
TYPE Original Research

PUBLISHED 08 January 2024

DOI 10.3389/fnins.2023.1290803

OPEN ACCESS

EDITED BY

Jeroen Goossens,

Radboud University Medical Centre,

Netherlands

REVIEWED BY

Feifei Wang,

The University of Hong Kong,

Hong Kong SAR, China

Bin Yang,

Taizhou University, China

*CORRESPONDENCE

Jian Lian

14438120200681@sdmu.edu.cn

Wanzhen Jiao

zhener1003@163.com

RECEIVED 20 September 2023

ACCEPTED 18 December 2023

PUBLISHED 08 January 2024

CITATION

Wang D, Lian J and Jiao W (2024) Multi-label

classification of retinal disease via a novel vision

transformer model.

Front. Neurosci. 17:1290803.

doi: 10.3389/fnins.2023.1290803

COPYRIGHT

© 2024 Wang, Lian and Jiao. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Multi-label classification of retinal
disease via a novel vision
transformer model

Dong Wang1, Jian Lian2* and Wanzhen Jiao3*

1School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan, China,
2School of Intelligence Engineering, Shandong Management University, Jinan, China, 3Department of

Ophthalmology, Shandong Provincial Hospital A�liated to Shandong First Medical University, Jinan,

China

Introduction: The precise identification of retinal disorders is of utmost

importance in the prevention of both temporary and permanent visual impairment.

Prior research has yielded encouraging results in the classification of retinal images

pertaining to a specific retinal condition. In clinical practice, it is not uncommon

for a single patient to present with multiple retinal disorders concurrently. Hence,

the task of classifying retinal images into multiple labels remains a significant

obstacle for existing methodologies, but its successful accomplishment would

yield valuable insights into a diverse array of situations simultaneously.

Methods: This study presents a novel vision transformer architecture called

retinal ViT, which incorporates the self-attention mechanism into the field of

medical image analysis. To note that this study supposed to prove that the

transformer-based models can achieve competitive performance comparing with

the CNN-based models, hence the convolutional modules have been eliminated

from the proposed model. The suggested model concludes with a multi-label

classifier that utilizes a feed-forward network architecture. This classifier consists

of two layers and employs a sigmoid activation function.

Results and discussion: The experimental findings provide evidence of the

improved performance exhibited by the suggested model when compared to

state-of-the-art approaches such as ResNet, VGG, DenseNet, and MobileNet,

on the publicly available dataset ODIR-2019, and the proposed approach has

outperformed the state-of-the-art algorithms in terms of Kappa, F1 score, AUC,

and AVG.
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1 Introduction

The retina, as a fundamental component of the ocular system, plays a crucial role in

facilitating human visual function. The retina is situated at the posterior region of the eye

and plays a crucial role in converting incoming light into electrical impulses. These signals

are subsequently transmitted by the optic nerve to the brain (Yokomizo et al., 2019). Based

on the inherent characteristics of the retina, it possesses the capacity to serve as an indicator

for ocular ailments as well as many physiological conditions, including but not limited to

diabetes and neurological disorders (Montesano et al., 2021; Zhou et al., 2021).

Taking advantage of fundus retina imaging evaluation can reveal many retinal illnesses,

such as diabetes retinopathy (DR), glaucoma, and age-related macular degeneration (AMD).

It is important to acknowledge that a significant number of individuals residing in Asian

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1290803
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1290803&domain=pdf&date_stamp=2024-01-08
mailto:14438120200681@sdmu.edu.cn
mailto:zhener1003@163.com
https://doi.org/10.3389/fnins.2023.1290803
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1290803/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1290803

countries such as China and India are experiencing the adverse

effects of DR (Ayoub et al., 2022). In the field of ophthalmology,

glaucoma has emerged as a prevalent cause of enduring visual

impairment (Mokhles et al., 2017; Sun et al., 2022). According to

Schmitz-Valckenberg et al. (2016), AMD is widely acknowledged

as the primary cause of complete vision impairment among

individuals aged 50 and beyond. The precise identification of

retinal lesions has the potential to enhance the timely detection

and subsequent treatment of ocular illnesses. Early detection of

retinal lesions has the potential to delay the progression of visual

impairment resulting from degenerative disorders. Consequently,

early diagnosis can also contribute to the advantageous outcomes

of quick treatment.

