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Engineering, Zhengzhou University of Light Industry, Zhengzhou, China, *School of Biomedical
Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical
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Background: Accurate phase unwrapping is a critical prerequisite for successful
applications in phase-related MRI, including quantitative susceptibility mapping
(QSM) and susceptibility weighted imaging. However, many existing 3D phase
unwrapping algorithms face challenges in the presence of severe noise, rapidly
changing phase, and open-end cutline.

Methods: In this study, we introduce a novel 3D phase unwrapping approach
utilizing region partitioning and a local polynomial model. Initially, the method
leverages phase partitioning to create initial regions. Noisy voxels connecting
areas within these regions are excluded and grouped into residual voxels.
The connected regions within the region of interest are then reidentified and
categorized into blocks and residual voxels based on voxel count thresholds.
Subsequently, the method sequentially performs inter-block and residual voxel
phase unwrapping using the local polynomial model. The proposed method
was evaluated on simulation and in vivo abdominal QSM data, and was
compared with the classical Region-growing, Laplacian_based, Graph-cut, and
PRELUDE methods.

Results: Simulation experiments, conducted under different signal-to-noise
ratios and phase change levels, consistently demonstrate that the proposed
method achieves accurate unwrapping results, with mean error ratios not
exceeding 0.01%. In contrast, the error ratios of Region-growing (N/A, 84.47%),
Laplacian_based (20.65%, N/A), Graph-cut (2.26%, 20.71%), and PRELUDE (4.28%,
10.33%) methods are all substantially higher than those of the proposed method.
In vivo abdominal QSM experiments further confirm the effectiveness of the
proposed method in unwrapping phase data and successfully reconstructing
susceptibility maps, even in scenarios with significant noise, rapidly changing
phase, and open-end cutline in a large field of view.
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Conclusion: The proposed method demonstrates robust and accurate phase
unwrapping capabilities, positioning it as a promising option for abdominal

QSM applications.
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magnetic resonance imaging, phase unwrapping, region partitioning, local polynomial
model, abdominal quantitative susceptibility mapping

1. Introduction

The acquired complex signal in magnetic resonance imaging
(MRI) is composed of both magnitude and phase components.
While the magnitude is typically used, the phase is often
disregarded in clinical diagnosis (Chavez et al., 2002). However,
accurately recovering the underlying true phase is crucial for
various clinical applications, such as water-fat separation (Ma,
2008), susceptibility weighted imaging (Rauscher et al., 2005; Sehgal
etal., 2005), human brain phase imaging (Liu et al., 2011; Robinson
et al., 2017), and quantitative susceptibility mapping (Wang and
Liu, 2015; Langkammer et al., 2018; Lu et al., 2018; Jerban et al,,
2019; Zhang et al., 2019; Yan et al., 2021; Jang et al., 2022; Chen
et al., 2023). The phase is typically calculated using the arctangent
function and falls within the range of (—m, ) radians (Cusack
and Papadakis, 2002; Jang et al, 2019). If the underlying true
phase value falls outside this range, it introduces a phase wrap.
These wrapped phases are corrected by adding multiples of 27 to
the phase values of neighboring voxels where the phase difference
exceeds m. This correction is made under the assumption that the
true phase is smooth (Dymerska et al., 2021). However, obtaining
the underlying true phase is not always straightforward, particularly
in cases where the signal-to-noise ratio (SNR) is low, and the phase
difference between neighboring voxels in the region of interest
(ROI) exceeds .

