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Introduction: The application of U-shaped convolutional neural network (CNN) 
methods in medical image segmentation tasks has yielded impressive results. 
However, this structure’s single-level context information extraction capability 
can lead to problems such as boundary blurring, so it needs to be  improved. 
Additionally, the convolution operation’s inherent locality restricts its ability to 
capture global and long-distance semantic information interactions effectively. 
Conversely, the transformer model excels at capturing global information.

Methods: Given these considerations, this paper presents a transformer fusion 
context pyramid medical image segmentation network (CPFTransformer). The 
CPFTransformer utilizes the Swin Transformer to integrate edge perception 
for segmentation edges. To effectively fuse global and multi-scale context 
information, we introduce an Edge-Aware module based on a context pyramid, 
which specifically emphasizes local features like edges and corners. Our 
approach employs a layered Swin Transformer with a shifted window mechanism 
as an encoder to extract contextual features. A decoder based on a symmetric 
Swin Transformer is employed for upsampling operations, thereby restoring the 
resolution of feature maps. The encoder and decoder are connected by an Edge-
Aware module for the extraction of local features such as edges and corners.

Results: Experimental evaluations on the Synapse multi-organ segmentation task 
and the ACDC dataset demonstrate the effectiveness of our method, yielding a 
segmentation accuracy of 79.87% (DSC) and 20.83% (HD) in the Synapse multi-
organ segmentation task.

Discussion: The method proposed in this paper, which combines the context 
pyramid mechanism and Transformer, enables fast and accurate automatic 
segmentation of medical images, thereby significantly enhancing the precision 
and reliability of medical diagnosis. Furthermore, the approach presented in this 
study can potentially be extended to image segmentation of other organs in the 
future.
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1 Introduction

Automatic and accurate segmentation of medical images is of 
great significance to disease diagnosis. Image segmentation is an 
important part of medical image analysis, such as the segmentation of 
computed tomography (CT) images of chest organs and chambers in 
cardiac MRI images. Aided diagnosis and image-guided clinical 
surgery (Chen J. et al., 2021; Hatamizadeh et al., 2021), as well as 
accurate automatic segmentation, can be used to derive quantitative 
assessments of pathology or for subsequent diagnosis, treatment 
planning, and monitoring of disease progression.

Research methods about it emerge in an endless stream, and most 
of the state-of-the-art medical image segmentation frameworks are 
based on U-Net (Ronneberger et al., 2015) or its variants, using skip 
connections combined with encoder-decoder architecture; many 
algorithms follow this technical route. Usually, this structure preserves 
the single-granularity information of the encoder layer through skip 
connections. However, in doing so, it ignores the rich multi-scale 
spatial information, thus losing a lot of edge information, significantly 
affecting its performance in segmentation tasks. Furthermore, CNN’s 
inherent inductive bias makes it at a disadvantage to obtain global 
long-range semantic information interactions.

Therefore, it is difficult for CNN-based methods to learn global 
and long-range semantic information interactions. Recently, 
Transformer has also been applied to image processing (Carion et al., 
2020), inspired by the great success of Transformer in natural language 
processing (Vaswani et al., 2017). Although CNN has achieved many 
excellent results in the field of image segmentation due to its 
characteristics of fast speed, low complexity, and high accuracy, it is 
not as good as Transformer in long-distance modeling. Therefore, the 
critical advantage of Transformer’s global attention combined with the 
excellent properties of CNN can build better segmentation networks. 
Currently, preliminary studies have attempted to apply Transformers 
to the field of medical image segmentation (Chen J. et  al., 2021; 
Hatamizadeh et al., 2021; Cao et al., 2022). Now that both CNN and 
Transformer architectures demonstrate their unique advantages, it 
makes sense to combine the advantages of both architectures for a 
comprehensive analysis.

Specifically, the main contributions of this paper can 
be summarized as follows:

 1 This paper presents a novel medical image segmentation 
network called the Transformer fusion context pyramid 
medical image segmentation network (CPFTransformer). To 
extract local features such as edges and corners, this paper 
designs an Edge-Aware (EA) block. This block uses convolution 
kernels of different sizes to extract features of different scales in 
multiple branches. High-level features express more semantic 
information, shallower features carry more detailed 
information. The features of the shallow backbone are mainly 
used to generate edge features, so it is best to extract local 
features such as edges and corners as much as possible to 
improve the segmentation effect.