Automatic machine vision-aided diagnosis system has attracted

broadly attention from both clinical and academic fields (Abràmoff

et al., 2010). It can mitigate the burden of ophthalmologists

by avoiding the time-consuming, labor-tedious, and error-prone

manual inspections. In addition, the employment of automated

retinal image analysis can further eliminate the variability of

image interpretation even when there are insufficient number

of specialists of retinal image analysis (Mokhashi et al., 2021).

Before the powerful deep learning methods have been proposed,

a large number of machine learning-based retinal image analysis

algorithms have been exploited in this area. As an early work

of branch retinal vein occlusion (BRVO), Chen et al. (2014)

proposed the hierarchical local binary pattern (LBP) to represent

the characteristics of the fundus image. A BRVO dataset was

constructed, and the comparison experiments were conducted

using the images in this dataset. In the work of retinal image

classification (Kumudham, 2015), Kumudham used the LBP

features extracted from the hard exudate regions in retinal images

and a support vector machine (SVM) classifier. Accordingly, each

retinal image can be classified into normal and abnormal cases

for diabetic macular edema (DME). Kothare and Malpe (2019)

proposed an empirical framework consisting of requisite number

of images and a group of methods to predict the possibility of

DR. These methods include SVM and naive Bayes (NB) as the

classifiers as well as the LBP for feature extraction. To discriminate

the presence of DR and grade the severity of DR in retinal images

without lesion segmentation, Berbar (2022) first employed the pre-

processing techniques, including histogram matching and median

filter, to the green channels of retinal images. Then, the contrast-

limited adaptive histogram equalization was leveraged as well as

the unsharp filter, to note that each image was segmented into

small patches, from which the LBP features were generated. In

addition, an SVM was taken as the classifier to implement the

retinal image classification. In general, the study of Berbar (2022)

can grade the severity of DR into three different levels. Recently,

the study of Reddy and Ravindran (2022) presented an automatic

screening platform to recognize DR in retinal images. The proposed

classification scheme consists of two phases. In the first step, the

retinal images were divided into four regions, namely, hard exudate,

microaneursym, hemorrhage, and cotton wool spot. Second, three

classifiers, such as k-nearest neighbor (KNN), gaussian mixture

model (GMM), and SVM, were exploited to realize retinal image

classification and DR severity grading. The classical machine

learning methods rely heavily on the manually designed features

extracted from the retinal images and an appropriate classifier.

However, according to the complicated characteristics of the retinal

images and the variation of illuminations, it remains a challenge

to determine the optimal set of feature and the parameters of one

classifier in a manual fashion.

On the other hand, the deep learning-based architectures have

achieved more promising outcomes than the machine learning

techniques. After the early study in 2016 from Google for

classification of DR in fundus photographs, Hunt et al. (2020)

presented a low-shot, self-supervised deep learning method for

classification of retinal fundus images. The low-shot mechanism of

learning in this study greatly resolved the problem of insufficient

image samples, which is a major obstacle in most of the deep

learning applications. To implement the detection of DR at its early

stage, the study Meshram et al. (2021) proposed an investigation

of the applications of deep learning models for retinal image

classification. In general, the deep learning architectures, including

the conventional convolutional neural network (CNN) and deep

CNNs, were incorporated in this survey. In the study of Tak

et al. (2021), a deep CNN model was trained to classify between

different categories of AMD images. Accordingly, 420 wide-field

retinal images were included in the training process for classifying

the exudative and non-exudative AMD cases, and the accuracy

achieved by the proposed CNN model is 88%. Umamageswari

et al. (2022) provided an approach to identify exudates and veins

with retinal images for the diagnosis of diabetics. Specifically, a

CNN was proposed for retinal image recognition. Recently, to

segment and classify the retinal images in a unified way, Kumari

et al. (2023) proposed an efficient CNN model. To be specific,

the input images for the proposed model were pre-processed

using the green channel images, histogram-based algorithms, and

noise elimination techniques. The features were extracted from

the segmented images using the watershed algorithm as well as

principal component analysis (PCA) technique, to note that the

publicly available datasets used in this study were DRIVE (Asad

et al., 2014), STARE (Guo, 2020), and CHASE DB1 (Yu et al., 2019).

Most of the deep learning-based methods currently depend on the

convolutional modules leveraged to extract the image embeddings

for accurate classification.

Note that the above-mentioned approaches were originally

designed for single-label classification of retinal images. However,

there are usually more than one type of lesions appeared in practical

TABLE 1 Detailed distribution of the ODIR-2019 dataset.