Many phase unwrapping methods (Ghiglia and Pritt, 1998;
Strand et al,, 1999; Langley and Zhao, 2009; Arevalillo-Herraez
et al., 2016; Robinson et al., 2017) have been proposed to tackle
this challenging issue, and a comprehensive review can be found
in reference (Robinson et al., 2017). These methods can be broadly
classified into path-following techniques (Ghiglia and Pritt, 1998;
Chavez et al., 2002; Cusack and Papadakis, 2002; Arevalillo-Herrdez
et al, 2016) and global optimization algorithms (Friedlander and
Francos, 1996; Ghiglia and Pritt, 1998; Strand et al., 1999; Langley
and Zhao, 2009). Path-following methods unwrap phase data by
detecting 27 phase discontinuities between adjacent pixels along a
predetermined path. While path-following approaches are efficient,
they are susceptible to unwrapping errors in regions with low SNR
of the phase data. These errors can propagate and accumulate,
leading to residual wraps in regions with high SNR (Cheng et al.,
2018a,b). Global optimization methods, on the other hand, use
mathematical functions to model the underlying true phase data
and perform optimization calculations to eliminate phase aliasing.
While these methods are robust to noise and accurate, finding a
global optimization solution is computationally expensive (Dong
etal, 2017; Dymerska et al., 2021).
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Region split-merging methods were developed to reconcile
path-following approaches and global optimization algorithms
(Zhou et al., 2021). One notable representative is the phase region
expanding labeler for unwrapping discrete estimates (PRELUDE)
(Jenkinson, 2003), which is considered a gold standard due
to its high accuracy and widespread use in MR phase images
(Karsa and Shmueli, 2018). PRELUDE employs a phase partition
approach, segmenting the phase interval (—m, ) into evenly
spaced subintervals, to divide the phase volume into segments
of a specific value range (see Figures 1A, B). It is assumed that
these regions do not contain intra-region wraps. These regions are
matched and merged in a Region-growing path, assuming spatial
smoothness of the phase. The unwrapping process begins with the
pair of neighboring regions with the largest number of interfacing
voxels on the border. However, if the initial region contains areas
with a phase difference exceeding 27 (see Figure 1B), it indicates a
wrap, and PRELUDE fails (Cheng et al., 2018b; Karsa and Shmueli,
2018). This situation typically arises in regions with low SNR and/or
rapid phase variation in high-resolution imaging.

In this study, we introduce a novel 3D split-merging phase
unwrapping method based on region partitioning and a local

PRELUDE

A

The proposed meth;d

< »

C noisy voxels
excluded

" A Phase B voxels in the
(2n/3, m] interval

FIGURE 1

Noisy voxels excluded. PRELUDE: the voxels with phase values (A)
within one of the defined intervals are identified (B). The region in
the red enlarged window (B) contains three areas (yellow arrows)
connected by the noisy voxels (blue arrow). The phase difference
between the areas is more than 2x, and hidden wraps exist. The
proposed method: the first step is the same as PRELUDE (B). Then,
the noisy voxels are excluded, and the connected components are
reidentified as initial regions (C).
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polynomial model. The proposed method initially applies the phase
partitioning technique used in the PRELUDE approach to generate
the initial regions. Noisy voxels connected to areas in the initial
regions are eliminated and clustered into residual voxels. The
connected regions in the ROI are reidentified and clustered into
blocks and residual voxels by thresholding the number of voxels in
regions. Subsequently, the proposed method sequentially performs
inter-block and residual voxel phase unwrapping using the local
polynomial model. We evaluate the performance of the proposed
method through 3D simulations and in vivo abdominal data,
comparing it with Region-growing (Weill Cornell Medicine, 2020),
Laplacian_based (Schofield and Zhu, 2003), Graph-cut (Dong et al.,
2017) and PRELUDE (Jenkinson, 2003) methods.

2. Materials and methods

2.1. The problem of phase unwrapping

The relationship between the calculated (wrapped) phase ¢
and the smooth true phase (unwrapped) ¢, determined by the
arctangent function, is defined by multiples of 2, i.e.,

P(x,y,2) = ¢(x,y,z) - 2k(x,y,z)7fa (1)

where (x, y, z) represents the spatial index of a voxel, and k is an
integer. Phase unwrapping is achieved by adding the correct phase
offset 2kt to the wrapped phase of each voxel, thereby recovering
the underlying true phase. This is done under the assumption that
the true phase exhibits spatial smoothness (Ghiglia and Pritt, 1998).