 2 To address the limitations of fixed-scale convolution operations 
in target segmentation, this paper uses Swin Transformer to 
construct a boundary-specific medical image segmentation 
network, maximizing the advantage of the Transformer’s focus 
on global information to build a symmetric encoder-decoder 

type architecture. In the encoder, self-attention is achieved 
locally to globally; in the decoder, global features are upsampled 
to the input resolution for the corresponding pixel-level 
segmentation prediction.

 3 To enhance the precision and definition of segmented edges, 
this paper introduces a boundary loss and supplementary 
information to augment the region loss. The proposed 
approach incorporates a joint loss that combines the Dice loss, 
cross-entropy loss, and boundary loss, thereby improving the 
accuracy and clarity in segmentation tasks.

 4 Experiments in the Synapse multi-organ CT image 
segmentation task and the ACDC MRI image segmentation 
task show that the Transformer fusion context pyramid medical 
image segmentation network achieves higher values in the Dice 
Coefficient and Hausdorff Distance evaluation metrics.

2 Related Work

In this section, topics related to medical image segmentation are 
discussed and reviewed in terms of encoder-decoder architecture, 
visual Transformer-based model, and contextual pyramidal 
feature fusion.

2.1 Encoder-decoder structure

Most state-of-the-art medical image segmentation frameworks 
are based on U-Net or its variants, which uses a skip-connected 
encoder-decoder architecture to extract semantic features through 
successive convolution and pooling operations. Many algorithms 
follow this technical route. Despite the simple network structure, it 
can be  well applied to different medical segmentation tasks. 
3DU-Net (Çiçek et  al., 2016) replaces 2D with 3D convolution 
operations; Res-UNet (Xiao et al., 2018) replaces each sub-module 
of U-Net with residual connections respectively; and U-Net++ 
(Zhou et  al., 2018) greatly reduces the number of parameters 
combines depth supervision. UNet3+ (Huang et al., 2020) proposed 
full-scale skip connections to use multi-scale information fully; 
R2U-Net (Alom et  al., 2018) achieved better performance in 
different medical image segmentation tasks with the same 
computational load as U-Net; Ibtehaz and Rahman (2020) proposed 
MultiRes blocks to extract semantic information from multiple 
scales, and they also uses regular paths to alleviate the semantic gap 
between two symmetric encoder and decoder layers. Yuan et al. 
(2023) proposed CTC-Net, which designs two encoders by Swin 
Transformers and Residual CNNs to produce complementary 
features in Transformer and CNN domains, then uses a Cross-
domain Fusion Block to blend them.

The common problem of these encoder-decoder-based 
architectures is that semantic features are usually extracted layer-by-
layer during encoding, while the size and details of feature maps are 
recovered layer-by-layer during decoding. These approaches enable 
end-to-end pixel segmentation but lack rich contextual information, 
thus losing a lot of edge information. In medical image segmentation, 
it is often necessary to consider richer contextual information around 
the boundary region to be segmented.
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2.2 Visual transformer and its variants

Previously, inspired by the great success of Transformers in 
natural language processing (Vaswani et  al., 2017), researchers 
tried to introduce Transformer into the field of vision (Dosovitskiy 
et  al., 2020). Vision Transformer (ViT), the first purely 
Transformer-based architecture, is proposed to perform image 
recognition task using 2D image patches with positional 
embeddings as input and performed on large datasets. When 
training, ViT performs on par with CNN-based methods. In 2021, 
Transformers-based methods such as (Zheng et al., 2021) were first 
applied to semantic segmentation. By modeling the global context 
of each layer of the Transformer, this encoder can be combined 
with a simple decoder to provide a powerful segmentation model. 
Furthermore, the Data Efficient Image Transformer (DeiT; 
Touvron et al., 2020) also shows that Transformer can be trained 
on medium-sized datasets. To ease the difficulty of training ViT, 
DeiT describes several training strategies to make ViT train well 
on ImageNet. Using the Swin Transformer as the visual backbone, 
Liu et al. (2021) achieved state-of-the-art performance in image 
classification, object detection, and semantic segmentation. Cao 
et al. proposed Swin-Unet (Cao et al., 2022) to leverage the power 
of the Swin Transformer for medical image segmentation. (Han 
et al., 2021; Liu et al., 2021; Valanarasu et al., 2021; Wang et al., 
2021; Xie et al., 2021; Zhang et al., 2021, 2022; Guo et al., 2022) 
leverage features from Transformers and CNNs to improve 
segmentation models. Various combinations of Transformers and 
CNN are currently applied to multimodal brain tumor 
segmentation (Wang et  al., 2021a) and 3D medical image 
segmentation (Peiris et al., 2021).

