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Spiking neural networks (SNNs), as brain-inspired neural network models based

on spikes, have the advantage of processing information with low complexity

and e�cient energy consumption. Currently, there is a growing trend to design

hardware accelerators for dedicated SNNs to overcome the limitation of running

under the traditional von Neumann architecture. Probabilistic sampling is an

e�ective modeling approach for implementing SNNs to simulate the brain to

achieve Bayesian inference. However, sampling consumes considerable time. It is

highly demanding for specific hardware implementation of SNN sampling models

to accelerate inference operations. Hereby, we design a hardware accelerator

based on FPGA to speed up the execution of SNN algorithms by parallelization.

We use streaming pipelining and array partitioning operations to achieve model

operation acceleration with the least possible resource consumption, and

combine the Python productivity for Zynq (PYNQ) framework to implement the

model migration to the FPGA while increasing the speed of model operations.

We verify the functionality and performance of the hardware architecture on the

Xilinx Zynq ZCU104. The experimental results show that the hardware accelerator

of the SNN sampling model proposed can significantly improve the computing

speed while ensuring the accuracy of inference. In addition, Bayesian inference

for spiking neural networks through the PYNQ framework can fully optimize

the high performance and low power consumption of FPGAs in embedded

applications.Taken together, our proposed FPGA implementation of Bayesian

inference with SNNs has great potential for a wide range of applications, it can

be ideal for implementing complex probabilistic model inference in embedded

systems.

KEYWORDS

spiking neural networks, probabilistic graphical models, Bayesian inference, importance

sampling, FPGA

1 Introduction

Neuroscience research plays an increasingly important role in accelerating and inspiring

the development of artificial intelligence (Demis et al., 2017; Zador et al., 2022). Spikes are the

fundamental information units in the neural systems of the brain (Bialek et al., 1999; Yu et al.,

2020), which also play an important role in information transcoding and representation in

artificial systems (Zhang et al., 2020; Gallego et al., 2022; Xu et al., 2022). Spiking neural
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networks (SNNs) utilize spikes as brain-inspired models are

proposed as a new generation of computational framework (Maass,

1997). SNNs have received extensive attention and can utilize many

properties of artificial neural networks for deep learning in various

tasks (Kim et al., 2018; Shen et al., 2021; Yang et al., 2022).

Numerous neuroscience experiments (Ernst and Banks, 2002;

Körding and Wolpert, 2004) have shown that the cognitive

and perceptual processes of the brain can be expressed as a

probabilistic reasoning process based on Bayesian reasoning. From

the macroscopic perspective, Bayesian models have explained

how the brain processes uncertain information and have been

successfully applied in various fields of brain science (Shi et al.,

2013; Chandrasekaran, 2017; Alais and Burr, 2019). In contrast,

recent studies focus on implementing SNNs using probabilistic

graphical models (PGMs) at the micro level (Yu et al., 2018a,b,

2019; Fang et al., 2019). However, the realization of PGMs is

considerably slow due to the sampling process. Since probabilistic

sampling on SNNs involves massive probabilistic computations

that can consume a lot of time and many computationally

intensive operations are involved in processing the data in the

neural network, the inference speed will be even slower with

the scale of the problem. In some practical application scenarios

such as medical diagnosis, environmental monitoring, intelligent

monitoring, etc., these problems lead to poor real-time application,

which causes a series of problems. Therefore, we want to do some

acceleration and improvements to meet the demand for speed

in real applications. At present, there are dedicated hardware

designs for SNNs (Cai et al., 2018; Liu et al., 2019; Fang et al.,

2020; Han et al., 2020; Zhu et al., 2022), and for PGMs based on

conventional artificial neural networks (Cai et al., 2018; Liu et al.,

2020; Fan et al., 2021; Ferianc et al., 2021). Yet, there are few

studies for hardware platforms to implement PGM-based SNNs.

Therefore, it is highly demanding and meaningful for hardware

acceleration of PGM-based SNNs, not only for simulation speed-

up but for neuromorphic computing implementation (Christensen

et al., 2022).

