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Revealing brain connectivity:
graph embeddings for EEG
representation learning and
comparative analysis of structural
and functional connectivity
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Technology Sydney, Sydney, NSW, Australia, 2College of Computer Science and Engineering, Taibah

University, Madinah, Saudia Arabia

This study employs deep learning techniques to present a compelling approach

for modeling brain connectivity in EEG motor imagery classification through

graph embedding. The compelling aspect of this study lies in its combination

of graph embedding, deep learning, and di�erent brain connectivity types,

which not only enhances classification accuracy but also enriches the

understanding of brain function. The approach yields high accuracy, providing

valuable insights into brain connections and has potential applications in

understanding neurological conditions. The proposed models consist of two

distinct graph-based convolutional neural networks, each leveraging di�erent

types of brain connectivities to enhance classification performance and gain a

deeper understanding of brain connections. The first model, Adjacency-based

Convolutional Neural Network Model (Adj-CNNM), utilizes a graph representation

based on structural brain connectivity to embed spatial information, distinguishing

it from prior spatial filtering approaches dependent on subjects and tasks.

Extensive tests on a benchmark dataset-IV-2a demonstrate that an accuracy of

72.77% is achieved by the Adj-CNNM, surpassing baseline and state-of-the-art

methods. The second model, Phase Locking Value Convolutional Neural Network

Model (PLV-CNNM), incorporates functional connectivity to overcome structural

connectivity limitations and identifies connections between distinct brain regions.

The PLV-CNNM achieves an overall accuracy of 75.10% across the 1–51 Hz

frequency range. In the preferred 8–30 Hz frequency band, known for motor

imagery data classification (including α, µ, and β waves), individual accuracies

of 91.9%, 90.2%, and 85.8% are attained for α, µ, and β, respectively. Moreover,

the model performs admirably with 84.3% accuracy when considering the entire

8–30 Hz band. Notably, the PLV-CNNM reveals robust connections between

di�erent brain regions during motor imagery tasks, including the frontal and

central cortex and the central and parietal cortex. These findings provide valuable

insights into brain connectivity patterns, enriching the comprehension of brain

function. Additionally, the study o�ers a comprehensive comparative analysis of

diverse brain connectivity modeling methods.
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1 Introduction

In the realm of establishing a brain-computer interface (BCI)
with practical applications in rehabilitating stroke patients (López
et al., 2019), an essential focus lies in the precise classification
of motor imagery. Electroencephalographic (EEG) signals have
emerged as a prominent physiological cue for constructing a
BCI system, offering the advantage of non-invasively capturing
the electrical activity within the cortex through easily recorded
scalp measurements. Consequently, researchers have extensively
explored EEG-based BCIs, drawn by their low clinical implications,
portability, and cost-effectiveness.

Although significant progress has been made in EEG-based
motor imagery (MI) classification in recent years, most of the
publications focus on the subject-dependent scenario. In this
scenario, training and testing data come from the same group
of individuals, and a calibration session is required for each
new user. This limits the scalability and applicability of BCI
devices. Overcoming the subject-independent challenge is crucial,
but it is difficult due to the differences in EEG signals between
individuals (Suk and Lee, 2012). Conventional approaches to
EEG analysis use handcrafted features and machine learning
algorithms, with power spectral density (PSD) being one of
the most popular features. When examining the PSD patterns
of motor imagery EEG data, researchers often observe event-
related synchronization/desynchronization (ERS/ERD), indicating
an increase or decrease in EEG power in certain frequency bands
(Hamedi et al., 2016). Nevertheless, not all EEG electrodes provide
unique data regarding PSD properties.

The most effective EEG nodes are typically selected through
an EEG channel selection method (Yang et al., 2017). The primary
motor cortex is a crucial brain region for classifying motor imagery
tasks, and under the widely used 10–20 EEG system placement, the
three channels C3, C4, and Cz have been identified as the most
informative channels for capturing and classifying motor-related
brain activity. Nevertheless, limitations arise when employing
handcrafted features. First of all, earlier research has conflicting
information on the range of different frequency bands (Reilly,
2013; Nayak and Anilkumar, 2020). Secondly, the number of
useful EEG nodes chosen by a channel selection algorithm is often
determined by the expertise and experience of an expert. Thirdly,
isolating all phases in conventional works is inefficient and may
waste time. Furthermore, it removes the possibility that distinct
steps could encourage each other in the feature learning process.
While robust predictive models have been applied to handcrafted
features to improve performance (Ieracitano et al., 2019), human-
designed features may overlook crucial information within the raw
EEG data (Jiao et al., 2018). In contrast, deep learning algorithms
can effectively learn underlying information across different
subjects. Substantial efforts have been dedicated to developing EEG
analysis algorithms that incorporate deep learning techniques, with
promising outcomes (Bashivan et al., 2015; Lawhern et al., 2018;
Zhang et al., 2018b; Zhang P. et al., 2018; Essa and Kotte, 2021).
A compact Convolutional Neural Network (CNN) is introduced
in Lawhern et al. (2018), which shows success on many different
types of EEG paradigms. Additionally, Recurrent Neural Networks
(RNNs) with Long Short-Term Memory (LSTM) cells have been

suggested in Zhang et al. (2018b) to effectively exploit temporal
dynamics. Moreover, several publications (Bashivan et al., 2015;
Lawhern et al., 2018; Zhang et al., 2018b; Zhang P. et al., 2018;
Essa and Kotte, 2021) have integrated deep learning techniques
with traditional spectral features. Despite deep learning’s success in
EEG analysis, only a limited number of studies have constructed
a motor imagery classification model that can generalize to new
subjects (Riyad et al., 2019; Zhu et al., 2019).

In the field of EEG-based MI classification, a variety
of studies have emerged, each offering unique insights and
techniques to enhance the field. While earlier approaches have
relied on handcrafted features to enhance performance, it has
become evident these methods may inadvertently overlook vital
information embedded in raw EEG data. Consequently, deep
learning algorithms have gained traction for their ability to
effectively uncover latent patterns across diverse subjects. A notable
study by Zhao et al. (2019) introduces a groundbreaking 3D
representation of EEG data for MI classification. This innovative
approach preserves both spatial and temporal information,
harnessing the power of a multi-branch 3D CNN to extract MI-
related features. The fusion of this 3D EEG representation with
the multi-branch 3D CNN yields remarkable results, including a
substantial 50% reduction in subject-based variability, all while
utilizing only nine electrodes. In a related vein, Liao et al.
(2020) explore the “EEG-as-image” paradigm for MI classification.
Their study introduces three distinct deep learning models, each
employing different spatial convolution strategies. Impressively,
their global model achieves a classification accuracy of 74.6%,
surpassing other models by 2.8% and 1.4%, highlighting the
significant impact of spatial filters on classification accuracy.
Alwasiti et al. (2020) take a distinct approach by leveraging deep
metric learning to classify MI EEG signals for BCI applications.
They employ a triplet network and Stockwell Transform to navigate
the challenges posed by inter-individual variability in MI-BCI EEG
signals. Their approach shows promise, achieving convergence with
a minimal number of training samples. Collazos-Huertas et al.
(2020) aim to enhance the interpretability of MI classification using
CNNs applied to EEG data. They explore two 2D feature extraction
methods and incorporate spatial dropping to remove irrelevant
brain regions. Their framework improves classification accuracy
and uncovers spatially relevant electrodes for MI tasks, albeit with
some challenges related to dataset size and potential overfitting.
Fan et al. (2021) introduce QNet, a novel deep learning network
that incorporates a specially designed attention module known as
3D-AM. This module enables automatic learning of electrode and
time selection, leading to QNet outperforming existing methods in
EEGMI classification tasks. QNet achieves results on the Physionet
dataset, with an average cross-validation accuracy of 65.82% for
four classes, 74.75% for three classes, and 82.88% for two classes.

Amin et al. (2021) harness the power of deep learning with
an attention-based CNN model. Their Multi-CNN Feature Fusion
approach addresses inter-subject and inter-session variability,
achieving superior performance compared to existing methods.
Furthermore, on the BCI-IV 2a dataset, the proposed model
achieved an accuracy of 74.70%. These studies collectively highlight
the increasing impact of deep learning techniques in EEG-based
MI classification. They showcase innovative approaches that offer
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promise for improved accuracy and broader applicability across
subjects and contexts.

This paper presents graph-based convolutional neural
network models that incorporate both structural and functional
connectivity. These models have been rigorously validated using
a benchmark EEG motor imagery dataset, demonstrating their
proficiency. They outperform various comparative methods,
emphasizing the importance of understanding the intricate
relationship between neural connections.

The primary contributions of this work can be summarized as
follows:

• Novel graph embedding techniques for EEG signals:
This section introduces innovative graph embedding
techniques to represent EEG signals, encompassing both
structural and functional brain connectivity aspects. It
effectively reduces complexity while preserving critical brain
connectivity information and revealing hidden relationships
between brain regions. Additionally, it captures intricate
brain interactions during cognitive tasks, providing a
comprehensive exploration of brain networks. The graph
representation extracts meaningful features that enhance the
accuracy of cognitive state and brain activity classification.

• Two deep learning methodologies for EEG motor imagery
classification: This section presents two distinct deep learning
approaches for EEG motor imagery classification. In the
first approach, Adj-CNNM, EEG spatial information is
represented using graph embedding with an Adjacency
Matrix, maintaining independence across individuals
and tasks to comprehensively understand brain network
organization. The second approach, PLV-CNNM, utilizes
Phase Locking Value (PLV) within a graph embedding
representation, enabling the analysis of functional
connectivity patterns. These approaches offer unique
perspectives on leveraging deep learning for EEG motor
imagery classification, considering both structural and
functional connectivity separately for more informed and
accurate classification.