Common attention mechanisms usually focus on relationships in 
space and channels, capturing only local dependencies and failing to 
exploit the multi-scale contextual information around the target 
region fully. Therefore, multi-scale self-attention is crucial for 
capturing richer feature dependencies. There have been many attempts 
to apply Transformers to the field of medical image segmentation. 
However, little attention is paid to segmentation boundary 
information, and one of the key elements of segmentation is the 
segmentation edge.

2.3 The method of contextual feature 
pyramid

Multi-scale feature fusion has been extensively studied and proven 
effective for dense prediction tasks (Cai et al., 2016; Zhao et al., 2016; 
Chen Y. et al., 2017). The feature pyramid has the characteristics of 
different resolutions at different scales, and objects of different sizes 
can have appropriate feature representations at the corresponding 
scales. By fusing multi-scale information, objects of different sizes at 
different scales can be  predicted, significantly improving the 
model’s performance.

There are roughly two ways to construct existing feature pyramids. 
The first is to generate layers of different resolutions through multiple 
downsampling, which is widely used. The more common applications 
are FPN (Lin et al., 2016) and YOLO_v3 (Redmon and Farhadi, 2018). 
FPN adopts the idea of divide and conquer, which means detecting 
large objects in the higher layers of the pyramid and small objects in 

the lower layers of the pyramid. The second comprises multiple 
branched convolutions with different void fractions and is currently 
used in ASPP, RFP, etc. Chen L. et al. (2018) proposed Atrous Spatial 
Pyramid Pooling (ASPP) to robustly segment objects by capturing 
image context at multiple scales. A simple approach is to resample the 
input image into a multi-resolution input pyramid, feed it to multiple 
or shared networks, and then aggregate the output features (Tompson 
et al., 2014; Chen L. et al., 2017; Chen C. et al., 2021). Feature pyramids 
fuse multi-scale features via pyramid pooling (Schlemper et al., 2019) 
or ASPP spatial pyramid pooling.

Convolutional neural network gathers information from 
neighboring pixels and loses spatial information due to pooling 
operations. Therefore, it is difficult for CNN to learn global and long-
range semantic information interactions. Some studies have attempted 
to address this problem by using atrous convolutional layers, self-
attention mechanisms (Zhao et al., 2016; Wang et al., 2017), and image 
pyramids. The multi-scale fusion based on the semantic map proposed 
in this paper is a global fusion of space and semantics, and different 
scale features at any location can help each other. Therefore, the 
network structure of the feature pyramid can handle the multi-scale 
variation problem in object detection with a slight increase in the 
amount of computation. It will be beneficial to apply it to the field of 
image segmentation.

3 Proposed method

The general architecture of CPFTransformer proposed in this 
paper is shown in Figure 1. CPFTransformer consists of an encoder, a 
decoder, and two Edge-Aware modules. The reason there are three EA 
modules in Figure 1 is that EA modules can be theoretically added to 
these three positions. However, in section 4.5.2, it is proved that 
adding only the first two modules has the best effect. Therefore, in 
Figure 1, we mark the third module with a dotted line. The basic unit 
of the encoder and decoder is the Swin Transformer block (Liu 
et al., 2021).

First, the encoder segments the input medical image into 4 × 4 
non-overlapping patch blocks and then projects the feature 
dimensions to arbitrary dimensions (denoted as C) through a linear 
embedding layer. The transformed token (patch token) is passed 
through a four-layer Swin Transformer block and a patch merging 
layer to generate hierarchical features. Specifically, the patch merging 
layer is responsible for downsampling and adding dimensionality, 
and the Swin Transformer block is responsible for feature learning. 
Inspired by U-Net, a symmetric decoder based on Swin Transformer 
is designed, which consists of Swin Transformer blocks and patch 
expanding layers. In contrast to the patch merging layer, the patch 
expanding layer is specifically designed to perform upsampling, it 
reshapes the feature maps of adjacent dimensions into an upsampled 
feature map with two times resolution. A final patch expanding layer 
is then used to perform 4× upsampling, recovering the image’s 
resolution and mapping the features to the input resolution size 
(W × H). Then a linear projection layer is used to output pixel-level 
segmentation predictions of these upsampled features.