In this study, we address this question by utilizing FPGA

hardware to implement a recently developed PGM-badsed SNN

model, named the sampling-treemodel (STM) (Yu et al., 2019). The

STM is an implementation of spiking neural circuits for Bayesian

inference using importance sampling. In particular, The STM is

a typical probabilistic graphical model based on a hierarchical

tree structure with a deep hierarchical structure of layer-on-layer

iteration and uses a multi-sampling mode based on sampling

coupled with population probability coding. Each node in the

model contains a large number of spiking neurons that represent

samples. The STM process information based on spikes, where

spiking neurons integrate input spikes over time and fire a spike

when their membrane potential crosses a threshold. With these

properties, the STM is a typical example of PGM-based SNN for

Bayesian inference. The software implementation of sampling-

based SNN is very time-consuming, and actual tasks are limited

by the model running speed on CPU. Therefore, to fulfill our

requirements for the running speed of the model, it is necessary to

choose a hardware platform for designing a hardware accelerator.

Here we need to consider which hardware platform is chosen

to better implement the design of the accelerator.

ASIC-based design implementations: Compared with general

integrated circuits, ASIC has the advantages of smaller size,

lower power consumption, improved reliability, improved

performance,and enhanced confidentiality. ASICs can also reduce

costs compared to general-purpose integrated circuits in mass

production. Ma et al. (2017) designed a highly-configurable

neuromorphic hardware coprocessor based on SNN implemented

with digital logic, called Darwin neural processing unit (NPU),

which was fabricated as ASIC in SMIS’s 180 nm process for

resource-constrained embedded scenarios. Tung et al. (2023)

proposed a design scheme for a spiking neural network ASIC

chip and developed a built-in-self-calibration (BSIC) architecture

based on the chip to realize the network to perform high-precision

inference under a specified range of process parameter variations.

Wang et al. (2023) proposed an ASIC learning engine consisting of

a memristor and an analog computing module for implementing

trace-based online learning in a spiking neural network, which

significantly reduces energy consumption compared to existing

ASIC products of the same type. However, ASIC requires a long

development cycle and is risky. Once there is a problem, the whole

piece will be discarded. Consequently, we do not consider the use

of ASIC for design here.

FPGA-based design implementations: FPGA has a shorter

development cycle compared to ASIC, is flexible in use, can be used

repeatedly, and has abundant resources.

Ferianc et al. (2021) proposed an FPGA-based hardware

design to accelerate Bayesian recurrent neural networks (RNNs),

it can achieve up to 10 times speedup compared with GPU

implementation.Wang (2022) implemented a hardware accelerator

on FPGA for the training and inference process of Bayesian belief

propagation neural network (BCPNN), and the computing speed

of the accelerator can improve the CPU counterpart by two orders

of magnitude. However, RNN and BCPNN in the above two

designs are essentially traditional neural network architectures,

which are different from the hardware implementation of the

SNN architecture and cannot be directly applied to our SNN

implementation.

In addition, Fan et al. (2021) proposed a novel FPGA-

based hardware architecture to accelerate BNNs inferred through

Monte Carlo, it can achieve up to nine times better compute

efficiency compared with other state-of-the-art BNN accelerators.

Awano and Hashimoto (2023) proposed a Bayesian neural network

hardware accumulator called B2N2, i.e., Bernoulli randomnumber-

based Bayesian neural network accumulator, which reduces

resource consumption by 50% compared to the same type of

FPGA implementation. For the above two designs, the hardware

architecture proposed by Fan and Awano cannot be used for

the acceleration of the STM, because the variational inference

model and the Monte Carlo inference model are not suitable

for importance sampling, but STM needs to be sampled through

importance sampling. In other words, the hardware architecture is

different due to the different models, so we cannot use these two

hardware architectures to accelerate STM on the FPGA.