• Comprehensive benchmark testing: Rigorous testing was
conducted on the widely recognized benchmark dataset
BCI-IV2a, providing a robust evaluation of the proposed
methodologies.

• Comparative analysis of brain connectivity methods: This
section includes a comparative analysis of various brain
connectivity methods on motor imagery tasks, covering both
structural and functional connectivity. It reveals distinct
advantages and limitations of different approaches.

• In-depth model interpretation: This section offers in-depth
insights and discussions on model interpretation for both
structural and functional brain connectivity, enhancing the
understanding of the underlying cognitive processes.

2 Related work

2.1 EEG motor imagery classification

The classification of motor imagery using EEG is a fundamental
aspect of various BCIs, and several techniques have been proposed

to address this challenge. One of the most well-known and
effective feature extraction algorithms used in motor imagery EEG
classification is the Common Spatial Pattern (CSP) (Xygonakis
et al., 2018). CSP is a feature extraction technique that utilizes
spatial filters to enhance the discriminative power between
two distinct MI classes by identifying a linear combination of
EEG channels (Ramoser et al., 2000). There have been many
reports of efforts to improve CSP and significantly enhance its
performance (Ang et al., 2008; Lotte and Guan, 2010). Filter
Bank CSP (FBCSP) is a popular variant of CSP that overcomes
the original method’s limitation, which depends on a single
frequency band, by adapting it to work across multiple bands
and selecting subject-specific features using a feature selection
technique (Ang et al., 2008). FBCSP was the most advanced
technique in motor imagery EEG classification and achieved
remarkable success (Ang et al., 2012). Many studies that use
EEG motor imagery employ traditional classifiers such as Support
Vector Machines (SVM) and linear discriminant analysis (LDA)
(Schlögl et al., 2005; Ang et al., 2008). Researchers have utilized
deep learning techniques to improve motor imagery classification
due to its higher performance and end-to-end structure. In
Schlögl et al. (2005), an improved performance over FBCSP is
proposed, which involves a crop training technique and a well-
designed CNN. A lightweight CNN is developed in Lawhern
et al. (2018), demonstrating performance comparable to state-of-
the-art approaches in various BCI paradigms, including motor
imagery and P300. To extract temporal information, RNN is
widely used in motor imagery classification. According to Zhang
et al. (2018a), fuzzy measures can be optimized by fusing CNN
and RNN with a fuzzy integral and using a reinforcement
learning approach. Deep learning models’ effectiveness can also
be enhanced by using feature engineering. Power spectral features
are commonly used to classify motor imagery due to their ability
to discriminate, as shown in prior research (Herman et al., 2008).
In Pérez-Zapata et al. (2018), a combination of CNNs and PSD
features is proposed for motor imagery classification, achieving
promising results.

2.2 Graph Neural Network and brain
connectivity

Graph Neural Networks (GNNs) have revolutionized the
study of brain connectivity, providing a powerful approach
to understanding both structural and functional aspects of
brain networks. Unlike traditional methods that rely on feature
engineering, GNNs can directly learn and represent reasoning
graphs from massive graph datasets, making them ideal for brain
connectivity analysis (Zhou et al., 2020).

Structural connectomes, representing the neural connections
among different brain regions, have been a focus of GNN
applications in brain connectivity analysis. To effectively analyze
structural connectomes, researchers have developed the Relational
Graph Neural Network (RGNN). RGNN is specifically designed
to work with structured brain data, restricting message passing
through node and edge layers to model information flow
effectively (Shanthamallu et al., 2019). Utilizing the Human
Connectome Project (HCP) data, RGNN accurately predicts brain
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region volumes and meta-information, outperforming traditional
methods (Shanthamallu et al., 2019).

Functional connectivity, which measures the temporal
correlations between brain regions, is crucial in understanding
brain dynamics. GNNs have also made significant contributions
to functional connectivity analysis. The Multi-resolution Graph
Neural Network (MGNN) offers a novel approach to study brain
diseases related to functional connectomes (Ma et al., 2019). By
utilizing adaptive graph transformation and convolutional neural
networks, MGNN achieves impressive accuracy in classifying
graphs from structural brain connectivity datasets (Ma et al., 2019).

In addition to structural and functional connectivity, GNNs
have been instrumental in advancing BCI research. Studies have
utilized graph metrics to classify MI-based BCIs. One such
study proposed a novel approach to classify MI-based BCI by
utilizing individual features acquired from graph theory applied to
functional connectivity measures (Santamaria and James, 2016). By
translating connectivity measures into complex networks, the study
achieved promising results with over 80% overall performance and
up to 91.1% accuracy in some MI tasks.

This work proposes applying the graph theory to characterize
the spatial and functional interconnections among EEG nodes by
leveraging both structural and functional brain connectivity. With
the integration of GNNs in brain connectivity analysis, researchers
are better equipped to comprehend the intricate interplay of neural
interactions, paving the way for new discoveries in neuroscience.
From predicting brain region volumes to classifying brain diseases
and exploring Motor Imagery-based BCIs, the applications of
GNNs in brain connectivity analysis hold great promise for
advancing the understanding of the brain’s complexities. As
research in this field continues, GNNs are set to shape the future
of neuroscience, driving breakthroughs in brain-related fields and
fostering new avenues for innovative brain-computer interfaces
and neurological disorder detection.

3 Methodology

3.1 Dataset and pre-processing

The motor imagery experiment process is depicted in Figure 1.
The dataset used in this study is the BCI Competition IV-2a
(Brunner et al., 2008), a widely recognized EEG benchmark dataset.
It captures 22 EEG signals sourced from nine healthy participants
engaged in two distinct sessions over separate days. Each session
consists of 288 trials involving four different motor imagery tasks:
imagining the movement of the left hand (class 1), right hand (class
2), both feet (class 3), and tongue (class 4). The EEG signals were
recorded at a sampling rate of 250 Hz and were bandpass-filtered
between 0.5 and 51 Hz.

The first session’s 288 trials were used for training, and the
second session’s 288 trials were used for testing in the original
dataset. However, the dataset underwent pre-processing using
EEG-lab, with the extracted epochs lasting 4 s, aimed at capturing
the duration of motor imagery tasks. This focus is guided by
the cue signaling the start of a task, which appears at t = 2 s,
prompting subjects to engage in the motor imagery task until the

fixation cross disappears at t = 6 s. Importantly, this time span
constitutes 4 s.

This study used data from the first session, resulting in a total
of 2,592 trials for the nine participants (9*288). Consequently, the
culmination of EEG data across all trials yields the final shape
of (22, 1,000, 2,592), signifying the channels, time points, and
trials, respectively.

3.2 Graph representation based on
structural connectivity

The methodology is summarized in Figure 2, which illustrates
the process. The first step involves creating a graph representation
to embed the EEG signals. These graph-encoded EEG signals are
then fed into the neural network. The entire framework represents
an end-to-end model that can undergo training utilizing standard
back-propagation techniques.

The Adj-CNNM is a convolutional neural network that uses
graph representations of EEG nodes to effectively learn spatial
information. This approach can help address the issue of subject-
independence in EEG-based motor imagery classification. The first
step is to create an EEG graph based on the locations of EEG
electrodes, which represents the connections between electrodes
with accurate spatial information. The suggested graph embedding
technique is more flexible and reliable for new subjects as it does not
rely on specific subjects, unlike previous spatial filtering methods.

3.2.1 EEG node connection representations
The central focus of this study is the length of motor imagery

tasks measured in T-seconds. For each motor imagery task, a
collection of 22 EEG signals is employed. Each of the 22 EEG
nodes is paired with an associated sensor recording sequence
denoted as ri, encompassing measurements such as ri ∈ [1,N] =

[chi1, ch
i
2, ch

i
3, . . . , ch

i
m] ∈ R

m viam = T × f time instances.
ri characterizes the recording sequence for the ith EEG node,

and [1,N] represents the index range for the EEG nodes, where N
represents the total of 22 nodes. Furthermore, chit represents the
measurement recorded by the ith EEG sensor at the time point
t, and R

m indicates that the recording sequence ri is a vector
consisting of real numbers with m elements. In the context of the
specific details provided, each motor imagery task spans a duration
of 4 s (T = 4 s), and the EEG signals are sampled at a rate of (f =
250) samples per second. Consequently, each EEG signal comprises
1,000 time points, with m calculated as the product of T and f ,
resulting inm = 4× 250 = 1, 000.

Importantly, these configurations collectively culminate in the
formation of the EEG features matrix denoted as XT . This matrix,
denoted as XT = [r1; r2, . . . , rn] ∈ R

n×m, captures the EEG
features for the trial T. The primary objective of this study is to
classify different motor imagery tasks by extracting and utilizing
EEG signal features from the matrix XT .

When analyzing EEG nodes, it is important to consider their
relationships with neighboring nodes. Due to the constraints of the
XT node dimension, an EEG node can have a maximum of two
neighbors. However, in reality, an EEG node typically possesses
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FIGURE 1

The experimental paradigm was divided into four sections: (1) A 2-second period with eyes open, where participants focused on a fixation cross

displayed on the screen after a warning tone. (2) A visual cue depicting a di�erent motor imagery (MI) task appeared on the screen for 1.25 s. (3)

Participants were instructed to perform the motor imagery task until the conclusion of the MI cue at t = 6 s. (4) Following this, a brief intermission

followed.