In the middle of the encoder-decoder structure, instead of 
connecting with a simple jump connection, this paper introduces a 
kind of contextual pyramid module for connection, fusing the 
extracted contextual features with multi-scale features through the 
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Edge-Aware module to compensate for the loss of spatial information 
at multiple scales, better extracting local features such as edges and 
corners (Sun et al., 2022), and providing the decoder with different 
levels of global contextual information by reconstructing the 
jump connection.

3.1 Swin Transformer block

The Swin Transformer block differs from the traditional 
Multiheaded Self-Attention (MSA) block in that it is constructed 
based on a shift window and comprises two consecutive 
Transformers. Each Swin Transformer block consists of a 
LayerNorm (LN) layer, a multiheaded self-attentive module, a 
residual connection, and a two-layer MLP with GELU nonlinearity. 
The two consecutive Transformer blocks employ a window-based 
multiheaded self-attentive (W-MSA) module and a shift-window-
based multiheaded self-attentive (SW-MSA) module. Based on such 
a window division mechanism, the Swin Transformer block can 
be represented as:
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(1)

 

z MLP LN z zl l l=



























+

 
(2)

 
z SW MSA LN z zl l l


+ = ( )( ) +1 -
 

(3)

 

z MLP LN z zl l l+ + +=



























+1 1 1

 

 
(4)

where zland MLP represent the output blocks of the (S)W-MSA 
module and the MLP, respectively.

Self-attention is calculated as follows:
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where Q K V R
M d

, , ∈ ×2  denotes the query, key, and value matrices. 
M
2 and d  denote the number of patches in a window and the 

dimension of a query or key, respectively. Moreover, the values in B 
are taken from the bias matrix B R M M ∈ −( )× +( )2 1 2 1 .

3.2 Encoder

A medical image is partitioned into non-overlapping patches of 
size 4 × 4. First, C-dimensional tokens with a resolution of H W

4 4
×  are 

fed into two consecutive Swin Transformer blocks for representation 
learning, where the feature dimension and resolution are kept 

FIGURE 1

The structure of CPFTransformer, which consists of an encoder, two EA modules and a decoder. The encoder and decoder are constructed based on 
the Swin Transformer block. The EA module is composed of a multi-scale contextual pyramid module.
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constant. By this partitioning method, the feature dimension of each 
patch is 4 4 3 48× × = . In addition, a linear embedding layer is used to 
project the feature dimension in an arbitrary dimension (denoted by 
C). The transformed patches are passed through several Swin 
Transformer blocks and the patch merging layer to generate 
hierarchical feature representations. At the same time, the patch 
merging layer reduces the number of tokens (2× downsampling) and 
increases the feature dimension to two times the original one. This 
process will be repeated four times in the encoder. The patch merging 
layer is responsible for downsampling and dimensionality increase, 
and the Swin Transformer block is used for feature 
representation learning.

3.2.1 Patch merging layer
The input patches are divided into four parts and connected by a 

patch merging layer. By doing this, the feature resolution is 
downsampled by a factor of 2. Also, since the concatenation operation 
results in a 4-fold increase in feature dimensionality, a linear layer is 
applied to the concatenated features to unify the feature dimensionality 
to two times the original dimensionality. The patch merging layer 
achieves the downsampling and feature dimension increase without 
convolution or interpolation operations.

3.3 Decoder

Corresponding to the encoder, a symmetric decoder is 
constructed, which is also built based on the Swin Transformer block. 
Therefore, corresponding to the patch merging layer used in the 
encoder, we build a patch expanding layer in the decoder for extracting 
depth features for upsampling. The patch expanding layer reshapes the 
feature map of the adjacent dimension into a higher-resolution feature 
map (2× upsampling). Accordingly, it reduces the feature dimension 
to half of the original dimension. Finally, a 4× upsampling is 
performed using the network structure’s last patch expanding layer to 
recover the image’s resolution features mapped to the input resolution, 
which is then passed through a linear projection layer for these 
upsampled features to output pixel-level segmentation predictions.

3.3.1 Patch expanding layer
Using the first patch expanding layer as an example, a linear layer 

is applied to the input features W H C
32 32

8× ×





  to increase the feature 

dimension to twice the original dimension W H C
32 32

16× ×





  before 

upsampling. Then, we use a rearrangement operation to extend the 
resolution of the input features to twice the input resolution and 
reduce the feature size to one-fourth of the input size 
W H C W H C
32 32

16
16 16

4× × → × ×





 . The patch expanding layer is the inverse 

operation of the patch merging layer. For the patch merging layer in 
encoder, in this paper, the patch expanding layer is specially designed 
in decoder for upsampling and feature dimension increase.