2.2. Related work: modeling true phase
using local polynomial function

Mathematical functions are commonly employed to model the
underlying true phase data, transforming the unwrapping problem
into a parameter estimation problem in many phase unwrapping
methods (Friedlander and Francos, 1996; Liu W. et al., 2013; Cheng
et al., 2018b). However, directly modeling the true phase across a
large field of view proves challenging and inefficient. In this study,
a polynomial function, known for its robustness to noise and ability
to estimate the true phase in two disconnected areas within the
region of interest (ROI) (Cheng et al., 2018b), is used to model the
underlying true phase in a local window. This function is expressed
as follows:

L M N
T(x,y,2) = ¢(x,y,z) - Z Z Z Cl,m,nxlymzna (2)

=0 m=0 n=0

where 7(x,y, ;) represents the fitting error; C,, , denotes the fitting
coeflicients; and L, M, and N are the orders of the function in the
x, ¥, and z directions, respectively. The least square method can be
used to determine the fitting coefficients C; ,,, , by exploiting the
information of the unwrapped voxels in the local window (Cheng
et al., 2018b). The integer compensation k of the growing voxel
(xo, %0, zo) is calculated as follows:

X(x0,70,20)€ = P(x0,0,20) )

2z ’ ®

K(xo,y0,20) = round(
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where X(xg.yp.20) = L1, X0, Y0» 20, X0Y020, -+ XG> Yo' 20 » %674 20 1 is
the polynomial basis of the growing voxel (xo, 50, zo), and round(z)
is a function that computes the closest integer to z.

2.3. Region partitioning

Figure 1 illustrates the process of excluding noisy voxels.
Similar to the PRELUDE method, the phase interval of (—m,
) is divided into six evenly spaced subintervals [(—m, —27/3),
(=2m/3, -m/3), (—=/3, 0), (0, w/3), (w/3, 27w/3), and (27/3,
m)] (Figure 1), providing the fewest wrap-free initial regions
(Karsa and Shmueli, 2018). For each subinterval, a mask
is generated to identify the voxels whose phase values fall
within that subinterval. The initial regions are identified by
detecting the connected components (Figure 1B). It is worth
noting that the initial regions may be comprised of areas
(indicated by yellow arrows in Figure 1B) connected by a
few noisy voxels, where the phase difference between these
areas exceeds 2m. Consequently, the phase in the initial regions
may contain a hidden wrap (indicated by the blue arrow in
Figure 1B).

To prevent the initial regions from containing hidden wraps,
the noisy voxels connected to the areas in the initial regions
are excluded before the connected 3D regions are determined
(Figure 1C). The excluded voxels meet the following criteria: (i)
they are located at the edge of the identified block, and (ii) they
have zero-valued first, second, or third neighbors in at least two
of the three (x, y, and z) directions. These excluded voxels are
classified as the first residual voxels (Figure 1C). Note that edge
voxels inside the imaging object will be classified as the first residual
voxels, so the effect on the phase unwrapping for other voxels is
negligible. The 3D connected regions are reidentified. To mitigate
the impact of small regions, the reidentified regions within the
ROI are further classified into blocks and the second residual
voxels based on a threshold applied to the voxel count of each
region.

2.4. Regions unwrapping and merging

The blocks are initially matched and merged using the local
polynomial function defined in equation 2. The block with the
highest voxel count is selected as the starting block, and the
phase inside it is unwrapped. The block nearest to the already
unwrapped regions is chosen as the block to be unwrapped,
based on the Euclidean distance between the closest voxels. The
local polynomial model method is applied to the voxels in the
growing block that are closest to the unwrapped regions, as well
as to the voxels in the unwrapped regions that are closest to the
growing block. This process yields the optimal integer offset for
the growing block.

Once all blocks are matched and merged, the residual
voxels are unwrapped using the quality-guided Region-
growing local polynomial method. The phase derivative (Cheng
et al, 2023) is calculated as the quality criterion to enhance
the unwrapping of the residual voxels. During the residual
unwrapping process, the second residual voxels are unwrapped
first.
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3. Experiments

3.1. Simulations

To assess the performance of the proposed method across
varying signal-to-noise ratios (SNRs), a synthetic dataset of
dimensions 100 x 100 x 100 was generated using a Gaussian
function with a standard deviation (SD) of 20 voxels (Cusack
and Papadakis, 2002; Cheng et al, 2018b). The magnitude of
the simulation data ranged from 10 to 100 in increments of 10.
Gaussian noise with a mean of zero and SD of 20 was added to the
original synthesized complex data. Consequently, the SNRs of the
simulated data varied from 0.5 to 5 in increments of 0.5 (Cheng
et al., 2018a), as depicted in Figure 2.