FIGURE 2

An illustration of the Graph Convolutional Neural Network approach based on structural connectivity (adjacency matrix) to classify MI-EEG data,

where structural connectivity represents the anatomical pathways that connect di�erent brain regions, forming a network for information exchange.

a multitude of neighboring nodes that capture EEG signals
originating from a specific region of the brain. To accurately reflect
the spatial relationships between EEG nodes, an undirected spatial

graph is created based on the location of the nodes, represented as
G = (V ,E) where V is the set of vertices/nodes, V = chi|i ∈ [1,N],
containing all the nodes. This graph representation is derived
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FIGURE 3

2D channel positions.

from the adjacency matrix of the EEG nodes, which captures
their spatial relationships. This graph representation enhances
the capacity of EEG signals to represent distinct brain regions
and mitigates the impact of noise by grouping adjacent nodes to
represent the central node. This approach enables each EEGnode to
depend on the support of its neighboring nodes rather than relying
solely on its individual measurement. Furthermore, this method
enhances the robustness of the EEG data representation in handling
missing values.

3.2.2 Adjacency matrix graph (Adj-Graph)
The construction of the Adj-Graph is a crucial component

of the EEG signal representation in this study. The Adj-Graph
is established based on the relationships between EEG nodes
and the spatial information captured in the dataset. In the
context of the motor imagery tasks, it’s essential to represent
how different EEG nodes are structurally connected. Figure 3
provides an illustration of the spatial configuration of the 22
EEG nodes. In this configuration, each EEG node is surrounded
by neighboring nodes positioned in various directions, including
vertically, horizontally, and diagonally. To demonstrate, in
Figure 3, node Cz has eight neighboring nodes in this configuration
(Cpz, Fcz,C2,C1,Cp2,Cp1, Fc2, Fc1). These neighboring nodes are
selected based on their spatial proximity to Cz, and the process is
repeated for all EEG nodes.

To formally represent the structural connections between these
EEG nodes, a set of edges Ev is established. This set is defined as
Ev = chichj|(i, j) ∈ H. Where H includes all pairs of adjacent EEG
channels. Each edge in Ev indicates a structural connection between
two EEG nodes, reflecting their spatial proximity and relationship
within the brain.

It’s important to note that every EEG node is considered to
be connected to itself as well, as each node should be associated
with its ownmeasurement. The adjacencymatrix of the Adj-Graph,
denoted as Av, represents these structural connections in a square
matrix format, with a size of |V| × |V|, where |V| is the number of
EEG nodes (22 nodes in the dataset). Each entry in the matrix is a

binary value that indicates whether two EEG nodes are structurally
connected or not.

Spectral graph theory was used to normalize the adjacency
matrix (Kipf and Welling, 2016), as detailed in the following
equations:

Âv = D̃v
− 1

2 (Ãv)D̃v
− 1

2 (1)

where: Âv represents the normalized adjacency matrix. Ãv is the
modified adjacency matrix obtained by adding the identity matrix
In to the normalized matrix. D̂v is defined as the diagonal degree
matrix of the node and is calculated as follows:

D̂v = diag(
∑

j

A1j,
∑

j

A2j, . . . ,
∑

j

A|v|j) (2)

D̃v
− 1

2 is the inverse square root of the diagonal degree matrix and
is calculated as follows:

D̃
− 1

2
v = diag





1
√

∑

j A1j

,
1

√

∑

j A2j

,
1

√

∑

j A|v|j



 (3)

Details of the adjacency matrix normalization process are
provided in Table 1. Therefore, the representation of the Adj-Graph
Gv of EEG signals can be expressed as the result of the matrix
multiplication between the normalized adjacency matrix of the
Adj-Graph and the EEG trial matrix XT : Gv = Âvˆ × XT .

3.2.3 Adj-CNNM’s configuration
Following the application of the Adj-Graph embedding to EEG

signals, a CNN was utilized for encoding and feature extraction
in MI data classification. While deep networks exhibit remarkable
learning capabilities, it’s important to note that delving too deeply
into the network layers may not be themost suitable choice for EEG
analysis, as highlighted by Schirrmeister et al. (2017).

The configuration of the Adj-CNNM’s architecture, as
presented in Table 2, includes a 2D convolutional, 2D max pooling,
flatten, dropout and dense layers. The 2D convolutional layer was
designed with a kernel size of (22, 45) to simultaneously consider
all EEG nodes by setting the CNN kernel height to 22, matching
the number of EEG nodes in the BCI-IV 2a dataset. The kernel
width was empirically extended to 45 to capture a broader range of
the input signal, enabling the model to effectively extract relevant
features from EEG signals. This adjustment makes it well-suited
for the complex MI data classification task. Additionally, 64 CNN
filters were experimentally selected to extract informative features
across multiple EEG nodes.

The use of Rectified Linear Units (ReLU) as the activation
function during convolution introduced non-linearity, enhancing
feature learning. Spatial resolution was reduced using a stride
size of (2, 2). This reduction is advantageous in EEG signal
analysis because it helps the model capture essential patterns more
efficiently. By focusing on key information and discarding less
relevant details, the model becomes more robust in processing EEG
signals and extracting relevant features for MI data classification.
Further dimensionality reduction was achieved through a 2D max-
pooling layer. Consequently, the output of the max pooling layer
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TABLE 1 Summary of mathematical symbols and explanations.

Symbol Explanation

XT EEG features matrix

ri Recording sequence for the ith EEG node

N Total number of EEG nodes (22 nodes in this dataset)

m Total number of time instances in an EEG signal (1,000 time
points in the dataset)

chit Measurement recorded by the ith EEG sensor at time point t

R
m Set of real numbers representing the recording sequence ri

G Undirected spatial graph representing EEG node
connections

V Set of vertices/nodes in the graph

E Set of edges in the graph

Ev Set of edges capturing structural connectivity between EEG
channels

Av Adjacency matrix of the Adj-Graph

Âv Represents the normalized adjacency matrix obtained by
applying spectral graph theory to the original adjacency
matrix. The hat symbolˆindicates that it is a normalized
version of Av

Ãv Represents the modified adjacency matrix obtained by
adding the identity matrix In to the normalized adjacency
matrix Âv . The identity matrix is a square matrix of size
N × N, where (N = 22) is the number of nodes, and it has
ones on the main diagonal and zeros elsewhere

D̃v Represents the diagonal degree matrix of the nodes. It is a
diagonal matrix of size V × V , where each diagonal element
D̃vi corresponds to the sum of weights (connections) for
node i. Each diagonal element is calculated as the sum of the
weights of node i with all its neighboring nodes

D̃v
− 1

2 Represents the inverse square root of the diagonal degree
matrix, a diagonal matrix of the same size as D̃v , where each
diagonal element is the inverse of the square root of the
corresponding element in D̃v

D̃v
− 1

2 (Ãv)D̃v
− 1

2 Represents the final step in the normalization process, which
involves multiplying the modified adjacency matrix Ãv by
the inverse square root of the diagonal degree matrix on
both sides

Gv Representation of the Adj-Graph of EEG signals

TABLE 2 The configurations of Adj-CNNM.

Layer Kernel
size

#
Kernels

Strides Activation

2D convolutional (22, 45) 64 (2, 2) ReLU

2DMax Pool (1, 50) 1 – –

Flatten – – – –

Dropout 0.25 – – –

Dense – – – SoftMax

was flattened into a one-dimensional vector, preparing the data
for the subsequent forward propagation through fully connected
layers.

Upon testing, it was determined that an optimal balance
between preventing overfitting and maintaining model
performance was achieved with a 25% dropout rate. The final
stage of the model included a dense layer with softmax activation,
serving as a classifier to predict the probability distribution of EEG
data for four distinct motor imagery task classes.

Adj-CNNM training process was executed with careful
consideration of hyperparameters. Adam optimizer, with a learning
rate = 0.0001, was chosen due to its efficiency in optimizing
complex neural networks. Adam combines the advantages of
both the AdaGrad and RMSProp optimizers and adapts learning
rates for each parameter individually. This adaptive learning rate
scheduling makes it well-suited for training deep neural networks
such as the Adj-CNNM. It helps accelerate convergence and
enhances the model’s ability to escape local minima.

Based on testing, it was determined that training the Adj-
CNNM for 1,000 epochs was a deliberate choice to ensure thorough
learning and adaptation. EEG data can exhibit subtle patterns that
require extended training to be effectively captured. Moreover, this
number of epochs was chosen to balance the risk of overfitting and
achieve optimal performance while ensuring model convergence.

A batch size of 128 was carefully selected to strike a balance
between computational efficiency and model convergence. Larger
batch sizes can accelerate training but may lead to suboptimal
convergence due to a reduced exploration of the parameter space.
A batch size of 128 ensures that a sufficient number of samples are
processed in each iteration, facilitating stable and efficient training.

An Early Stopping technique was employed to further enhance
the model’s training. This mechanism monitors the validation loss
during training and halts training when it detects deteriorating
performance with a specified patience of 250 epochs. Early Stopping
helps prevent overfitting and ensures the model’s generalization on
unseen data. Further details regarding hyperparameter tuning can
be found in Section 4.1.1.

The configuration of the Adj-CNNM was meticulously
designed to extract relevant features from EEG signals for
MI data classification. The choice of architecture, optimizer,
and hyperparameters aimed to strike a balance between model
complexity and effectiveness in addressing the challenges of EEG-
basedMI classification. Evaluations and training of the Adj-CNNM
employed various techniques, including Train-Test Split (80/20)
and k-fold cross-validation, ensuring stability and encompassing all
2,592 trials within the BCI-IV 2a dataset.

Google Colab Pro was the platform of choice for training the
Adj-CNNM, harnessing its powerful GPUs, specifically NVIDIA
Tesla V100. These GPUs accelerated model training and supported
computationally intensive tasks. Additionally, Colab Pro provided
high-memory Virtual Machines with 32 GB GPU RAM, enabling
efficient processing of large datasets and memory-intensive
operations, which were instrumental in achieving efficient and
effective model training.