3.4 Edge-aware module

To address the limitations of fixed-scale convolutional operations 
in target segmentation, this paper designs an EA module to improve 
the robustness of the network structure through information at 
different scales. In addition, skip connections, commonly used in 

U-shaped networks, introduce irrelevant confusion and semantic gaps 
when the receiving fields do not match (Wang et al., 2022). In this 
paper, the EA module of the global context pyramid structure is 
proposed to solve these problems, as shown in Figure 2. In the EA 
module, the jump connections are reconstructed. And during the 
decoding process, the shallow features display detailed boundary 
information and also bring some background noise. Therefore, the EA 
module is used to extract edge features and further guide the decoder, 
while suppressing shallow noise and refining the contours of 
the object.

In this block, we use convolutional kernel operations of different 
sizes to extract features of different scales in multiple branches, 
enabling the network to learn more contextual information by fusing 
spatial information of different granularity. Based on the U-shaped 
structure, this paper first designs multiple EA modules between the 
encoder and decoder, aiming to provide the decoder with different 
levels of global contextual multi-scale information by reconfiguring 
the hopping connections. It is well known that higher-level features 
express more semantic information, while shallow-level features carry 
more details. Therefore, the features of shallow depth trunks are used 
to generate edge features. The proposed EA module extracts as many 
shallow features as possible for generating edge features.

In the EA module, the feature maps of this stage are combined 
with the feature maps of all higher stages to reconstruct the skip 
connections. Take the Stage 2 EA module for example, as shown in 
Figure  2, the features of each stage are first mapped to the same 
channel space as Stage 2 in a 3 × 3 convolution. In detail, features F3 
and F4 are upsampled to the same size as F2 and connected. In order 
to extract global contextual information from different levels of feature 
maps, three separable convolutions (Chollet, 2016) (Dsconv@1, 
Dsconv@2, and Dsconv@4) with different dilation rates (1, 2, and 4) 
are used in parallel, where separable convolutions are used to reduce 
the model parameters. It is worth noting that the number rate of 
parallel paths and expansions varies with the number of fusion stages. 
Finally, the final feature map is obtained by convolution. The EA 
module can be summarized for each stage (regular convolution is 
ignored to simplify the formulation):

 
G C D C Fk i k

i
sconv

i k
i k
i

k
i k= ⊗( )( )( )=

= −
=
= −5 5

2 2@
 

(6)

where Gk  is the insertion of stage k, Fk  is the feature map of stage 
k in the encoder, ⊗ −2i k  is the upsampling operation rate for 2i k− , c 
denotes the concatenation operation and Dsconv i k

@2
−  is the 

separable dilation convolution expansion rate for 2i k− .
To reduce the computational cost, the network in this paper uses 

only two EA modules. The global semantic high-level information 
flow can be  gradually directed to different stages by introducing 
encoders and decoders between multiple EA modules.

3.5 Loss function

One of the main challenges in medical image segmentation is the 
imbalance of classification distribution. Traditional methods generally 
employ Dice loss or cross-entropy to perform the segmentation task. 
Loss functions widely used in convolutional neural network (CNN) 
segmentation, such as Dice loss or cross-entropy loss, which typically 
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evaluate pixel-level accuracy, are based on the integration (summation) 
of the segmented region without global constraints on the 
segmentation shape. Models trained in this way often fail to produce 
complete segmentations with distribution shifts. For highly 
unbalanced segmentations, the values of these region losses vary 
significantly across segmentation classes, often by several orders of 
magnitude, which may affect training performance and stability. 
Moreover, the loss functions, such as BCE, IoU, and Dice, which are 
widely used in current segmentation tasks, do not penalize the 
incorrect segmentation of the boundaries.

Therefore, to further optimize the model in this paper, a boundary 
loss (Kervadec et al., 2021) is introduced in this paper, which appears 
as a distance metric on contour (or shape) space instead of regions. 
This alleviates the difficulty of region loss under highly unbalanced 
partitioning problems because it uses the integral over the region 
boundary (interface) rather than the unbalanced integral over the 
region. In addition, the boundary loss provides information that 
complements the region loss.