Category Full name Number of images

A Age-related macular degeneration 171

C Cataract 211

D Diabetes retinopathy 1,131

G Glaucoma 207

H Hypertension 94

M Myopia 177

O Other abnormalities 944

N Normal 1,135
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scenarios. In addition, the simultaneous understanding of multiple

lesions in an retinal image could provide more information from

the associations between various diseased areas. Therefore, multi-

label classification of retinal image has also be paid attention by a

variety of machine vision and deep learning algorithms. Omar et al.

(2017) presented a multi-label learning model to implement the

exudate lesion classification based on the multi-scale LBP features.

Sequentially, the KNN, neural network radial base function (NN-

RBF), and neural network back-propagation (NN-BP) were taken

as classifiers. With the employment of deep learning, the study of

Prawira et al. (2021) used both the AlexNet (Krizhevsky et al., 2012)

and VGG16 (Simonyan and Zisserman, 2014) models to deal with

the task of multi-label retinal image classification. In total, there

are three types of lesions, including DR, myopia, and optic disk

cupping (ODC), in the leveraged fundus images. Chai et al. (2022)

introduced a deep learning model using a frequent pattern mining

module with an adversarial auto-encoder network. Extensive

experiments were carried out on a practical image dataset to assess

the performance of the integrated deep model. Instead of using the

CNN-based deep learning architectures, the study Rodríguez et al.

(2022) proposed a vision transformer-based model (Dosovitskiy

et al., 2020) for retinal image analysis, to note that the proposed

approach is similar to the study of Rodríguez et al. (2022), e.g., both

of these two studies were inspired by the work of vision transformer

(Dosovitskiy et al., 2020). However, there are at least the following

differences between this work and ours. First of all, the input of

the proposed model is image patches with linear embeddings, while

Rodríguez et al. (2022) adopted CNN-based features as their input.

Second, the label embeddings in the proposed model are binary

while Rodríguez et al. (2022) used the ternary state embeddings

in addition to the label embeddings. Originally, the transformer

architecture Vaswani et al. (2017) was employed in natural language

(NLP) processing applications (Galassi et al., 2019). Since the

outstanding outcome of transformer yielded in NLP initially, it

has been extensively employed in a variety of machine vision

applications. Different from the CNN models presented in the

retinal image classification, the vision transformer-based models

can unveil the global associations between long-range pixels in

retinal images besides the information extracted from the local

receptive fields (Fang et al., 2019; Gao et al., 2022) in an image.

Bearing the above-mentioned analysis in mind, this study

proposes a novel multi-label retinal image classification model

inspired by the original vision transformer (Dosovitskiy et al.,

2020). A publicly available retinal image dataset ODIR-20191 was

exploited to complete the training of the proposed approach. To

evaluate the performance of the proposed transformer model, the

comparison experiments were conducted using the public dataset

ODIR-2019 between the state-of-the-art CNN architectures.

Experimental results of the proposed approach demonstrate the

superiority of the presented pipeline and the value of self-attention

mechanism in retinal image classification.

1 https://odir2019.grand-challenge.org

FIGURE 1

Image samples in the ODIR-2019 dataset. (Top row) The single-label retinal images. (Bottom row) The multi-label retinal images. C, D, G, H, M, N,

and O denote the cataract, diabetes retinopathy, glaucoma, hypertension, myopia, and other abnormalities retinal images, respectively.
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The primary contributions of this study can be summarized

as follows:

• A vision transformer-based multi-label retinal image

classification pipeline is proposed.

• A vision transformer model designed for the task of multi-

label classification was presented.

• Experimental outcome prove the potential value of the

proposed model in clinical practice.

The subsequent sections of this article are outlined below.

The specifics of the proposed pipeline are outlined in Section 2.

Section 3 outlines the experimental methodology employed to

assess the efficacy of the suggested technique. The study’s discussion

and conclusion are presented in Section 4.

2 Methodology

2.1 Dataset

The proposed vision transformer model was instantiated by

using the public multi-label retinal image database ODIR-2019.

ODIR-2019 was first provided by the Ocular Disease Intelligent

Recognition (ODIR) in 2019 University International Competition.