3.2.4 Adj-CNNM limitation
The Adj-Graph methodology offers a robust representation

of EEG channel connections and their spatial locations for
constructing an EEG graph. However, this approach does have
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a drawback when it comes to depicting EEG connections across
different brain regions. To illustrate this limitation, refer to
Figures 4A–D, which presents the adjacency matrix derived from
22 EEG locations forming the Adj-Graph, representing the
structural connectivity based on the adjacency matrix.

In certain scenarios, when two channels from distinct brain
regions are selected (e.g., channel Fz representing the Frontal
lobe and channel Pz representing the Parietal lobe), the adjacency
matrix may imply a lack of connection or correlation between these
regions. This is because, according to the graph methodology, they
are not considered adjacent. Interestingly, empirical testing using
the functional connectivity technique, particularly PLV, reveals
a significant connection of up to 60% between Fz and Pz, as
demonstrated in Figures 4E–H.

These findings emphasize that the graphical representation of
the Adj-Graph method may not capture hidden connections across
different brain regions. However, this limitation can be effectively
overcome by leveraging functional connectivity approaches,
enabling a more comprehensive and accurate understanding
of the intricate network interactions within the brain. It’s
important to note that the human brain’s functional connectivity
doesn’t depend solely on spatial proximity; neural synchronization
and information transfer can occur between regions that
are physically distant but functionally connected. Functional
connectivity techniques, such as the Phase Locking Value, tap
into the dynamic synchronization patterns of neural oscillations,
enabling the detection of underlying relationships that might not
be evident in static structural representations.

3.3 Graph representation based on
functional connectivity

As mentioned earlier, the limitations of the Adj-Graph
methodology have led to the exploration of alternative approaches
for enhancing the representation of EEG connectivity. To
address this limitation, a new methodology based on functional
connectivity using PLV is employed.

Functional connectivity captures synchronization and
interactions between different brain regions by analyzing the
phase relationships of EEG signals. The use of PLV allows
the establishment of connections between EEG channels,
even when they are not adjacent in terms of spatial location,
thereby overcoming the spatial constraints imposed by the
Adj-Graph methodology.

As depicted in Figure 5, the second methodology involves
embedding the EEG signals into a graph representation using
PLV. In this process, PLV between pairs of EEG channels
is calculated, creating a connectivity matrix that captures the
functional interactions between channels. This matrix is then
utilized to construct a functional connectivity graph that represents
the dynamic relationships between EEG nodes. The encoded EEG
signals are subsequently fed into the neural network model. The
framework operates as an end-to-end model, facilitating training
through standard back-propagation techniques. The utilization of
functional connectivity overcomes the limitation associated with
the Adj-Graph methodology, allowing for the capturing of more

detailed and comprehensive insights into the complex interactions
between EEG channels and brain regions.

3.3.1 EEG channel-connection representations
based on PLV

Phase synchronization occurrences are commonly observed in
EEG data and have been extensively utilized in studies related to
motion imaging and brain-computer interfaces (Piqueira, 2011).
When compared to other techniques for assessing the level of
phase synchronization between signals, they are preferred. PLV
(Goldstein et al., 2008; Gao et al., 2014) is a measure of the
synchronization between two EEG channels, indicating the degree
to which their signals are correlated in time.

One common approach to represent EEG channel connections
based on PLV is by creating a connectivity matrix, also known as
a functional connectivity network. In this matrix, each row and
column corresponds to a different EEG channel, and the value
in each cell represents the PLV between the two corresponding
channels. PLV is a measure that indicates the average phase
difference between any two signals in terms of their absolute value.
This measure allows the phase component of EEG signals to be
distinguished from their amplitude component.

The definition formula of PLV is provided in Yi et al. (2014),
and can be expressed as follows:

PLV(t) =
1

N

∣

∣

∣

∣

∣

N
∑

1

exp(i(△ϕn(t)))

∣

∣

∣

∣

∣

(4)

In this formula, PLV (t) is computed at time instant t and
provides information about the degree of synchronization between
the signals. N represents the number of signals being compared,
which in the BCI-IV-2a dataset case is 22 signals.1ϕn(t) represents
the phase difference between two signals at time t, calculated as
the difference between their instantaneous phases. The function exp
represents the exponential function applied to the phase difference
1ϕn(t) to convert it into a complex number with both a magnitude

and a phase component.
∣

∣

∣

∑N
1

∣

∣

∣
represents the magnitude of

the summation of N complex numbers. In other words, the
equation calculates the sum of the complex numbers obtained
from the exponential function and then takes the magnitude of
the resulting complex number. The term 1

N is the normalization
factor used to average the PLV values, ensuring that the PLV
values are appropriately scaled considering the number of signals
being compared.

Each EEG channel is represented as a node, and the PLV
values between the channels are represented as edges. Thus,
the graph is created using the PLV connectivity between the
different nodes. By constructing a graph using this connectivity,
analyzing the patterns of connectivity between different regions
of the brain and investigating the functional interactions between
them, valuable insights into the network properties of the brain,
including information flow dynamics and potential correlations
with cognitive functions, are obtained.
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FIGURE 4

Visualization of Adj-CNNM limitation—illustrating the challenges posed by the Adj-Graph methodology in capturing EEG channel connections across

brain regions. (A) The average Adj-Graph of trials for subject ONE in Left Hand. (B) The average Adj-Graph of trials for subject ONE in Right Hand. (C)

The average Adj-Graph of trials for subject ONE in Feet. (D) The average Adj-Graph of trials for subject ONE in Tongue. (E) The average PLV-Graph of

trials for subject ONE in Left Hand. (F) The average PLV-Graph of trials for subject ONE in Right Hand. (G) The average PLV-Graph of trials for subject

ONE in Feet. (H) The average PLV-Graph of trials for subject ONE in Tongue.

3.3.2 PLV graph
As previously mentioned, PLV is a measure of the consistency

of the phase difference between two signals. PLV connections
between EEG channels can be utilized to construct a graph of
EEG connectivity. In this graph, each channel represents a node,
and the edges between channels indicate the strength of the
functional connectivity between them. The PLV-CNNM graph is
constructed based on Equation 4. Building an EEG graph using PLV
connections, as shown in Figure 5, involves three key steps:

• Compute the PLV values between each pair of the 22 EEG
channels following Equation 4.

• Represent the EEG channels as nodes in the graph, totaling
22 nodes, and establish significant PLV connections as edges
between these nodes.

• Assign weights to the edges based on the strength of the PLV
values.

In this case, the resulting graph is undirected, meaning that the
edges do not have a specific directionality. This approach provides
the advantage of identifying patterns of connectivity between EEG
channels that are not necessarily directional in nature.

Encoding EEG data into a graph using PLV is a common
approach in the analysis of brain connectivity. PLV measures the
synchronization between two EEG signals at a specific frequency
band. To achieve this, the EEG data undergoes pre-processing and
filtering to extract the desired frequency bands, which include 1–51

Hz, δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz), µ (8–13 Hz), β (12–30
Hz), and 8–30 Hz (the desired frequency band for motor imagery),
and γ (30–51 Hz).

Once the EEG data is pre-processed, the next step involves
computing the PLV between each pair of EEG channels using
Equation 4. PLV values range between 0 and 1, where 0 signifies
no synchronization, and 1 indicates perfect synchronization.
These connections can be represented as a graph, reflecting the
connectivity between different brain regions at varying frequencies.
In this graph, each EEG channel serves as a node, and the
connections between channels become the edges.

This graph-based method provides insights into the overall
network organization of the brain and the patterns of information
flow among different regions. Additionally, the PLV graph can be
employed to identify network hubs and modules, study changes
in network properties, and investigate the relationship between
EEG connectivity and other measures of brain function, including
cognitive processes such as motor imagery tasks.

3.3.3 PLV CNNM’s configuration
Following the encoding of EEG signals using the PLV-Graph,

a CNN model was created to better encode and extract time-
frequency-domain features for classifying MI tasks, as outlined in
Table 3.

The architecture of the PLV-CNNM consists of two CNN
layers with a size of (3, 3) and a single max-pooling layer with
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FIGURE 5

An illustration of the Graph Convolutional Neural Network approach based on functional connectivity (Phase Locking Value—PLV) to classify MI-EEG

data, where functional connectivity refers to the statistical associations between di�erent brain regions, indicating the coordinated activity and

communication.

TABLE 3 The configurations of PLV-CNNM.

Layer Kernel size # Kernels Activation

2D convolutional (3, 3) 32 Relu

2D Max Pool (2, 2) 1 –

2D convolutional (3, 3) 64 –

Dropout 0.25 – –

Flatten – – –

Dense – – SoftMax

a size of (2, 2). When designing these layers, the number of
CNN filters was chosen based on extensive testing and evaluation.
Specifically, 32 filters were selected for the first layer, and 64 filters
for the second layer. This choice stems from the need to capture
increasingly complex patterns as the data progresses through the
deeper convolutional layers. The decision to use 32 and 64 filters is
backed by empirical testing, which revealed that this configuration
effectively extracts essential features, especially those related to
time-frequency-domain characteristics across multiple EEG nodes.
To enhance feature learning, the Rectified Linear Units (ReLU)
activation function was employed within the convolutional layers,
introducing non-linearity and facilitating the network’s ability to
recognize intricate patterns and relationships within the EEG data.

To reduce dimensionality and extract essential features, a
max-pooling layer was incorporated. Additionally, a dropout
regularization layer with a 25% rate was applied to prevent
overfitting. The final layer of the PLV-CNNM is a dense layer

equipped with a softmax classifier, generating a probability
distribution across the four classes. Categorical cross-entropy was
employed for error evaluation across all labeled samples. The
weights and biases of the network’s convolutional layers were
trained using batch gradient descent.