The expression of the boundary loss used in this paper is 
as follows:

 
B G q dqθ φ( ) = ( )∫

Ω  
(7)

where s :Ω→{ }01,  is binary indicator function of region 
S s q: ( ) =1 if q S∈  belongs to the target and 0 otherwise. φG :Ω→   
denotes the level set representation of boundary ∂ ( ) = − ( )G q D qG G:φ  
if q G∈  and φG Gq D q( ) = ( ) otherwise.

In the experiments, the joint loss Ltotal consisting of Dice loss, 
cross-entropy loss, and boundary loss will be used to perform all 
segmentation tasks in this paper.

4 Experiments

4.1 Datasets

4.1.1 Synapse multi-organ segmentation dataset
The dataset includes 3,779 axial abdominal clinical CT images of 

30 cases. 18 samples were divided into the training set and 12 samples 
into the test set. The volume of each CT image consists of 85 ~ 198 
slices of 512 × 512 pixels, with a voxel spatial resolution of 
([0.54 ~ 0.54] × [0.98 ~ 0.98] × [2.5 ~ 5.0])  mm3. In this paper, the 
average Dice similarity coefficient (DSC) and average Hausdorff 
distance (HD) on eight abdominal organs (aorta, gallbladder, spleen, 
left kidney, right kidney, liver, pancreas, and stomach) were used as 
evaluation indexes.

4.1.2 ACDC dataset
ACDC is a public cardiac MRI dataset that includes a sample of 

100 cases. A series of short-axis slices covering the heart from the base 
of the left ventricle to the apex with a thickness of 5–8 mm. The spatial 
resolution in the short-axis plane ranges from 0.83 to 1.75 mm pixel2

/ , 
corresponding to labels including left ventricle (LV), right ventricle 
(RV), and myocardium (MYO). The dataset was divided into 70 
training samples (1,930 axial slices), 10 validation samples, and 20 
test samples.

4.2 Experimental setup

4.2.1 Environment
CPFTransformer is implemented based on Python 3.6 and 

Pytorch 1.7.0. For all training cases, data enhancements such as flips 
and rotations are used to increase the diversity of the data. The input 

FIGURE 2

The Edge-Aware module. Taking the reconstructed skip connection at stage 2 as an example, by integrating the global context, the global information 
flow is transmitted from a higher stage (stage 3 and 4) to the decoder.
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image size is set to 224 × 224, and the patch size is set to 4. The model 
in this paper is trained on an Nvidia V100 GPU with 32 GB of memory.

During the training period, the batch size is 24 and an SGD 
optimizer with a momentum of 0.9 and a weight decay of 1e−4 is used 
to optimize the back propagation model in this paper.

4.2.2 Evaluation metrics
Two types of metrics are used in this paper to evaluate all models.
Dice similarity coefficient (DSC) for evaluating the degree of 

overlap between prediction and ground truth segmentation map:

 
DSC

P G
P G

=
∩
+

2

 
(8)

where P is the predicted segmentation map and G  is the 
ground truth.

Hausdorff distance (HD), which measures the maximum 
symmetric distance between two segmentation maps:
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(9)

where d .( )  is the Euclidean distance, sup and inf  are the upper 
and lower extremes, respectively. In this paper, 95% HD is used to 
eliminate the effect of a minimal subset of outliers.

4.3 Experiment results on synapse dataset

On the Synapse multi-organ CT dataset, a comparison of the 
CPFTransformer proposed in this paper with previous state-of-the-art 
methods is shown in Table 1. The experimental results show that the 
segmentation accuracy of the Swin Transformer fused multi-scale 
contextual pyramid-based method in this paper achieves 79.87% 
(DSC↑) and 20.83% (HD↓). Compared with Unet and the recent 
TransUnet, Swinunet, and MTunet (Wang et al., 2021) methods, the 
algorithm in this paper has a slight improvement in the DSC 
evaluation metric and HD evaluation metric, which indicates that the 
method in this paper can achieve better segmentation edge prediction.

The segmentation results of different methods on the Synapse 
multi-organ CT dataset are shown in Figure 3. The figure shows that 

the CNN-based methods tend to have over-segmentation problems, 
which may be due to the local nature of convolutional operations. This 
paper demonstrates a medical image segmentation network based on 
Swin Transformer’s contextual pyramid fusion multi-scale feature 
combination. The network captures rich multi-scale contextual 
information using pyramid structure fusion. It computes the 
convolution of local correlation between adjacent pixels, which 
performs well in extracting local features such as edges and corners to 
obtain better segmentation results.