In summary, many previous designs were implemented on

FPGAs because ASIC is less flexible and complex than FPGAs

(Ju et al., 2020). GPUs often perform very well on applications

that benefit from parallelism, and are currently the most widely
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used platform for implementing neural networks. However, GPUs

are not able to handle spike communication well in real-time,

while the high energy consumption of GPUs leads to limitations

in some embedded scenarios. Therefore, we chose the FPGA as a

compromise solution, which provides reasonable cost, low power

consumption, and flexibility for our design. Furthermore, for some

FPGA-based design implementations, due to the limitations of the

traditional ANN neural network architecture (Que et al., 2022)

and some inference models are not suitable for sampling (Fan

et al., 2022), we also need to design a hardware implementation

suitable for importance sampling (Shi and Griffiths, 2009). Based

on the above design reference and our previous work that the

STM of a neural network model for Bayesian inference, we finally

chose FPGA to complete the design of the STM accelerator, and

also complete the neural network model construction of Bayesian

inference on FPGA with the help of PYNQ framework to achieve

the acceleration of STM. The overall design idea is as follows.

Firstly, optimize the model inference part of the algorithm to make

full use of FPGA resources to improve program parallelism, thus

reducing the computing delay, and complete the design of custom

hardware IP cores. Secondly, the designed IP core is connected

to the whole hardware system, and the overall hardware module

control is realized according to the preset algorithm flow through

the PYNQ framework.

The main contributions of this work are as follows:

• We are the first work targeting acceleration of STM on

the FPGA board, and the inference results of the STM

implemented on the FPGA are similar to the inference results

implemented by the CPU;

• We implemented the acceleration of the STMon a Xilinx Zynq

ZCU104 FPGA board, and we also found that the acceleration

on the FPGA increases with the problem size, such as the

number of model layers, the number of neurons, and other

factors;

• We demonstrate that the neural circuits we implemented on

the FPGA board can be used to solve practical cognitive

problems, such as the integration of multisensory, it can

also efficiently perform complex Bayesian reasoning tasks in

embedded scenarios.

2 Related work

2.1 Bayesian inference with importance
sampling

Existing neural networks using variational-based inference

methods such as belief propagation (BP) (Yedidia et al., 2005)

and Monte Carlo (MC) (Nagata and Watanabe, 2008) can obtain

accurate inference results in some Bayesian models. However,

most Bayesian models in the real world are more complex.

When using BP (George and Hawkins, 2009) or MCMC (Buesing

et al., 2011) to implement Bayesian model inference, each or

each group of neurons generally has to implement a different

and complex computation in these neural networks. In addition,

since spiking neural networks require multiple iterations to obtain

optimal Bayesian inference results, they are more complicated to

implement. Therefore, STM employs the tree structure of Bayesian

networks to convert global inference into local inference through

network decomposition. Importance sampling is introduced to

perform local inference, which ensures that each group of

neurons works simply, making the model suitable for large-scale

distributed computing.

Unlike the traditional method of sampling from a distribution

of interest, we use importance sampling to implement Bayesian

inference for spiking neural networks, which is a method of

sampling from a simple distribution to achieve the estimation of

a certain function value. When given the variable y, the conditional

expectation of a function f (x) is estimated by importance

sampling as:

E(f (x)|y) =
∑

x

f (x)P(x|y) =

∑
x f (x)P(y|x)P(x)∑

x P(y|x)P(x)

=
E(f (x)P(y|x))P(x)
E(P(y|x))P(x)

≈
∑

xi

f (xi)
P(y|xi)∑
xi P(y|x

i)
, xi ∼ P(x).

(1)

where xi follows the distribution P(x). This equation transforms

the conditional expectation E(f (x)|y) into a weighted combination

of normalized conditional probabilities P(y|xi)/
∑

xi P(y|x
i).

Importance sampling can be used to draw a large number of

samples from a simple prior, and skillfully convert the posterior

distribution into the ratio of likelihood, thereby estimating the

expectation of the posterior distribution.

2.2 Sampling-tree model with spiking
neural network

To build a general-purpose neural network for large-scale

Bayesian models, the STM was proposed in the previous work (Yu

et al., 2019), as shown in Figure 1. As a spiking neural network

model for Bayesian inference, STM is also a probabilistic graph

model with an overall hierarchical structure. Each node in the graph

has a large number of neurons as sample data.