It is composed of the retinal images containing eight different types

of retinal lesions in total, which are AMD (A), cataract (C), DR (D),

glaucoma (G), hypertension (H), myopia (M), other abnormalities

(O), and the control group of normal (N). Moreover, this dataset

also contains the subject-wise labels with both the images and the

medical records of the patients. Totally, 3,500 annotated retinal

images from 5,000 cases were incorporated within the dataset. The

details of the dataset distribution are shown in Table 1. The entire

set of images were divided into training (70%), testing (20%), and

validation set (10%).

In addition, a set of samples in the ODIR-2019 dataset are

provided in Figure 1. Specifically, there are both single-label and

multi-label retinal images in this dataset.

2.2 Multi-label classification network
architecture

This study aimed at addressing the multi-label classification of

retinal images, which can be expressed mathematically as follows.

To note that each image inside the recordings is represented by the

symbol Ii, where i belongs to the range [1,N
′
]. Here, N

′
represents

FIGURE 2

Architectural of the proposed vision transformer. L is used to represent the quantity of encoder blocks in this model.
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the total count of images present. In this study, the label of each

image could be denoted as a vector yj = (y1, ..., y
′

N) ∈ {0, 1}C
′

,

where C
′
represents the total number of retinal lesion categories.

Each marking denotes the presence (1) or absence (0) of each

specific retinal lesion.

The schematic representation of the transformer model under

consideration, as seen in Figure 2, is based on the architectural

design of the vision transformer (Dosovitskiy et al., 2020). The

initial step involves the utilization of a retinal image as input, which

is subsequently transformed into flattened linear embeddings. To

handle the two-dimensional retinal images, the proposed model

employs to reshape the images I ∈ Rh×w×d into smaller image

patches Ip ∈ Rn×p×p×d. It should be noted that the variable

h × w = 224 × 224 is used to represent the resolution of the

original image. Additionally, the variable p × p specifies the size

of each image patch. The variable d is assigned a value of 3, which

represents the number of channels in an RGB image. The variable

n is calculated as the quotient of h×w divided by p×p. To account

for the distribution of image patches inside each original image,

positional embeddings are concurrently appended to the flattened

embeddings (Dosovitskiy et al., 2020). The positional embedding

serves the purpose of denoting the spatial position of the image

patches inside an image.

In addition to the linear embedding layer, the proposed model

primarily consists of two other components: an encoder block

and a multiple-layer perception (MLP) module. It is important

to acknowledge that each input sequence of retinal images

corresponds to the types of retinal fundus lesions. In addition, the

encoder block incorporates the pivotal multi-head self-attention

module (Vaswani et al., 2017), which is designed to uncover the

relationships among distant image pixels. Furthermore, to achieve

a coherent encoder module, the suggested model employs an

FIGURE 3

Encoder block in the presented transformer model.

iterative repetition of the encoder block. In addition to the multi-

head self-attention modules, the encoders also incorporate several

other types of layers, including layer normalization, dropout, and

MLP blocks. The purpose of employing the MLP block was to

produce the output for multi-label classification by combining the

global average pooling (GAP) unit (Ramasamy et al., 2021) and

the fully connected (FC) layer. In a broad sense, the retrieved

depiction derived from the retinal images comprises both localized

information pertaining to a sequence of signals and the overarching

correlation between signals that are widely separated.

In the suggested transformer model, the input sequences of

retinal images undergo a sequential flattening process, resulting in

the transformation of these sequences into vectors. Furthermore,

it is important to acknowledge that the encoder block is iterated

a variable number of times in different iterations of the proposed

transformer model. Additionally, the diagram depicting the

structural configuration of this encoder block can be observed in

Figure 3.

As depicted in Figure 3, the encoder block comprises several

distinct components, including layer normalization, multi-head

self-attention (MSA), dropout, and MLP block. The study did not

conduct a thorough analysis of the MSA unit as it has already

been extensively studied in the current literature (e.g., Zhou et al.,

2022). The study conducted by Guo and Gao (2022) employed

FIGURE 4

MLP block used in the proposed transformer model. GELU denotes

the activation function (Lee, 2023).
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a unit comprised of H
′
heads to evaluate the similarity between

a query and its corresponding keys, taking into account the

allocated weight for each value. In addition, the layer normalization

module is utilized to compute the mean and variance necessary

for normalizing the inputs to the neurones within a layer during

a single training instance (Ba et al., 2016). In this study, the authors

employ the dropout layer (Choe and Shim, 2019) as a means of

regularization to address the potential issue of over-fitting. The

architectural structure of the multi-layer perceptron (MLP) block

is depicted in Figure 4.