Table 1 provides a quantitative evaluation of the experimental 
results. U-net is the original method for generating adversarial 
networks; Transunet uses the encoding structure of Transformer’s 
generative model and the decoding structure of CNN; Swinunet is the 
codec structure using the pure Transformer method; CPFTransformer 
is the method proposed in this paper. The table shows that using the 
contextual pyramid structure combined with the Swin Transformer 
method, DSC is improved to 79.87%, and HD is improved to 20.83%. 
The experiments demonstrate that introducing the contextual pyramid 
mechanism in the Swin Transformer network can effectively and 
precisely target the edges to accomplish the task of abdominal multi-
organ segmentation.

To verify the performance of the model, it was compared with an 
expert segmentation approach, i.e., labeling. Then the pre-processed 
slicing results were reduced to the nii format dataset by 3D 
reconstruction to compare the segmentation results under 3D data. 
Figure 4 shows the segmentation results of the model under different 
layers of the Synapse dataset. The first column is the original image 
after slicing the Synapse dataset, the second column is the labeling 
result, the third column is the segmentation result of the network 
model proposed in this paper, and the fourth column is the 
segmentation result of the 3D reconstruction. As can be seen from the 
figure, by comparing with the results of expert segmentation in the 
second column, the experimental segmentation results of this paper 
in the third column are segmented precisely in detail and similar to 
the labeled segmentation results. Moreover, the edges are rounded 
after the 3D reconstruction of the sliced data.

4.4 Experiment results On ACDC dataset

Like the Synapse dataset, the proposed CPFTransformer is in the 
ACDC dataset to perform medical image segmentation. The 

TABLE 1 Quantitative comparison of synapse dataset using the most advanced algorithm.

Method DSC (%) HD (mm) Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

U-net 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58

R50U-Net 74.68 36.87 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92

Att-UNet 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75

Transunet 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

MTunet 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

Swinunet 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

CPFTrans-

former
79.87 20.83 87.71 68.78 83.19 79.15 94.37 58.47 90.35 76.93

Columns 4–11 represent the Deice similarity coefficients obtained on each organ. The best values are bolded.

https://doi.org/10.3389/fnins.2023.1288366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1288366

Frontiers in Neuroscience 08 frontiersin.org

FIGURE 4

Synapse segmentation results after 3D reconstruction.

FIGURE 3

Visual comparison of segmentation results of different methods in Synapse dataset. The first column is the original image, and the second column is 
the ground truth. The area highlighted by the red box shows that CPFTransformer performs better segmentation than other most advanced methods 
and results, and the segmentation edge is closer to the basic facts.
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experimental results are summarized in Table 2. Using MRI pattern 
image data as input, CPFTransformer can still achieve excellent 
performance with an accuracy of 90.00%. This indicates that our 
method has good generalization ability and robustness. As shown in 
Figure 5, the first column is the original image after slicing the ACDC 
dataset; the second column is the labeling result, the third column is 
the segmentation result of the network model proposed in this paper, 
and the fourth column is the segmentation result of 3D reconstruction. 
As can be seen from the figure, by comparing the results with those of 
the labeled results in the second column, the experimental 
segmentation results of this paper in the third column are segmented 
accurately in detail, basically similar to the labeled segmentation 
results. The edge rounding can be seen after the 3D reconstruction of 
the sliced data.

4.5 Ablation experiment

To investigate the effect of different factors on the model 
performance, an ablation study was conducted on the Synapse dataset 
in this paper. Same as training, 18 samples are used for training and 
12 samples are used for testing.

4.5.1 The effect of position of the EA module
The EA module in this paper was added to the 1/4, 1/8, and 1/16, 

1/32 resolution scales to explore the effect of position on segmentation 
performance. The segmentation performance of the model can 
be  seen in Figure  6. Positions 1 and 2 generally perform more 
accurately than position three. Therefore, to make the model more 
robust, the case of position three will not be used in this paper.

TABLE 2 Quantitative comparison of ACDC dataset using the most advanced algorithm.

Method DSC (%) RV Myo LV

R50AttnUNet (Chen C. et al., 2021) 86.90 83.27 84.33 93.53

R50 ViT (Wang et al., 2021b) 86.19 82.51 83.01 93.05

TransUnet (Chen J. et al., 2021) 89.71 86.67 87.27 95.18

SwinUnet (Zheng et al., 2021) 88.07 85.77 84.42 94.03

CPFTransformer 91.36 88.76 90.01 96.06

Columns 3–5 represent the Deice similarity coefficients obtained on each organ. The best values are bolded.