During training and evaluation, the PLV-CNNM underwent k-
fold cross-validation, ensuring a comprehensive assessment across
all 2,592 trials in the BCI-IV 2a dataset. The training process
took advantage of Google Colab Pro’s robust hardware resources,
featuring the NVIDIA Tesla V100 GPU and 32 GB of GPU
RAM. A batch size of 64 was chosen to ensure efficient and
stable training. The training process spanned 800 epochs, which
provided ample opportunities for the model to learn and adapt
to the data. The Adam optimizer, with a learning rate of 0.001,
was employed to efficiently optimize the network’s parameters,
enhancing convergence and performance. These configurations
ensured that the PLV-CNNM was well-equipped to tackle the
challenges of EEG-based MI classification. More details about the
hyperparameter tuning process for the PLV-CNNM can be found
in Section 4.2.1.

4 Results

The connectivity of the human brain is a complex phenomenon
that involves both structural and functional components. While
structural connectivity refers to the anatomical connections of
the brain that facilitate communication between different regions,
functional connectivity describes the temporal correlation of neural
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TABLE 4 Hyperparameter tuning results for di�erent filter numbers

(Adj-CNNM).

Filter
number

Kernel
size

F1
score
(Macro)

F1
score
(Micro)

Accuracy SD

32 (22, 45) 64.85% 65.27% 65.27% 0.022

64 (22, 45) 72.52% 72.77% 72.77% 0.045

128 (22, 45) 64.51% 64.81% 64.81% 0.028

256 (22, 45) 64.13% 64.58% 64.58% 0.023

Bold means the best results.

activity between these regions. This results section presents the
study’s findings on the structural and functional connectivity of
the brain. By employing distinct methodologies for analyzing
both types of connectivity, the aim is to achieve a more
comprehensive understanding of the organization and function of
the brain’s network.

4.1 Adj-CNNM result

4.1.1 Hyperparameter tuning for Adj-CNNM
To optimize the performance of the Adj-CNNM model,

a systematic hyperparameter tuning process was undertaken
based on nine-fold cross-validation. In the initial phase of
experimentation, different filter counts were evaluated while
maintaining a fixed kernel size of (22, 45). The results from this
stage, as summarized in Table 4, highlighted the impact of filter
count variations on the model’s performance.

Based on these results, it became evident that the best
performance was consistently delivered by a filter count of 64,
as indicated by various evaluation metrics, including Macro F1,
Micro F1, and Accuracy. Consequently, the subsequent phase of the
investigation was directed toward exploring the impact of different
kernel sizes while keeping a fixed filter count of 64, as presented in
Table 5.

This sequential approach allowed the Adj-CNNM model to
be fine-tuned effectively, ensuring that the selected configuration
was informed by empirical evidence from both filter count and
kernel size experiments. Ultimately, this optimization maximized
the model’s classification capabilities for motor imagery tasks.

4.1.2 Adj-CNNM result
The evaluation of the Adj-CNNM began with an initial

assessment using the Train-Test Split method, resulting in
promising outcomes: an accuracy of 64.16%. However, for a more
comprehensive and rigorous evaluation, the model underwent k-
fold cross-validation.

The BCI-IV2a dataset encompasses EEG data from nine
subjects, with each subject’s data collected during a single session
comprising six runs. Within each run, 48 trials are distributed
across four motor imagery tasks. To ensure that the dataset is
partitioned into folds that represent balanced and comprehensive
subsets, the goal was to capture the full diversity of trials while
maintaining the integrity of the session and subjects. The total

TABLE 5 Hyperparameter tuning results for di�erent Kernels (Adj-CNNM).

Filter
number

Kernel
size

F1
score
(Macro)

F1
score
(Micro)

Accuracy SD

64 (22, 22) 68.48% 68.81% 68.81% 0.018

64 (22, 45) 72.52% 72.77% 72.77% 0.045

64 (22, 65) 66.39% 66.47% 66.47% 0.025

64 (22, 85) 66.03% 66.28% 66.28% 0.029

Bold means the best results.

number of trials for the first session, serving as the foundation for
our cross-validation, amounts to 2,592 (288 trials per session * 9
subjects).

The choice of k = 9 aligns with the aim of creating well-
distributed and representative folds for cross-validation. In this
case, each fold was constructed by mixing data from multiple
subjects’ first sessions, enabling the assessment of the model’s
performance across a wide range of trials while preserving the
coherence of each fold with the session and subject context.

Furthermore, after systematically testing various values of k, it
was found that k = 9 consistently yielded favorable outcomes in
terms of model performance and robustness. Meaningful results
were consistently obtained with this configuration, allowing the
evaluation of the Adj-CNNM across diverse subsets of data and
the minimization of potential impacts from random fluctuations.
The choice of k = 9 was a deliberate decision based on testing and
on the dataset’s structure. It enabled the maintenance of session
and subject integrity while achieving comprehensive coverage of
the dataset, ultimately leading to more reliable and informative
model assessments.

Consequently, the Adj-CNNM underwent nine-fold cross-
validation across 15 runs, resulting in significant performance
improvements compared to the initial train-test split approach.
The Adj-CNNM achieved an accuracy of 72.77% with a standard
deviation (SD) of 0.045, as shown in Table 7. The utilization of nine-
fold cross-validation, with its well-distributed and diverse subsets
of data, enabled robust capturing of patterns and generalizations
from the EEG trials. The multiple runs further ensured consistent
and reliable model performance, minimizing susceptibility to
random fluctuations.

4.2 PLV-CNNM result

4.2.1 Hyperparameter tuning for PLV-CNNM
To optimize the performance of the PLV-CNNM model, an

extensive hyperparameter tuning process based on nine-fold cross-
validation was undertaken. Various combinations of filters and
kernel sizes were explored to assess their impact on the model’s
performance. The results of this tuning process, summarized in
Table 6, provide valuable insights into the performance of the PLV-
CNNMmodel under different hyperparameter configurations.

Three different 2D Conv filter combinations were tested: (8,
16), (32, 64), (128, 256) along with corresponding kernel sizes,
(2, 2) and (3, 3). The influence of these configurations on the
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TABLE 6 Hyperparameter tuning results for various filters and Kernels (PLV-CNNM).

Filter
combination

Kernel
size

F1 score
(Macro)

F1 score
(Micro)

Accuracy SD

8, 16 (2, 2) 58.40% 58.68% 58.68% 0.036

8, 16 (3, 3) 61.01% 61.23% 61.23% 0.030

32, 64 (2, 2) 66.83% 67.21% 67.21% 0.058

32, 64 (3, 3) 74.90% 75.10% 75.10% 0.018

128, 256 (2, 2) 64.62% 66.47% 66.47% 0.149

128, 256 (3, 3) 70.31% 71.91% 71.91% 0.176

256, 512 (2, 2) 42.05% 47.84% 47.84% 0.235

256, 512 (3, 3) 73.24% 73.50% 73.50% 0.036

Bold means the best results.

model’s performance was systematically examined, and the results
are presented in the table.

These comprehensive findings enable informed decisions
regarding the most suitable hyperparameter configuration for the
PLV-CNNM model, considering various evaluation metrics. It is
evident that the choice of filters and kernel sizes can significantly
impact the model’s performance.

4.2.2 PLV-CNNM result
The PLV-CNNM methodology, introduced to address

the limitations of the Adj-Graph approach, demonstrates
significant advancements in capturing and representing functional
connectivity within EEG data. By leveraging PLV as a measure of
synchronization between EEG signals, the PLV-CNNM overcomes
the spatial constraints posed by the Adj-Graph methodology. This
section presents a comprehensive analysis of the PLV-CNNM
methodology’s outcomes, underscored by its impressive prowess
in classifying motor imagery tasks across a diverse range of
frequency bands.

The evaluation of the PLV-CNNM was conducted using
a robust nine-fold cross-validation technique on the BCI-IV2a
dataset, encompassing all 2,592 trials and spanning across 15 runs.
By assessing the model’s performance across different frequency
bands, a comprehensive understanding of its capabilities emerged,
as presented in Table 7.

Table 7 offers a comprehensive overview of the PLV-CNNM’s
performance, depicting its accuracy and corresponding standard
deviation for various frequency bands. Notably, the PLV-CNNM
showcases remarkable accuracy in classifying motor imagery tasks
across distinct frequency ranges. Specifically, the θ frequency band
stands out with a remarkable accuracy of 95.72% achieved by the
PLV-CNNM, which can be attributed to its adeptness in capturing
neural synchronization patterns closely linked to cognitive
functions essential for motor imagery tasks. Specifically, the θ

frequency band is prominently associated with memory formation
and attentional processes, both of which play pivotal roles in
motor imagery. As participants engage in mentally stimulating
movements, subjects rely on memory recall to reproduce specific
actions. The PLV-CNNM’s exceptional accuracy in this frequency
band can thus be explained by its proficiency in detecting and

leveraging the nuanced neural synchronization patterns indicative
of memory encoding and attentional focus. Additionally, the PLV-
CNNM’s success aligns with empirical observations of increased
theta band activity during motor imagery (Erfani and Erfanian,
2004; Cruikshank et al., 2012).

Additionally, the δ, α, µ, β , 8–30 Hz—desired frequency band
for MI, γ , and All bands (1–51 Hz) exhibit favorable accuracy
values of 93.84%, 91.90%, 90.22%, 85.80%, 84.30%, 88.47%, and
75.10%, respectively, further reinforcing the model’s proficiency in
accurately classifying motor imagery tasks.

4.3 Result comparison between Adj-CNNM
and PLV-CNNM

The comparison between the Adj-CNNM and PLV-CNNM
unveils distinct performance characteristics in the classification
of motor imagery tasks. Both models demonstrate significant
advancements in capturing and representing connectivity patterns
within EEG data, albeit through different approaches. The
evaluation matrix, presented in Table 7, showcases detailed
performance metrics for both models, offering a comprehensive
view of their capabilities across various frequency bands.