The technique that has been proposed enables the

formulation of the process of categorizing retinal lesions in

the following Equations (1–5):

z0 = [xclass; x
1
pE; x

2
pE; ...; x

m
p ]+ Eposition, (1)

where variable z0 denotes the output of the linear embedding layer.

In the present situation, the variable m denotes the quantity of

channels employed in a linear embedding. The variables xclass and

Eposition correspond to the class token and positional embedding,

respectively. In the context of multi-label classification, it is worth

noting that the class token xclass utilized in the proposed model

exhibits distinct characteristics compared to the single-label class

token employed in the original vision transformer (Dosovitskiy

et al., 2020).

z
′

l = MSA(LN(zl−1))+ zl−1, (2)

zl = MLP(LN(z
′

l ))+ z
′

l , (3)

TABLE 2 Implementation details in the experiments.

Item Value

Batch_size 8

Optimizer Adam

Learning rate 1e-4

Weight decay 0.02

Epochs 100

TABLE 3 Combinations of L and H and the comparison performance of

the proposed model with these combinations.

Model Number of
layers (L)

Number of
heads (H

′
)

AUC

L_2_H_8 2 8 0.907

L_4_H_8 4 8 0.911

L_8_H_8 8 8 0.923

L_2_H_16 2 16 0.917

L_4_H_16 4 16 0.931

L_8_H_16 8 16 0.925

L, number of layers; H, number of heads.

y = FFN(z0L), (4)

where layer normalization unit is represented as LN(.). In this

notation, zl represents the output of layer l. The feed-forward

network integrated with a fully connected (FC) layer and a sigmoid

activation function is written as FFN(.). The output classification

outcome is denoted as y.

The loss function employed throughout the training procedure

is the weighted binary cross entropy function:

Loss = −
1

M

C
′∑

c=1

yilog(p(yc))+ (1− yc)log(1− p(yc)), (5)

where C denotes the number of retinal lesion categories.

3 Experiments

3.1 Implementation details

The transformer model described in this study is implemented

utilizing the PyTorch framework (Paszke et al., 2019). The system

utilizes four NVidia RTX 3090 Graphical Processing Units (GPUs)

with a combined RAM capacity of 128GB for computing purposes.

The optimal parameters of the proposed network are determined

through a trial and error methodology. A 10-fold cross-validation

approach is utilized to evaluate the reliability and stability of

the proposed methodology. The other implementation details are

provided in Table 2. Then, the retinal data input was divided into

ten equally sized groups in a sequential manner. In each iteration,

a single group out of the total of ten was assigned the role of the

testing set, while the remaining nine groups were employed as the

training set. Ultimately, the final output is determined by utilizing

the mean result obtained from 10 iterations.

3.2 Evaluation metrics

In addition, the evaluation metrics included in the

trials included the F1 score, Kappa coefficient, AUC, and

the average of these three performance indicators. The

mathematical representation of these metrics is explicated in

the subsequent equations:

(1) The definition of Kappa is provided in Equations (6, 7,

and 8).

kappa =
po − pe

1− pe
, (6)

po =

∑C
c=1 TPc∑C

c=1(TPc + FNc)
, (7)

pe =

∑C
c=1 TPc × (TPc + FNc)

N × N
, (8)

where the phrases true positive and false negative are denoted as

TP and FN, respectively. The variable c represents the number of
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retinal lesion categories, whereas N represents the total number of

image samples.

(2) The used F1 score is expressed as Equations (9, 10, and 11).

F1 = 2×
Precision× Recall

Precision+ Recall
= 2×

TP

2× TP + FN + FP
, (9)

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

where the terms FP and FN represent false positive and false

negative, respectively.

(3) AUC is given in Equations (12, 13, and 14).

AUC =

∫ 1

x=0
TPR(FPR−1(x))dx, (12)

TPR =
TP

TP + FN
, (13)

FPR =
FP

FP + TN
. (14)

3.3 Ablation study

To ascertain the most suitable architecture for the proposed

vision transformer, a comprehensive evaluation was conducted

to determine the optimal combination of the hyper-parameters

used in the proposed model. In the ablation study, we considered

the number of encoder blocks (L) in the encoder, as depicted in

Figure 3, and the number of MSA heads (H
′
) employed in a single

encoder block, as demonstrated in Figure 3.

The in-depth findings of the ablation study can be found in

Table 3. It is important to keep in mind that only 10% of the

retinal images were used in the study that involved ablation. In

the meantime, the area under the curve (AUC) was used as the

evaluation statistic for this algorithm.