FIGURE 5

ACDC segmentation results and segmentation results after 3D reconstruction.
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FIGURE 6

Ablation experiment of synapse dataset. EA1, EA2, and EA3, respectively, represent the effect between different positions where the edge sensing 
module is located as stage 1, stage 2, and stage 3.

4.5.2 The effect of number of the EA module
The discussion of the number of EA modules in this paper 

incorporates location restrictions so that there can be a maximum 
of three blocks and a minimum of zero blocks. The effect of the 
number on the segmentation performance is explored. The 
segmentation performance of the model can be seen quantitatively 
in Table  3. With three EA modules causing redundancy and 
mediocre results, the effect of two blocks is generally better than the 
one block. Therefore, two EA modules will be used in this paper to 
make the model more robust.

In this paper, through ablation experiments, we conclude about 
the effect of the number of EA modules. Adding three EA modules 

causes too much redundancy in the extracted information, resulting 
in poor results, and segmenting the edges of low-dimensional 
information features is more beneficial. When adding EA1 and EA2 
modules in the low-dimensional features, the effect is better, and the 
high-resolution low-level features and low-resolution high-level 
features are fused to help delineate the detailed boundary.

4.5.3 Effect of loss function
The loss functions used in this paper include Dice loss and cross-

entropy loss commonly used in segmentation and boundary loss is 
introduced. After performing ablation experiments on the three 
losses, as shown in Table  4, it is found that in order to make the 

TABLE 3 Ablation experiment of synapse dataset.

Number of modules DSC (%) HD (mm)

Three (EA1, 2, 3) 76.34 25.37

Two (EA1, 2) 79.87 20.53

Two (EA1, 3) 78.82 23.24

Two (EA2, 3) 77.65 23.07

One (EA1) 76.34 25.37

One (EA2) 77.37 23.53

One (EA3) 75.82 23.24

Zero 79.13 21.55

The effect of application and network between different EA modules and different locations. The best values are bolded.
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segmentation effect better, this paper will adopt a joint training 
method for the three losses.

4.5.4 Discussion
Although CPFTransformer can achieve good results in medical 

image segmentation, it also has a significant disadvantage. Compared 
with the traditional convolutional medical image segmentation 
models, the Transformer model combined with the edge-aware 
module of the context pyramid, although it integrates more global 
multi-scale context information, it also leads to a slower overall 
convergence speed and training. Time becomes longer.

There are two main directions for the future of this research. First, 
we will explore compressing CPFTransformer to eliminate redundant 
parameters and reduce computational overhead while maintaining its 
effectiveness. Finally, CPFTransformer is designed based on 2D 
images, but 3D medical images have essential application value. In the 
future, CPFTransformer will be further improved to make it suitable 
for 3D medical image segmentation tasks.

5 Conclusion

This paper proposes an edge-aware medical image segmentation 
network (CPFTransformer) using Swin Transformer. We design an 
Edge-Aware module based on a context pyramid to fuse global 
multi-scale context information, mainly for local features such as 
corners. It focuses on addressing the weakness of global multi-scale 
contextual information capture and integration in U-shaped 
networks, and a novel Edge-Aware module is inserted into the 
U-shaped framework with a context-pyramid-based boundary-
aware module to develop and fuse rich global multi-scale context 
information. Fusing high-resolution low-level features and 
low-resolution high-level features helps delineate detailed 
segmentation edges.

This paper conducts comprehensive experiments on different 
types of medical image segmentation tasks to verify the effectiveness 
and generality of the proposed CPFTransformer, including the 
abdominal multi-organ segmentation task and ACDC dataset. 
Experiments on segmentation tasks show that the edge-aware context 
pyramid network based on Swin Transformer performs better. Our 
proposed CPFTransformer achieves excellent and consistent 
performance on two different segmentation tasks, which indicates that 
the proposed CPFTransformer is more practical and scalable than the 
others. Our method can achieve better performance with further 
processing and can be extended to other medical image segmentation 
tasks, which is our recent work.
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TABLE 4 Ablation experiment of synapse dataset.

Loss DSC (%) HD (mm)
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Lce + Ldice 78.96 21.32

Lce + Lb 77.98 26.93
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Lce + Ldice + Lb 79.87 20.53

Different effects of loss function application and network. The best values are bolded.
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