1093/brain/awab340
https://doi.org/10.3389/fneur.2020.00285
https://doi.org/10.1007/s00259-020-04747-5
https://doi.org/10.1007/s00330-019-06427-x
https://doi.org/10.1136/jnnp-2013-306476


Xie et al. 10.3389/fnins.2023.1284560

Frontiers in Neuroscience 08 frontiersin.org

Shi, Z., Zhu, C., Degnan, A. J., Tian, X., Li, J., Chen, L., et al. (2018). Identification of 
high-risk plaque features in intracranial atherosclerosis: initial experience using a 
radiomic approach. Eur. Radiol. 28, 3912–3921. doi: 10.1007/s00330-018- 
5395-1

Song, Z., Guo, D., Tang, Z., Liu, H., Li, X., Luo, S., et al. (2021). Noncontrast computed 
tomography-based radiomics analysis in discriminating early hematoma expansion after 
spontaneous intracerebral Hemorrhage. Korean J. Radiol. 22, 415–424. doi: 10.3348/
kjr.2020.0254

van Asch, C. J., Velthuis, B. K., Rinkel, G. J., Algra, A., de Kort, G. A., Witkamp, T. D., 
et al. (2015). Diagnostic yield and accuracy of CT angiography, MR angiography, and 
digital subtraction angiography for detection of macrovascular causes of intracerebral 
haemorrhage: prospective, multicentre cohort study. BMJ 351:h5762. doi: 10.1136/bmj.
h5762

Wang, C., Li, H., Jiaerken, Y., Huang, P., Sun, L., Dong, F., et al. (2019). Building CT 
radiomics-based models for preoperatively predicting malignant potential and mitotic 

count of gastrointestinal stromal Tumors. Transl. Oncol. 12, 1229–1236. doi: 10.1016/j.
tranon.2019.06.005

Xie, H., Ma, S., Wang, X., and Zhang, X. (2020). Noncontrast computer tomography-
based radiomics model for predicting intracerebral hemorrhage expansion: preliminary 
findings and comparison with conventional radiological model. Eur. Radiol. 30, 87–98. 
doi: 10.1007/s00330-019-06378-3

Xu, W., Ding, Z., Shan, Y., Chen, W., Feng, Z., Pang, P., et al. (2020). A nomogram 
model of radiomics and satellite sign number as imaging predictor for intracranial 
hematoma expansion. Front. Neurosci. 14:491. doi: 10.3389/fnins.2020.00491

Xu, J., Zhang, R., Zhou, Z., Wu, C., Gong, Q., Zhang, H., et al. (2020). Deep network 
for the automatic segmentation and quantification of intracranial Hemorrhage on CT. 
Front. Neurosci. 14:541817. doi: 10.3389/fnins.2020.541817

Yao, H., Williamson, C., Gryak, J., and Najarian, K. (2020). Automated hematoma 
segmentation and outcome prediction for patients with traumatic brain injury. Artif. 
Intell. Med. 107:101910. doi: 10.1016/j.artmed.2020.101910

https://doi.org/10.3389/fnins.2023.1284560
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1007/s00330-018-5395-1
https://doi.org/10.1007/s00330-018-5395-1
https://doi.org/10.3348/kjr.2020.0254
https://doi.org/10.3348/kjr.2020.0254
https://doi.org/10.1136/bmj.h5762
https://doi.org/10.1136/bmj.h5762
https://doi.org/10.1016/j.tranon.2019.06.005
https://doi.org/10.1016/j.tranon.2019.06.005
https://doi.org/10.1007/s00330-019-06378-3
https://doi.org/10.3389/fnins.2020.00491
https://doi.org/10.3389/fnins.2020.541817
https://doi.org/10.1016/j.artmed.2020.101910

	Building nonenhanced CT based radiomics model in discriminating arteriovenous malformation related hematomas from hypertensive intracerebral hematomas
	Introduction
	Materials and methods
	Patients and data acquisition
	Hematomas segmentation and radiomics feature extraction
	Machine learning-based radiomics prediction model construction

	Results
	Discussion
	Data availability statement
	Ethics statement
	Author contributions

	References