Adj-CNNM: The Adj-CNNM achieved a superior classification
accuracy of 72.77%, showcasing its remarkable ability to classify
motor imagery tasks. This exceptional accuracy can be attributed
to its unique utilization of a graph-based representation of EEG
signals. The incorporation of adjacencymatrices to encode intricate
spatial interconnections between brain regions enables the model
to learn more informed and relevant features, contributing to its
outstanding performance in motor imagery classification.

PLV-CNNM: The PLV-CNNM effectively addresses limitations
in capturing connections between brain regions through the use of
functional connectivity approaches, such as PLV. This adaptation
led to remarkable accuracy in the resulting PLV-CNNM models,
reaching up to 95.72% in specific frequency bands. Notably, the
PLV-CNNM model showcases remarkable accuracy in classifying
motor imagery tasks across distinct frequency ranges, including α,
µ, β , and γ , reinforcing its proficiency in accurately classifying
motor imagery tasks. The low SD values accompanying each
accuracy result underscore the consistent and reliable performance
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TABLE 7 Performance evaluation for PLV-CNNMs and Adj-CNNM.

Model F1 F1 Precision Precision ROC–AUC ROC–AUC Accuracy SD

(Macro) (Micro) (Macro) (Micro) (Macro) (Micro)

Adj-CNNM 72.52% 72.77% 73.93% 72.77% 96.00% 95.57% 72.77% 0.045

PLV-CNNM (1–51) 74.90% 75.10% 75.76% 75.10% 96.29% 95.22% 75.10% 0.018

PLV-CNNM (1–4) 93.82% 93.84% 93.88% 93.84% 95.88% 95.85% 93.84% 0.058

PLV-CNNM (4–8) 95.75% 95.72% 95.78% 95.72% 97.60% 97.59% 95.72% 0.044

PLV-CNNM (8–12) 91.87% 91.91% 92.03% 91.91% 98.34% 98.30% 91.91% 0.074

PLV-CNNM (8–13) 90.22% 90.23% 90.26% 90.23% 96.09% 96.05% 90.23% 0.071

PLV-CNNM (8–30) 84.17% 84.30% 84.43% 84.30% 97.51% 97.38% 84.30% 0.030

PLV-CNNM (12–30) 85.69% 85.80% 85.98% 85.80% 96.04% 95.95% 85.80% 0.053

PLV-CNNM (30–51) 86.96% 88.47% 86.71% 88.47% 97.73% 97.76% 88.47% 0.074

of the model across different frequency bands, highlighting its
capacity to accommodate the inherent variability present in EEG
trials.

While the Adj-CNNM excels in graph-based representation
and captures complex spatial interconnections, the PLV-
CNNM, leveraging its unique approach based on PLV and
a diverse range of frequency bands, demonstrates superior
accuracy, F1-scores, precision, and ROC-AUC scores. These
results underscore the PLV-CNNM’s prowess in capturing the
nuances of neural synchronization patterns and functional
connectivity within EEG data, making it a valuable candidate
for motor imagery classification tasks. Nevertheless, both the
Adj-CNNM and PLV-CNNM offer valuable contributions to
motor imagery classification.

5 Discussion

5.1 Performance

5.1.1 Adj-CNNM performance
For this study, the BCI-IV2a dataset was chosen due to

its even distribution, enabling a comprehensive evaluation of
the performance of the proposed Adj-CNNM. The performance
assessment considered a range of evaluation metrics. These metrics
included classification accuracy, F1-score (both Macro and Micro),
precision (both Macro and Micro), ROC-AUC (both Macro and
Micro), and SD. Comparative results for thesemetrics are presented
in Table 7.

To ensure an unbiased comparison and highlight the
superiority of the proposed approach, state-of-the-art methods
were chosen as benchmarks, as shown in Table 8. Initially,
Adj-CNNM was compared to EEGNet (Lawhern et al., 2018),
which combines various EEG feature extraction techniques to
create a unified approach for handling diverse BCI scenarios.
Subsequent comparisons were made with CroppedTrainingCNN
(CTCNN) (Schirrmeister et al., 2017), which explored various CNN
architectures and introduced a superior cropped training technique
compared to the conventional trial-based training method.

The EEG-Image method (Bashivan et al., 2015) was also
compared, which uses spectral, spatial, and temporal characteristics

exhibited by EEG signals and a convolutional recurrent model to
classify mental workloads. The Cascade and Parallel models (Zhang
et al., 2019b), which retain EEG spatial information by taking into
account adjacent EEG nodes, were also evaluated.

The evaluation also included classic EEG analysis techniques.
These techniques encompassed PSD-SVM (Oikonomou et al.,
2017), known for generating time-frequency-based features
frequently used in MI-EEG analysis, and FBCSP (Ang et al., 2008),
a popular classic approach. State-of-the-art methods, as well as two
baseline CNN models, were also included. Additional details are
available in the ablation study in Section 5.3.

Importantly, the efficacy of the graph-based representation
of EEG signals in the Adj-CNNM was demonstrated through a
comparison with the CRAM model (Zhang et al., 2019a) and the
Graph-based Convolutional Recurrent Model (NG-RAM) (Zhang
et al., 2020), which included three different architectures. The study
also compared the proposed method to T-WaveNet (Minhao et al.,
2021), which used power spectral analysis to decompose input
signals into multiple frequency sub-bands for sensor data analysis
using a novel tree-structured wavelet neural network (T-WaveNet).

Notably, Adj-CNNM, the proposed model, was also compared
to the groundbreaking study by Zhao et al. (2019), which
introduced a 3D representation of EEG data for MI classification.
This innovative approach preserved both spatial and temporal
information, harnessing the power of a multi-branch 3D
CNN to extract MI-related features. The fusion of this 3D
EEG representation with the multi-branch 3D CNN yielded
remarkable results.

In addition to the aforementioned methods, Adj-CNNM
was compared to several other recent studies in the field of
MI classification. Liao et al. (2020) explored the “EEG as
image” paradigm for MI classification, introducing three distinct
deep learning models that employ varying spatial convolution
strategies. Their global model achieved promising classification
accuracy, demonstrating the profound impact of spatial filters on
classification accuracy. Amin et al. (2021) harnessed the power
of deep learning with an attention-based CNN model. Their
Multi-CNN Feature Fusion approach addressed inter-subject and
inter-session variability, achieving superior performance compared
to existing methods.
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TABLE 8 State-of-the-art and baseline models comparison with

proposed methods.

Comparison model Accuracy SD

EEGNet (Lawhern et al., 2018) 51.31% 0.051

CTCNN (Schirrmeister et al., 2017) 47.67% 0.150

EEG image (Bashivan et al., 2015) 32.47% 0.043

Cascade model (Zhang et al., 2019b) 31.83% 0.039

Parallel model (Zhang et al., 2019b) 32.67% 0.449

FBCSP (Ang et al., 2008) 35.69% 0.083

PSD-SVM (Oikonomou et al., 2017) 36.11% 0.081

CRAM (Zhang et al., 2019a) 59.10% 0.108

NG-RAM (Zhang et al., 2020) 60.11% 0.099

DG-RAM (Zhang et al., 2020) 59.64% 0.097

SG-RAM (Zhang et al., 2020) 59.00% 0.101

T-WaveNet-Haar (Minhao et al., 2021) 43.12% NA

T-WaveNet (without feature fusion) (Minhao
et al., 2021)

61.03% NA

T-WaveNet (Minhao et al., 2021) 63.01% NA

Multi-branch 3D CNN (Zhao et al., 2019) 75.02% 7.344

Global spatial convolution (Liao et al., 2020) 74.60% NA

Local spatial convolution (Liao et al., 2020) 71.80% NA

Parallel spatial convolution (Liao et al., 2020) 73.20% NA

Attention based inception model (Amin et al.,
2021)

74.70% NA

Incep-EEGNet (Riyad et al., 2020) 74.07% NA

MI-EEGNET (Riyad et al., 2021) 74.61% NA

Multi-domain information fusion (Wang et al.,
2023)

75.00% NA

CNN (without Adj-Graph) 32.63% 0.033

CNN (without PLV-Graph) 40.28% 0.027

Adj-CNNM 72.77% 0.045

PLV-CNNM [All bands (1–51 Hz)] 75.10% 0.018

PLV-CNNM (1–4 Hz—δ band) 93.84% 0.058

PLV-CNNM (4–8 Hz—θ band) 95.72% 0.044

PLV-CNNM (8–12 Hz—α band) 91.90% 0.074

PLV-CNNM (8–13 Hz—µ band) 90.22% 0.071

PLV-CNNM (12–30 Hz—β band) 85.80% 0.053

PLV-CNNM (8–30 Hz—desired frequency band
for MI)

84.30% 0.030

PLV-CNNM (30–51 Hz—γ band) 88.47% 0.074

The results, as shown in Table 8, indicate that Adj-CNNM not
only outperforms many methods but also achieves competitive
results. Its primary strength lies in its graph embedding
representation, a feature that enhances its performance when
compared to deep learning models. Unlike pure deep learning
models such as EEGNet and CTCNN, which lack specific

data representations, the graph representation of the Adj-
CNNM includes and encodes the spatial interconnections
among EEG nodes. This enables more effective neural network
analysis of EEG signals. In contrast to the spatial representation
used in the EEG-Image method, the graph representation
technique of Adj-CNNM doesn’t require data implantation,
thereby avoiding potential noise. Additionally, unlike the
approach in Zhang et al. (2019b), the Adj-CNNM utilizes
an adjacency matrix to improve the efficiency of EEG data
encoding.