The most effective combination of L andH
′
may be determined

by referring to Table 3. Specifically, the combination of L = 4

and H = 16 demonstrates optimal results. This combination is

subsequently utilized in the subsequent experiments conducted for

the suggested approach.

FIGURE 5

Classification results of the proposed approach on the ODIR-2019 dataset.

FIGURE 6

Classification results of the proposed approach on the RFMiD 2.0 dataset.
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3.4 Performance of the proposed method
and the comparison experiments

This section first presents the outcomes obtained by

implementing the proposed methodology on the publicly

accessible dataset ODIR-2019. The classification results are

presented in Figure 5. The corresponding outcomes are Kappa

(0.645 ± 0.04), F1 score (0.919 ± 0.02), AUC (0.938 ± 0.05), and

AVG (AVG =
Kappa+F1+AUC

3 , 0.834± 0.04).

Meanwhile, a hold-out test was conducted to evaluate

the proposed approach on entirely new data, which had not

been used in the training process. Thus, the RFMiD 2.0 data

FIGURE 7

Comparison results between the proposed approach and the state-of-the-art techniques on the ODIR-2019 dataset.
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FIGURE 8

CAMs generated using the proposed approach.

(Panchal et al., 2023) were exploited in the hold-out test Figure 6.

The corresponding experimental results are Kappa (0.681 ±

0.03), F1 score (0.927 ± 0.04), AUC (0.944 ± 0.08), and

AVG (0.851± 0.03).

In order to provide further evidence of the effectiveness of

the provided approach, experiments comparing our model to the

most recent and cutting-edge CNN models have been carried

out. Models such as VGG19 (Simonyan and Zisserman, 2014),

ResNet50 (He et al., 2015), Inception-V3 (Szegedy et al., 2014),

Efficient-B4 (Tan and Le, 2019), ResNet101 (He et al., 2015), and

vision transformer (Rodríguez et al., 2022) are considered to be

among the most advanced currently available. The results of the

comparison are presented in Figure 7.

Furthermore, the class activation mapping (CAM) figures

generated by using the proposed approach with the public dataset

are provided in Figure 8.

Finally, to evaluate the proposed model in classifying

each category of retinal diseases, the single-label classification

experiment was conducted by the proposed approach on the ODIR-

2019 dataset. The corresponding results are F1 score (0.932± 0.06)

and AUC (0.950± 0.03).

3.5 Discussion

It is clear by looking at Figure 7 that the proposed methodology

has reached a higher level of performance when compared to

the ways that are currently being used. To be more specific, the

Kappa value of the technique that is being proposed is 0.645. It

has increased by 9.38 % in comparison with the one that was

produced by ResNet101’s work (He et al., 2015), which was the

closest one. In addition, in comparison with the one that was

created by ResNet101, the F1 score of the suggested approach

has grown by 7.68 %, the value of the approach’s AUC has

increased by 0.97 %, and the approach’s average value has increased

by 0.85 %.

There are also several limitations need to be mentioned in

this study. First of all, this study did not take the imbalanced

issue existed in the leveraged dataset into consideration. In

the ODIR-2019 dataset, there are much more images in the

DR (D), normal (N), and other abnormalities (O) categories

than the remaining five classes. Therefore, the imbalanced

distribution of the dataset might have an influence on the

performance of the proposed approach. Second, the presented

deep model was inspired by the original vision transformer

(Dosovitskiy et al., 2020), and the primary modification to the

original vision transformer mainly locates at the output layer

to adapt to the requirement of multi-label classification. The

inner structure of the vision transformer needs should also be

optimized to yield a more accurate result. Finally, only one

specific dataset was exploited in the experiments, which might

not be able to prove the generalization of the proposed vision

transformer architecture.

4 Conclusion

In this study, a novel vision transformer model was presented

to resolve the multi-label retinal image classification issue. In

total, eight categories of retinal images can be classified by

the proposed approach. Experimental results demonstrate the

superiority of our method over the state-of-the-art CNN-based

models. To note that it can be attributed to the leveraged

attention mechanism in the proposed deep learning model,

which is supposed to reveal the global associations between

long-range pixels.

In the future, more data samples will be incorporated

to enhance both the diversity of the images and the

generalization of the model presented in this study. In addition,

a variety of the combinations of CNN and transformer

modules would be exploited to develop more optimal

deep models.
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