A more comprehensive and complex simulation, sized at
101 x 101 x 51, was created to evaluate the proposed method
under different levels of phase variation (Abdul-Rahman et al,
2016). The phase values were obtained as

() (y)

)(1.50—z)+( )(0.49 + z)],

(4)

The Height was set at 5. The magnitude was set at 50. Gaussian

P (x,y,z) = Height x [(

noise with a mean of zero and SD of 10 was added to the original
synthesized complex data. The phase change levels varied along the
z-axis direction. The resulting SNR of the generated simulation was
5, as illustrated in Figure 3.

3.2. In vivo abdominal QSM data

To validate the effectiveness of the proposed method on in vivo
data, abdominal quantitative susceptibility mapping (QSM) data

‘Wrapped phase

Original phase

Magnitude

Pmposed method

Graph-cut

Laplacxa.n based

PRELUDE
FIGURE 2

Phase-unwrapping results of the first simulation under different
SNRs by using the Laplacian_based, Graph-cut, PRELUDE, and
proposed methods. Due to its overall poor performance, the results
for Region-growing have not been shown. The white arrows in the
second row points to where obvious residual wraps in the
unwrapped results. The images in the third row display the
incorrectly unwrapped voxels. Voxels were considered incorrectly
unwrapped if the absolute phase difference between the
unwrapped phase and reference phase exceeded /10 radians. The
reference phase image was defined as the sum of the generated
original phase and the phase changes caused by noise.

aseyd paddermup)
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FIGURE 3

Phase-unwrapping results of the second simulation under different
phase change levels along z-axis direction by using the
Region-growing, Graph-cut, PRELUDE, and proposed methods.
Due to its overall poor performance, the results for Laplacian_based
method have not been shown. The red arrows in the second row
points to where obvious residual wraps in the unwrapped results
The images in the third row display the incorrectly unwrapped
voxels. Voxels were considered incorrectly unwrapped if the
absolute phase difference between the unwrapped phase and
reference phase exceeded /10 radians. The reference phase image
was defined as the sum of the generated original phase and the
phase changes caused by noise.

were acquired from five adult volunteers using a 3.0T MR scanner
(Siemens Prisma; Siemens, Erlangen, Germany) (Bechler et al,
2019). A 2D gradient echo breath-hold sequence was employed
to obtain the original data for testing and comparison of the
phase unwrapping methods. The scanning parameters for the
abdominal QSM data were: repetition time (TR) = 71 ms, echo
time (TE) = 4.92 ms, matrix size = 256 x 256 x 10, flip angle
(FA) = 20°, resolution = 1.95 mm? 3 x 5 mm?,
bandwidth =

time =7.6s.

x 1.95 mm
930 Hz/pixel, accelerated factor = 2, and scan

The study was conducted in accordance with the Declaration
of Helsinki (as revised in 2013), approved by the Ethics
Board of the First Affiliated Hospital of Zhengzhou University
(No. 2018-KY-88), and informed consent was obtained from
all participants.

3.3. Implementation and parameters

The proposed method was implemented using MATLAB
(R2021b; MathWorks, Natick, MA, USA) on a desk computer
(Dell, Intel® Core™ i7-11700, 32 GB RAM). The classical Region-
growing, Laplacian_based, and Graph-cut methods, implemented
in the QSM toolkit (Weill Cornell Medicine, 2020), and PRELUDE
with default parameters from the fMRI software library (FSL;
Oxford Center for Functional Magnetic Resonance Imaging of the
Brain, UK) (Smith et al., 2004), were used for comparison with
the proposed method. A mask was employed in all five methods
to enhance computational efficiency. The edge detection approach
outlined in reference (Cheng et al., 2018b) was utilized to generate
the mask.
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The parameters of the proposed method included a 26-
connected neighborhood, allowing for consideration of phase
changes in all directions, which was used to exclude noisy voxels
in the initial regions. To mitigate the impact of small regions,
typically containing phases with rapid variation and/or low SNR,
regions with fewer than 100 voxels were classified as second residual
voxels. The polynomial orders L, M, and N were all set to 2,
in line with the references (Cheng et al., 2018a). In inter-block
unwrapping, 100 voxels closest to the unwrapped regions in the
growing block, and the 100 voxels nearest to the growing block
in the unwrapped regions, were selected as fitting points. The
fitting size of 100 voxels was experientially determined to be equal
to the minimum block size, consistent with the reports (Cheng
et al, 2018a,b). The fitting window size was set to 11, based on
observations from simulation results under different SNRs. The
parameters mentioned above are consistent in the simulation and
in vivo experiments.