The STM is used to explain how Bayesian inference algorithms

can be implemented through neural networks in the brain, building

large-scale Bayesian models for SNN. In contrast to other Bayesian

inference methods, the STM focuses on multiple sets of neurons

to achieve probabilistic inference in PGM with multiple nodes

and edges. Performing neural sampling on deep tree-structured

neural circuits can transform global inference problems into local

inference tasks and achieve approximate inference. Furthermore,

since the STM does not have neural circuits specifically designed

for a specific task, it can be generalized to solve other inference

problems. In summary, the STM is a general neural network model

that can be used for distributed large-scale Bayesian inference.

In this model, the root node of the Bayesian network

is the problem or reason that needs to be inferred in our

experiment, the leaf node represents the information or evidence

we receive from the outside world, and the branch nodes are

the intermediate variable of the reasoning problem. From the

macroscopic perspective, the STM is a probabilistic graphical
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FIGURE 1

Sampling-tree model. (A) An example of the STM in spiking neural networks. (B) A tree-structured Bayesian network corresponding to the STM in (A).

model with a hierarchical tree structure. From the neuron level,

each node in the model contains a group of spiking neurons,

and multiple connections between these neurons. Each spiking

neuron is regarded as a sample from a special distribution, and the

information transmission or probability calculation in the model is

achieved through the connections between neurons.

2.3 Hardware implementation using PYNQ
framework

PYNQ provides a Jupyter-based framework and Python API

for designing programmable logic circuits using the Xilinx adaptive

computing platform instead of using ASIC-style design tools.

PYNQ consists of three layers: application layer, software layer, and

hardware layer. The overall framework is shown in Figure 2. There

have been many works implementing neural network acceleration

on FPGAs with the help of the PYNQ framework before this.

Tzanos et al. (2019) implemented the acceleration of the

Naive Bayesian neural network algorithm on the Xilinx PYNQ-Z1

board. The hardware accelerator was evaluated on Naive Bayes-

based machine learning applications. Ju et al. (2020) proposed

a hardware architecture to enable efficient implementation of

SNNs and validate it on the Xilinx ZCU102. However, this design

directly mapped each different computing stage to a hardware

layer. Although this approach can improve the parallelism of the

program, this direct mapping method would consume a great

deal of the hardware resources or even exceed them. Awano and

Hashimoto (2020) proposed an efficient inference algorithm for

BNN, named BYNQNet, and its FPGA implementation. TheMonte

Carlo inference method that this design was based on belongs to

variational inference, which is very complicated in implementing

FIGURE 2

Overall framework of using PYNQ to develop Zynq.

larger-scale impulsive neural networkmodels, and theMonte Carlo

inference method is not suitable for sampling models.

In our work, we focus on ensuring the inference accuracy

of the STM on FPGAs while improving performance. Since

the PYNQ framework provides a Python environment that

integrates hardware Overlay for easy porting. And with the PYNQ

framework, we can implement hardware execution in parallel while

creating high-performance embedded applications, and execute

more complex analysis algorithms through Python programs,

the performance of which can be close to desktop workstations.

It also has the advantages of high integration, small size, and
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FIGURE 3

The example of Bayesian network. (A) A simple Bayesian neural network model. (B) The neural network architecture of the STM for the basic network

as in (A).

low power consumption. When using the PYNQ framework,

the tight coupling between PS (Processing System, i.e., ARM

processor) and PL (Programmable Logic, i.e. FPGA part) can

achieve better responsiveness, higher reconfigurability, and richer

interface functions than traditional methods. The simplicity and

efficiency of the Python language and the acceleration provided

by programmable logic are also fully utilized. Finally, Xilinx has

simplified and improved the design of Zynq-based products on the

PYNQ framework by combining a hybrid library that implements

acceleration within Python and programmable logic. This is a

significant advantage over traditional SoC approaches that cannot

use programmable logic. Therefore, we implement the Bayesian

neural network inference algorithm on Xilinx ZCU104 with the

help of the PYNQ framework.

3 System analysis

In this section, we first summarize the basis of our work

on implementing probabilistic inference algorithms for the brain

through neural networks. We then analyze the difficulties of

accelerating the probabilistic inference algorithm for running

neural network models and briefly describe how we address

these difficulties.