5.1.2 PLV-CNNM performance
PLV, a metric indicating the degree of phase consistency

between two signals, is used in EEG analysis to measure functional
connectivity among various brain regions. This information is
represented as a graph, with each node representing a specific
brain region and the edges reflecting the strength of functional
connectivity between those regions. This approach offers a visual
representation of the intricate network of connections between
different brain regions, aiding in the comprehension of brain
activity coordination and the collaboration of various regions to
support cognitive functions.

Figures 4E–H present PLV correlation matrices for subject
one within the 8–30 Hz frequency band, which is essential
for MI tasks involving the left hand, right hand, feet, and
tongue. The deliberate selection of subject one was motivated
by the aim to gain insights into the functional connectivity
patterns during motor imagery tasks. This choice allows for an
exploration of how subject one exhibits variations in connectivity
and coordination between brain regions across the MI tasks. The
8–30 Hz frequency range includes the α, µ, and β rhythms,
which play critical roles in motor planning, preparation, and
cognitive processes. Relaxed wakefulness and sensory inhibition
are signified by the α rhythm (8–12 Hz). The µ rhythm (8-
13 Hz), known as the sensorimotor rhythm, is closely linked to
motor-related activities, reflecting involvement in motor planning
and execution. Active cognitive engagement, motor execution, and
sensorimotor integration are associated with the β rhythm (12–30
Hz).

As motor imagery tasks are performed by subject one, the
PLV correlation matrix unveils the complex interactions between
electrodes. Significantly higher connectivity is observed in certain
electrodes, indicating potential variations in neural network
dynamics and activation strategies. This suggests that different
contributions to motor imagery may exist among specific brain
regions across various tasks.

Figures 4E–H reveal intriguing variations in phase
synchronization patterns observed during motor imagery
tasks in subject one, particularly in the 8–30 Hz frequency range.
Distinct PLV and functional connectivity features are observed
among brain regions in certain task categories, highlighting the
non-uniform nature of neural processes during motor imagery.
These findings suggest varying levels of phase synchronization
and connectivity among brain regions related to these tasks,
highlighting the complexity of neural coordination during motor
imagery.
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The model’s performance was evaluated using different
evaluation matrices, including accuracy, F1-score (both Macro
and Micro), precision (both Macro and Micro), ROC-AUC (both
Macro and Micro), and SD, based on a nine-fold cross-validation
procedure, as presented in Table 7.

An accuracy of 75.10% was achieved by the PLV-CNNM
when considering all frequency bands combined (1–51 Hz) with
a standard deviation of 0.018. However, the crucial frequency band
for motor imagery classification is (8–30 Hz), which encompasses
α (8–12 Hz), µ (8–13 Hz), and β (12–30 Hz) waves. The PLV-
CNNM was initially evaluated for the desired frequency band
separately, with accuracies of 91.90%, 90.20%, and 85.80% achieved,
with standard deviations of 0.074, 0.071, and 0.053 for α, µ,
and β , respectively. Additionally, the PLV-CNNM was evaluated
for the combined (8–30 Hz) band, with an accuracy of 84.30%
achieved and a standard deviation of 0.03. These results indicate
a relatively consistent performance across most frequency bands,
with standard deviations ranging from 0.044 to 0.075.

When compared to other notable studies in the domain of
MI classification, PLV-CNNM exhibits compelling performance, as
shown in Table 8. In a study by Zhao et al. (2019), a pioneering 3D
EEG representation achieved an accuracy of 75.015%. Similarly, in
the work of Liao et al. (2020), the “EEG-as-image” approach yielded
a remarkable classification accuracy of 74.60%, underscoring the
impact of spatial filters. On the other hand, Alwasiti et al.
(2020) employed deep metric learning to address inter-individual
variability and showcased promising results, achieving convergence
with minimal training samples. Amin et al. (2021) introduced
an attention-based Inception model, achieving an accuracy of
74.70% and effectively addressing inter-subject and inter-session
variability. Additionally, studies like Riyad et al. (2020) and Riyad
et al. (2021) leveraged architectures based on Inception, achieving
accuracies of 74.07 and 74.61%, respectively. Furthermore, in the
recent study by Wang et al. (2023), the authors tackled low
classification accuracy and EEG channel selection challenges. Their
innovative approach led to an accuracy of 75.00%.

These studies present innovative approaches to MI
classification, yet PLV-CNNM’s distinctive focus on functional
connectivity through PLV and specific frequency band analysis sets
it apart, contributing to its competitive performance and enhanced
understanding of neural coordination during motor imagery tasks.

5.2 Interpretations

5.2.1 Adj-CNNM interpretations
This section explores the EEG feature learning process in Adj-

CNNM, providing valuable insights into the classification of MI
data. Figure 6 visually presents the convolutional feature maps
generated during this intricate process. The selection of these
feature maps deliberately targets distinct EEG nodes, including
the prominent C3, Cz, and C4 channels, which have previously
been established as carriers of the most discriminative MI-EEG
information (Oikonomou et al., 2017). This strategic focus on
essential EEG nodes underscores the importance of the primary
motor cortex and the identified EEG channels in Adj-CNNM’s

learning process, enabling it to effectively capture the crucial EEG
features required for successful MI classification.

The primary motor cortex plays a pivotal role in classifying
motor imagery tasks. Within the widely-used 10–20 EEG system
placement, the channels C3, C4, and Cz have been identified as
the most informative channels for capturing and classifying motor-
related brain activity. Figure 6 illustrates Adj-CNNM’s learning
process, demonstrating how EEG features are acquired for MI data
classification. Similar to the findings in Zhang P. et al. (2018), Adj-
CNNM’s CNN layers specifically target intricate brain regions of
relatively smaller scale, facilitating the extraction of essential EEG
features.Moreover, Adj-CNNM’s CNN layers emphasize the frontal
and central (FC and C) regions of the brain, in line with existing
literature (Shin et al., 2018). The kernels (kernel 6, 7, 8, and 9) are
distinctly focused on C3, Cz, and C4, reaffirming the significance
of these key channels. This alignment with vital channels not only
showcases the kernels’ capacity to discern and extract vital features
from channels that prominently convey motor-related information
but also validates Adj-CNNM’s effectiveness in efficiently targeting
crucial regions for motor imagery interpretation. Furthermore,
Adj-CNNM’s adaptability in its CNN layer enables expansion to
encompass other EEG nodes, thereby enhancing its ability to
distinguish between various types of motor imagery.

The intricate process of EEG feature learning in Adj-
CNNM, guided by the precise targeting of essential EEG nodes
and a focus on key channels, underscores its effectiveness
in capturing vital features for successful motor imagery
classification. This contributes to the understanding of brain
activity patterns and enhances the potential for diverse applications
in neuroimaging research.

5.2.2 PLV-CNNM interpretations
This section delves into the intricate process through

which PLV-CNNM acquires essential EEG features for MI data
classification. Figure 7 visually depicts the learning dynamics
within the CNN layers.

• Emphasis on distinct brain regions: Building upon insights
from previous studies (Shin et al., 2018; Zhang P. et al., 2018),
which highlighted the proficiency of CNN layers in targeting
specific brain regions for effective feature extraction, the PLV-
CNNM demonstrates a similar emphasis on distinctive brain
areas. Notably, the frontal cortex (FC), the central region (C),
and the parietal region (P) take center stage in its feature
acquisition process, aligning with the significance of these
regions in cognitive tasks (Shin et al., 2018) underscores the
importance of these regions in cognitive tasks.

• Frontal region activities: Within the 8–30 Hz band, Figure 7A
reveals pronounced activities in the frontal region. Channels
such as Fz, Fc3, Fc1, Fcz, Fc2, and Fc4, located in the
frontal cortex, exhibit discernible levels of activation. These
observations provide valuable insights into the functional
dynamics of the frontal region during motor imagery tasks.

• Central region activities: In the same frequency band,
Figures 7B, C illustrate activities within the central region.
Channels like C5, C3, C1, Cz, C2, C4, C6, Cp3, Cp1, Cp2, Cp4,
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FIGURE 6

Visualization of some convolutional feature map representations. The depicted feature maps were strategically chosen due to their focus on key EEG

nodes (C3, Cz, and C4) known for conveying significant motor-related information. (A) Kernel 6. (B) Kernel 7. (C) Kernel 8. (D) Kernel 9.

and Cpz, central to the motor imagery process, demonstrate
significant activity levels. Of particular note is the activation
of multiple feature maps at the C3, Cz, and C4 EEG nodes,
which serve as vital sources of information for motor imagery
EEG classification (Oikonomou et al., 2017). Figure 7 provides
a visual representation of how the kernels within the CNN
layers purposefully engage with distinct channels, with a
particular focus on C3, Cz, and C4. This representation
underscores the unique contributions of these nodes to the
intricate process of EEG feature extraction and subsequent
classification, enhancing our understanding of the interplay
between neural dynamics and cognitive task performance.

• Interregional connectivity: Figure 7C offers another feature
map overview of activities in various brain regions, with a
specialized focus on the frontal, central, and parietal brain

regions during the desired frequency band for motor imagery
classification (8–30 Hz). This visualization provides insights
into the patterns and distribution of brain activity associated
with the specific task, enhancing the understanding of the
underlying neural dynamics. Moreover, This visualization
reveals vital information from distinct brain regions: the
frontal cortex (Fz, Fcz, Fc3, Fc1, Fc2, and Fc4), central
cortex (C5, C3, C1, Cz, C2, C4, C6, Cp3, Cp1, Cpz, Cp2,
and Cp4). These distinctions provide a detailed view of
connectivity and interactions within and between these critical
brain regions during motor imagery tasks. Additionally,
the PLV-CNNM effectively demonstrates robust connections
between the frontal and central cortex via channels spanning
from Fz to C6. Activities in the central cortex are
evident through channels Cp3 to Cp4, while functional
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FIGURE 7

Visualizing Convolutional Feature Maps (Kernels) in the 8–30 Hz Frequency Band: Emphasizing Frontal, Central, and Parietal Brain Regions and Their

Interconnections During Motor Imagery. This figure showcases selected feature maps (kernels) from the PLV-CNNM through channels from the

frontal cortex (Fz, Fcz, Fc3, Fc1, Fc2, Fc4), central cortex (C5, C3, C1, Cz, C2, C4, C6, Cp3, Cp1, Cp2, Cp4, Cpz), the parietal cortex (P1, P2, Pz, and

Poz). These maps not only illuminate the significance of these brain regions in motor imagery interpretation but also reveal their interconnections,

providing a comprehensive view of neural dynamics during motor imagery. (A) Kernel 23. (B) Kernel 8. (C) Kernel 11. (D) Kernel 4.

connections link the parietal cortex via channels P1, Pz,
and Poz.