To quantitatively and qualitatively assess the performance
of the proposed method, the misclassification ratio (MCR)
2003) was
the percentage

(Jenkinson, computed. The MCR represented
of incorrectly unwrapped voxels in the
region of interest (ROI). Voxels were considered incorrectly
unwrapped if the absolute phase difference between the
unwrapped phase and reference phase exceeded m/10 radians.
The reference phase image was defined as the sum of the
generated original phase and the phase changes caused by
noise (Liu W. et al., 2013). The simulation was repeated 50
times, and the corresponding means and SDs of MCRs were
calculated.

To evaluate the performance of the proposed method on
in vivo abdominal QSM data, acquired multi-echo gradient
echo (GRE) data were used for QSM reconstruction. First,
2013)

was applied to obtain the wrapped total field map from the

a nonlinear least square fitting method (Liu T. et al,
multi-echo magnitude and phase data. Subsequently, the Region-
growing, Laplacian_based, Graph-cut, PRELUDE, and proposed
methods were used to obtain the unwrapped total field map.
Variable-radius Sophisticated Harmonic Artifact Reduction for
Phase Data (V-SHARP) method (Fang et al, 2017) was then
utilized to exclude background fields, obtaining the tissue field.
Finally, the STAR-QSM algorithm (Fang et al, 2017) was
employed for the inversion of the tissue field into QSM maps.
V-SHARP and STAR-QSM, with default parameters (Li et al,
2014), were used. If incorrectly unwrapped voxels were present
in the ROI obtained by the five phase-unwrapping methods,
the generated susceptibility results would likely contain serious
artifacts.

10.3389/fnins.2023.1287788

4. Results

4.1. Evaluation of simulation data

Figure 2 displays representative unwrapped results of
simulated data with varying SNRs using the Laplacian_based,
Graph-cut, PRELUDE, and proposed methods. Images generated
by Laplacian_based, Graph-cut, and PRELUDE methods exhibit
noticeable residual wraps (indicated by white arrows), whereas
the proposed method yields a smooth phase. Figure 3 presents
representative unwrapped results of simulated data with different
phase change levels along the z-axis direction using the Region-
growing, Graph-cut, PRELUDE, and proposed methods. The
Region-growing approach yields the least favorable result, while
results from Graph-cut and PRELUDE are suboptimal. In contrast,
the proposed method acquires perfectly unwrapped phase data.

Table 1 provides the means and standard deviations (SDs) of
the misclassification ratio (MCR) for the five methods on the two
simulated datasets. For the first simulated dataset, the means and
SDs of the MCRs are as follows: Laplacian_based (20.65 £ 0.16),
Graph-cut (2.26 & 0.02), PRELUDE (4.28 £ 0.06), and proposed
method (0.01 & 0.01). In the case of the second simulated dataset,
the means and SDs of the MCRs are as follows: Region-growing
(84.47 £+ 6.62), Graph-cut (20.71 £ 1.19), PRELUDE (10.33 £ 9.80),
and proposed method (0.01 = 0.01). Notably, the proposed method
yields the most accurate results across both simulated datasets.