3.1 Neural network implementation

In this subsection, we take the neural network shown in

Figure 3A as an example, and we consider the following two

aspects in the implementation of the neural network: First, for

the stimulus encoding problem, it is important to know how to

accomplish the activities of neurons from stimulus input. Second,

for the estimation of posterior probability, it is also necessary to

consider how the activities of neurons realize the estimation of

posterior probability because our final inference result requires the

expectation over posterior distribution.

For the first problem, we convert stimulus input information

into the activities of neurons through probabilistic population

codes (PPCs) (Ma et al., 2006, 2014). According to PPCs, the

activities of these neurons encoding stimuli inputs, I1, I2, and

others, can be obtained neuronal activity of the root node A.

For the second problem, we divide it into two steps, one is the

calculation of the posterior probability, and the other is the neural

implementation of the posterior probability. Based on importance

sampling, we can estimate the posterior probability by the ratio

approximation of the likelihood function, as shown in Eq. (2).

P(B1 = Bi1,B2 = Bi2|I1, I2) =
P(I1, I2|B

i
1,B

i
2) · P(B

i
1,B

i
2)∫

P(I1, I2|B1,B2) · P(B1,B2)dB1,B2

≈
P(I1, I2|Bi1,B

i
2)∑

i P(I1, I2|B
i
1,B

i
2)
.

(2)

Then, for the neural implementation of posterior probability,

Shi and Griffiths (2009) have shown that divisive normalization

E(ri/
∑

i ri) is commonly found in the cerebral cortex by

neuroscience experiments, and Eq. (3) has been proved, where ri
is the firing rate of the ith neuron.

E(ri/
∑

i

ri) =
P(I1, I2|B

i
1,B

i
2)∑

i P(I1, I2|B
i
1,B

i
2)
. (3)

Next, we will describe the processes and mechanisms of

probabilistic inference implemented in the neural network

(adapted from Fang et al. 2019). First, for the process of

probabilistic inference, the neural network processes external

stimulus inputs I1 and I2 together in a bottom-up manner, as

shown in Figure 3B. Second for the process of generation, which

is to generate sampling neurons and the opposite of the inference

process. Based on the generative model in Figure 3A, we can get

sampling neurons Bi1 and B
i
2 from P(B1) and P(B2), respectively. In

other words, we can get that the sampling neurons follow B1,B2 ∼

N(0, σ 2).
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FIGURE 4

Data interaction architecture between PS and PL, here we use m_axi interface for data transmission.

FIGURE 5

The design idea and overall computing architecture. (A) The program flow of the model on the ZCU104 board. (B) The hardware architecture of the

model.

3.2 Di�culties in designing the accelerator

In this work, the communication settings between PS and PL

should be considered first in the design of the accelerator. Since

the design requires frequent data interactions during operation,

the selection of a suitable data interface can ensure the stability

of data transmission while improving the time required for data

transmission. The second is the design in the PL part, the design

of this part is mainly to complete the work of the FPGA, which

usually needs to achieve the purpose of acceleration by reducing

the Latency of the design.

For the communication setting between PS and PL, since the

BRAM in PL part is not enough to store a large amount of

data and parameters, it is necessary to exchange data frequently

between the PL and PS parts. Therefore, in order to achieve

high-speed read/write operations for large-scale data, we use

the m_axi interface to realize it. Figure 4 shows the data

interaction architecture between PS and PL. The m_axi interface

has independent read-and-write channels, supports burst transfer

mode, and the potential performance can reach 17GB/s, which fully

meets our data scale and transfer speed requirements.

Furthermore, for the design of the PL part, since each node in

the model contains a large number of neurons, it will take up a

lot of resources, and clocks in the process of encoding, summing,

multiplying, and normalizing neurons, in which loops may also be

nested. Although pipelines can be added to the loops to improve

the parallelism of the model operation, the optimization is not

satisfactory due to the large number of bases. Therefore, we propose

a highly parallelized structure by introducing an array division

method to divide the array into blocks, which can further unroll

the loop and make each loop execute independently to improve

the degree of program parallelization. In short, it is a method of

exchanging space for time.