• Consistent activation patterns across tasks: Figure 7D reveals
that during motor imagery tasks involving different body
parts, specific brain regions may exhibit varying activity levels.
However, several studies have identified consistent activation
patterns across various tasks. For instance, motor imagery
tasks associated with hand movements often trigger activation
in areas of the contralateral primary motor cortex (M1) and
premotor cortex (PMC) specific to the imagined side of the
body (Bai and Fong, 2020). Visualizingmovements of the right
hand would activate the left M1 and PMC, while imagining

movements of the left hand would trigger activation in the
right M1 and PMC. The most commonly utilized channels to
measure activity in M1 and PMC are C3, C4, Fc3, and Fc4
(Hoshino et al., 2020). Figure 7D depicts the activities within
the M1 and PMC areas for the C3, C4, Fc3, and Fc4 channels
across the 8–30 Hz frequency bands.

• Distinct activation patterns in different tasks: Similarly, motor
imagery tasks involving foot movements activate areas in the
contralateral M1 and PMC, with slightly different locations
of activation compared to hand imagery tasks (Spedden
et al., 2020). Motor imagery tasks that involve tongue
movements activate the Supplementary Motor Area (SMA),
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a region involved in movement planning and coordination,
represented by channels Fz and Cz, as depicted in Figure 7D.

The effective demonstration of the PLV-CNNM reveals notable
connections between distinct brain regions during motor imagery
tasks, particularly within the 8–30 Hz frequency range. This
frequency band holds significance for motor imagery classification,
highlighting its relevance in understanding neural processes
associated with these tasks.

5.3 Ablation study

An ablation study was conducted to assess the impact of the
graph-based representations on the performance of the motor
imagery classification models. Specifically, the influence of the
adjacency matrix-based graph representation (Adj-Graph) and
the Phase Locking Value-based graph representation (PLV-Graph)
on the performance and robustness of the classification models
was investigated.

CNN (without Adj-Graph): In this configuration, the use of
the adjacency matrix-based graph representation was excluded,
resulting in a baseline CNN architecture applied directly to EEG
signals without incorporating spatial interconnections between
brain regions.

CNN (without PLV-Graph): In this model configuration,
the PLV-Graph was omitted from the pipeline, and the CNN
architecture was applied directly to EEG signals without
considering functional connectivity features derived from the
Phase Locking Value.

Results and analysis: CNN (without Adj-Graph): The
configuration that omitted the adjacency matrix-based graph
representation achieved an accuracy of 32.64% with a standard
deviation of 0.033, as shown in Table 9. This result underscored the
substantial impact of the Adj-Graph on the model’s performance.
The exclusion of spatial interconnections between brain regions
led to a significant drop in classification accuracy.

CNN (without PLV-Graph): When the PLV-Graph was not
incorporated, an accuracy of 40.28% was achieved with a
standard deviation of 0.027. While this model outperformed the
configuration without the Adj-Graph, the value of PLV-Graph in
enhancing the model’s performance was clearly demonstrated. The
removal of functional connectivity features derived from the Phase
Locking Value led to a reduction in classification accuracy.

Interpretation: The critical roles played by the Adj-Graph
and PLV-Graph in the classification of motor imagery tasks were
revealed by the results of the ablation study. The absence of the
Adj-Graph substantially impacted the model’s ability to capture
complex spatial interconnections, leading to a significant decrease
in accuracy. Similarly, the removal of the PLV-Graph resulted
in a noticeable reduction in classification accuracy, indicating
the importance of functional connectivity features in capturing
nuanced neural synchronization patterns. The complementary
nature of the two graph-based representations was underscored,
where the Adj-Graph enhanced the spatial representation of EEG
data, while the PLV-Graph captured the temporal dynamics and
functional connectivity within the neural network. The successful
combination of these graph representations in the Adj-CNNM

and PLV-CNNMmodels led to significant improvements in motor
imagery classification accuracy and robustness. Overall, the value
of these graph-based representations in modeling the complex
relationships within EEG data and their critical roles in enhancing
the performance of motor imagery classification models was
demonstrated by the ablation study.

6 Conclusion

In this study, a proposed approach to EEG motor imagery
classification has been introduced, harnessing the power of deep
learning and graph embedding techniques that utilize brain
connectivity to enrich the understanding of brain function. The
focal point of this work lies in the development of two distinct
graph-based convolutional neural networks: the Adj-CNNM and
the PLV-CNNM. The Adj-CNNM is characterized by the utilization
of structural brain connectivity to embed spatial information
and has demonstrated remarkable performance, achieving an
accuracy of 72.77%. Notably, this approach distinguishes itself from
conventional spatial filtering methods by achieving independence
from individual and task-specific dependencies, offering a broader
comprehension of brain network organization.

To transcend the limitation of structural connectivity, the PLV-
CNNM was introduced, which integrates functional connectivity
patterns. Achieving an overall accuracy of 75.10% across the 1–51
Hz frequency range and exceptional individual accuracies of 91.9%,
90.2%, 85.8% and 84.30% for the critical frequency band including
α, µ, β and 8–30 Hz—desired frequency band for MI waves,
the PLV-CNNM successfully uncovers robust connections between
various brain regions during motor imagery tasks. Notably,
prominent interconnections emerge between the frontal and
central cortex and the central and parietal cortex. These findings
significantly contribute to expanding the understanding of brain
connectivity patterns and their pivotal roles in cognitive processes.

In addition to the development of the Adj-CNNM and
PLV-CNNM models, an ablation study was conducted to assess
the impact of the graph-based representations on the performance
of the motor imagery classification models. The influence of
the adjacency matrix-based graph representation (Adj-Graph)
and the Phase Locking Value-based graph representation (PLV-
Graph) on the performance and robustness of the classification
models was investigated. It was found that the Adj-Graph
substantially impacted the model’s ability to capture complex
spatial interconnections, resulting in a significant decrease in
accuracy. Similarly, the removal of the PLV-Graph led to a
noticeable reduction in classification accuracy, indicating the
importance of functional connectivity features in capturing
nuanced neural synchronization patterns. These findings
emphasize the critical roles played by the Adj-Graph and
PLV-Graph in the classification of motor imagery tasks.

The presentation of a comprehensive comparative analysis of
diverse brain connectivity modeling methods not only showcases
the effectiveness of the proposed models but also provides
a valuable resource for researchers seeking to explore brain
connectivity from different perspectives. In conclusion, this study
exemplifies the potential of graph embedding and deep learning to
untangle the complexities of brain connectivity. The advancements
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TABLE 9 Ablation experiment to assess the graph representation impact on the model’s performance.

Model F1 F1 Precision Precision RO–AUC ROC–AUC Accuracy SD
(Macro) (Micro) (Macro) (Micro) (Macro) (Micro)

CNN (without Adj-Graph) 28.34% 32.64% 32.01% 32.64% 56.18% 55.70% 32.64% 0.033

CNN (without PLV-Graph) 40.52% 40.28% 40.64% 40.28% 65.12% 65.54% 40.28% 0.027

Adj-CNNM 72.52% 72.77% 73.93% 72.77% 96.00% 95.57% 72.77% 0.045

PLV-CNNM 74.90% 75.10% 75.76% 75.10% 96.29% 95.22% 75.10% 0.018

achieved in EEG motor imagery classification through the Adj-
CNNMand PLV-CNNMmodels hold the promise of deepening the
understanding of neurological conditions and cognitive processes.

7 Future work

In this study, the introduction of deep learning and graph
embedding techniques for EEG motor imagery classification has
laid the foundation for promising future research directions. Firstly,
cross-dataset validation can be pursued to assess the generalizability
and robustness of the proposed models across diverse EEG
datasets. Further hyperparameter tuning and experimentation with
various model architectures and optimization strategies may yield
improved classification accuracy.

The inclusion of temporal information, possibly through the
exploration of RNNs or attention mechanisms, can enhance the
models’ ability to capture temporal dependencies in EEG data.
Expanding the scope to encompass different cognitive tasks beyond
motor imagery classification would broaden the applicability
of these models. Furthermore, exploring other types of brain
connectivity, such as effective connectivity, can contribute to
a more comprehensive understanding of brain function and
connectivity patterns.

Moreover, further exploration of biomedical applications,
including early diagnosis or monitoring of neurological
conditions, as well as applications in neurorehabilitation and
assistive technology, could significantly impact healthcare. The
development of techniques to enhance model interpretability
would provide valuable insights into brain connectivity patterns,
making the models more accessible and informative for researchers
and clinicians.

Lastly, the integration of EEG data with other neuroimaging
modalities, like fMRI orMEG, offers a comprehensive view of brain
connectivity and function, potentially leading to more robust and
nuanced insights. Open-sourcing the code and models developed
in this study would promote collaboration and facilitate further
research in the field, enabling the scientific community to build
upon and refine the proposed methods for EEG-based brain
connectivity analysis.
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