4.2. Performance on in vivo abdominal
QSM data

Figure 4 illustrates the phase-unwrapping and quantitative
susceptibility mapping (QSM) results of abdominal data using
Region-growing, Laplacian_based, Graph-cut, PRELUDE, and
proposed methods. The open-end cutlines (Chavez et al., 2002) at
the edge of the wrapped phase map (indicated by red arrows in the
first row) lead to phase discontinuities (indicated by white arrows
in the second row) in results obtained by all five methods. However,
the proposed method displays the unwrapped phase with the fewest
wrapping residues. The resulting susceptibility maps from the five
algorithms exhibit errors due to residual wraps (indicated by white
arrows in the third row), whereas the proposed method displays
susceptibility results with the least artifacts. Artifact was labeled
with the assistance of a technician with 5-year experience, and was
compared to the similar abdominal QSM images in the reference
(Bechler et al., 2019). The results by PRELUDE contain obvious
residual wraps and susceptibility artifacts (indicated by blue arrows
in the second and third rows). That is because the initial region
in PRELUDE method contains the areas with phase difference

TABLE 1 The means and SDs of the misclassification ratio (MCR) for the Region-growing, Laplacian_based, Graph-cut, PRELUDE and proposed

methods on the two simulated over 50 repetitions.

method

20.65 £ 0.16

2nd 84.47 £ 6.62 N/A

2.26 +0.02 4.28 4 0.06 0.01 & 0.01

20.71 £ 1.19 10.33 +9.80 0.01 4 0.01

Values are given in means =+ standard deviations; MCR, the percentage of incorrect unwrapping voxels in the region of interest.
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Graph-cut

PRELUDE

Proposed method

45

The phase-unwrapping and QSM results of the in vivo abdominal data by using the Region-growing, Laplacian_based, Graph-cut, PRELUDE, and
proposed methods. Images in the first row are phase and magnitude. Images in the second row are the unwrapped phase by using the five methods.
Images in the third row are susceptibility results from the phase data after unwrapping with every algorithm, background field removal, and dipole
inversion. Red arrows indicate the position where the open-end cutlines locate at. White arrows indicate errors in susceptibility from previous
discontinuities in phase unwrapping. Black arrows indicate streaking artifacts resulting from the significantly lower susceptibility of the nearby ribs.

PRELUDE method contains the areas with phase difference larger than 2.

Blue arrows in the second and third rows indicate the obvious residual wraps and susceptibility artifacts. That is because the initial region in

larger than 2. All five algorithms show streaking artifacts near
the ribs (indicated by black arrows in the third rows), which may
be attributed to the significantly lower susceptibility of the ribs
(Bechler et al,, 2019). Overall, the proposed algorithm provides
a susceptibility map with the fewest artifacts. The unwrapped
and QSM results on in vivo brain QSM data generated by the
Graph-cut, PRELUDE, and proposed methods were reported in the
Supplementary Data Sheet 1.

5. Discussion

In this study, we have introduced a novel, robust 3D
phase unwrapping algorithm based on region partitioning and
a local polynomial model, aiming to enhance the state-of-the-
art method, PRELUDE. The proposed method initiates with the
phase partitioning approach to generate initial regions similar
to PRELUDE. Noisy voxels connected to the areas in the initial
regions were excluded and clustered into residual voxels. The
connected regions in the region of interest (ROI) were reidentified
and categorized into blocks and residual voxels based on a voxel
count threshold. Subsequently, the proposed method performs
inter-block and residual voxel phase unwrapping sequentially using
the local polynomial model. The simulation and in vivo abdominal
QSM experiments demonstrate that the proposed method yields
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unwrapped results with minimal residual wraps, significantly
reducing artifacts in the abdominal QSM images.

The performance of phase unwrapping methods is generally
influenced by two key factors: the sequence in which voxels are
unwrapped, and the model used to estimate the underlying true
phase (Ghiglia and Pritt, 1998). The proposed method categorizes
voxels within the region of interest (ROI) into easily unwrappable
blocks and more challenging residual voxels. The blocks are
initially matched and merged, followed by unwrapping of the
residual voxels using information from already corrected regions.
To prevent voxels with phase differences larger than 27 in each
initial region, noisy voxels connected to the areas in the initial
regions, generated by the phase partition method, are eliminated
and unwrapped at the end. This voxel classification strategy helps to
prevent problematic voxels from emerging early in the unwrapping
sequence, thus reducing the likelihood of error propagation and
accumulation, as discussed in reference. The local polynomial
model, which is robust against noise, is used to estimate the smooth
phase in the proposed method, replacing the cost function used in
PRELUDE (Karsa and Shmueli, 2018). As a result, the proposed
method can accurately unwrap phase data even when adjacent
voxels exhibit phase differences larger than .