4 Software and hardware
optimizations

The design idea and overall architecture of this work are

shown in Figure 5, which consists of ARM, AXI interface, and

custom IP core designed by Vivado HLS. In the IP core part,

we mainly use the structure of the streaming pipeline to reduce

Latency and thus improve the operation speed. As mentioned in

the previous section, we use the AXI master interface provided

by Xilinx for data transmission between PS and PL, and the

prior distribution and sample data that are ready to participate
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FIGURE 6

Design optimization ideas consisting of on-chip BRAM and processing elements (PE) using array division.

in inference will be allocated and stored in the on-chip BRAM.

When the operation is finished, the result will also be returned to

the off-chip DDR memory through the AXI master interface for

subsequent processing.

In our work, we use the Vivado HLS tool provided by Xilinx

to complete the design of the hardware IP core. This tool allows

the synthesis of digital hardware directly using the high-level

description developed in C/C++. With this tool we can convert

C/C++ designs into RTL implementations for deployment on the

FPGA, thereby significantly reducing the time required for FPGA

development using traditional RTL descriptions. Therefore, the

hardware architecture of the STM accelerator is designed by the

programming language C++.

4.1 IP-core optimization

As mentioned in the last section, while adding the PIPELINE

directive to the loop, we also use the method of array division to

further improve the parallelism of the operation.

Here we take the sum of arrays as an example to illustrate

how to improve parallelism. Under normal circumstances, the

summation of an array is to iterate through each element of the

array and accumulate them in turn. But even if we use the pipeline

structure here, the accumulated value needs to be continuously

read and written during the accumulation process. To prevent the

emergence of dirty data, which leads to a time gap between the two

loops, thus slowing down the speed of operation. In contrast, after

we divide the original large-scale array into 10 blocks through array

division, the subscripts of the array elements are accumulated every

10. In this way, the two adjacent loops in the accumulation process

do not read and write to the same memory, thereby eliminating the

time interval that would normally occur, to achieve the degree of

parallelization of accumulation, as shown in Figure 6.

Finally, adding all blocks is the result of the array summation.

The purpose of the manual expansion is to avoid memory access

TABLE 1 Comparison of resource consumption and Latency between the

normal and the case using array division.

BRAM DSP FF LUT Latency

Normal 14 172 25,934 38,817 11,170

Array division 14 179 28,142 43,849 6,698

bottlenecks and increase the degree of parallelism while using DSP

asmuch as possible. Table 1 is based on the Bayesian networkmodel

shown in Figure 3A. In the case of setting 1,000 neurons in each

node, the resource consumption and latency of not using array

segmentation and using array segmentation are compared. It can

be seen that the resource consumption increases slightly with array

segmentation, but the Latency decreases significantly.

In addition, to further reduce resource utilization and improve

performance, we use a bit-width of 32 bits for each operation

through a simple quantization of floating-point operations. This

kind of quantization has a relatively low negative impact on

accuracy and can improve the performance of each IP core without

reducing the parameters and input accuracy. At the same time, to

alleviate the problem of the maximum frequency increase caused

by reusing the same hardware components, especially BRAM

resources, we added input and output registers to each BRAM

instance to meet the 10 ns clock cycle of each IP core. Algorithm 1

shows the pseudocode of the IP core design. By default, all

nested loops are executed sequentially. During this process, Vivado

HLS provides different pragmas to affect scheduling and resource

allocation.

4.2 Interface signal control

When we compile the PL-side custom core, we need to set up

the top-level file containing the form parameters and return values.

These parameters are mapped to the hardware circuitry to generate
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Require: Get sample data and prior distribution b1,

b2, b3, a.

Ensure: Posterior probability post.