The performance of the proposed method hinges on the
selection of the clustering threshold for the initial regions. A large
threshold can decrease the number of blocks and increase distances
between them, potentially compromising the effectiveness of
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modeling inter-block phase variation with the local polynomial
function. Small blocks often contain voxels with significant noise
or rapidly changing phase. A small threshold may not effectively
mitigate the impact of small blocks, which may emerge early in the
growing path and lead to results with residual wraps. In this study,
the threshold for region classification was set empirically at 100,
though not optimally. However, in both the simulated and in vivo
abdominal QSM experiments presented here, the proposed method
consistently yielded the best results using this threshold. In future
work, it will be important to further investigate the optimization of
the region classification threshold.

The parameters in the local polynomial model play a crucial
role in the proposed method. In this study, the underlying true
phase in a window is estimated using a 2nd-order polynomial
model. The influence of polynomial order has been discussed
in the reference (Cheng et al, 2023), there is no need to
elaborate further. Even in the presence of rapid phase variation
and significant noise, the proposed method produced satisfactory
results, consistent with previous reports (Friedlander and Francos,
1996; Liang, 1996). It is imperative to carefully select the fitting
data in the phase unwrapping process. Proper selection of fitting
window size in equation 2 is very important to obtain the fitting
data. A large window size can obtain more fitting data that
may improve the robustness, but will reduce the fitting accuracy
because the polynomial function may not accurately model the
phase variation (Friedlander and Francos, 1996; Liang, 1996;
Cheng et al., 2023). To accurately model the underlying true
phase during inter-block and residual voxel unwrapping steps,
two different strategies were employed to determine the voxels
to be fitted. For inter-block unwrapping, we selected a specific
number of the closest voxels between the already unwrapped
regions and the growing block. For residual voxel unwrapping,
we chose a number of already unwrapped voxels around the
growing voxels in a window as the fitting data. The parameters
of the polynomial function were determined empirically in
this study and should be meticulously fine-tuned in practical
applications.

In presence of serious noise and rapid phase change,
the traditional phase unwrapping methods are computationally
expensive. Deep learning (Spoorthi et al., 2018; Zhou et al,
2021; Jung et al., 2022) has the potential to drastically accelerate
unwrapping and generate a correct result. Whereas, deep learning
cannot be directly applicated to unwrap the phase, because the
location of phase wraps is not fixed for the diverse content of
medical images. In addition, deep learning method require the
state-of-the-art graphic processing unit (GPU) architecture and
big training data, and thus is expensive. A 2D gradient echo
breath-hold sequence was used to acquire in vivo abdominal
QSM data in this study. Long acquired time will increase
the difficulty to hold the breath for volunteers. The 3D
ultrashort echo time quantitative susceptibility mapping (UTE-
QSM) technique in references (Lu et al., 2018; Jang et al., 2019
Jerban et al.,, 2019) may be used to improve the data acquisition
mode.

In conclusion, in this study, a novel and robust 3D phase
unwrapping method is introduced and applied to abdominal
quantitative susceptibility mapping (QSM) for susceptibility
result generation. The proposed method initially employs the
phase partition approach to generate initial regions. Noisy
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voxels connected to the areas in the initial regions are then
eliminated and grouped into the residual voxel category. The
connected regions within the ROI are reidentified and further
categorized into blocks and residual voxels based on a voxel
count threshold. Subsequently, the proposed method performs
inter-block and residual voxel phase unwrapping sequentially
using the local polynomial model. When compared to the classical
Region-growing, Laplacian_based, Graph-cut, and PRELUDE
methods, simulated experiments demonstrate that the proposed
method consistently yields perfect unwrapped results, even in
regions with low signal-to-noise ratio (SNR) and rapidly changing
phase. Abdominal QSM, known for its challenges in dealing with
large susceptibility changes and regions of low SNR, benefited
significantly from the proposed method, obtaining superior results.
Thus, the proposed method presents a promising option for
abdominal QSM applications.
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