1. Calculate the likelihood distribution based on

sample data and prior probabilities.

for i in NumA do {Likelihood loop1}

for j in NumB do {Likelihood loop2}

la← b1, b2, b3, a

end for

end for

2. Summation by array division.

3. Calculate the Posterior probability post based on

Eq. (2).

for i in NumA do {Posterior loop1}

for j in NumB do {Posterior loop2}

post← la, sum(la)

end for

end for

4. Return calculation result.

Algorithm 1. IP-core design in pseudo-code.

interface signals, which can be controlled to not only help set better

constraints but also to better control the input and output data flow

according to the port timing. In addition, control logic needs to be

extracted to form a state machine, so some handshake signals such

as ap_start and ap_done will be formed.

Common interface constraints can be divided into Block-

Level Protocols and Port-Level Protocols. Here we mainly use the

ap_ctrl_hs signal in Block-Level Protocols, which contains four

handshake signals ap_start, ap_idle, ap_ready, and ap_done. The

ap_start signal is active high and indicates when the design starts

working. The ap_idle signal is active low and indicates whether the

design is idle. The ap_ready signal indicates whether the design is

currently ready to receive new inputs. The ap_done signal indicates

when the data on the output signal line is valid. The specific

functional timing diagram is shown in Figure 7.

According to the timing diagram, we only need to pull the

ap_start signal high and the design will automatically read or

write data through the AXI bus while performing the inference

operation. When the ap_done signal is read high, it means that the

design has been completed, and the valid operation result can be

obtained by reading the memory allocated for return.

4.3 Hardware–software streaming
architecture

After the IP core has been designed, it is added to the

Zynq block design to create the complete hardware architecture,

as shown in Figure 8. The axi_interconnection module ensures

communication between the IP core, PS system, and AXI interface.

The axi_intc module controls the communication interruption of

the interface.

Following the initialization of the design, the PS part will

be used to implement the bitstream loading of the SNN. It also

allows the PS to pass the values of external stimuli and SNN

FIGURE 7

Timing diagram of ap_ctrl_hs four handshake signal functions. We

mainly use ap_start interface to send read data commands to the

FPGA, and detect ap_dong interface in real-time to determine

whether the FPGA has completed the work.

synaptic strengths to the PL part at runtime, which implements

the specific neural network model. The main interface is used to

connect the PL and PS parts of the SoC to ensure high-performance

communication and data exchange between the IP-core and the

PS in the streaming architecture. At the same time, the interlayer

pipeline inside each IP-core is highly customized to build a Co-

design with reset and GPIO. Both external stimulus values and

synaptic strength values are stored in the cache of the BRAM in

the PL part to improve the data reading speed for STM inference.

5 Simulations

We use the Intel i7-10700 and i5-12500, two of the more

capable CPUs currently available, as benchmarks to compare

the performance of model inference implemented on FPGAs.

We test the performance and accuracy of the STM on the

FPGA board for Bayesian inference on two brain perception

problems: causal inference and multisensory integration.

The evaluation metrics include inference effectiveness and

processing speed on the model. In terms of inference

effectiveness, causal inference is evaluated by the error

rate varies with sample size, and multisensory integration

is evaluated by comparison of the inference results and

theoretical value.

5.1 Causal inference

Causal inference is the process by which the brain infers

the causal effect between cause and outcomes when it receives
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FIGURE 8

Hardware streaming architecture block design targeting the Soc with the m_axi interface between the PL and PS.

external information (Shams and Beierholm, 2010). The core

problem of causal inference is to calculate the probability

of the cause, which can be expressed as the expectation

value defined on the posterior distribution. The calculation of

the posterior probability is converted into the calculation of

the prior probability and the likelihood probability through

importance sampling, to realize the simulation of the causal

inference process in the brain. In this experiment, we verify the

accuracy and efficiency of Bayesian inference in the STM on

the Xilinx ZCU104 FPGA board because probabilistic sampling

on SNNs involves a large number of probabilistic calculations

that can consume a lot of time, and the processing of the data

in the inference process involves many computation-intensive

operations, and the CPU is not able to handle these tasks very

quickly.

In this paper, the validity of the model is verified from the

accuracy of inference when different samples are input, and the

STM is modeled by the Bayesian network shown in Figure 9A.

Where B1, B2, B3, and B4 represent the input stimulus in

causal inference and A denotes the cause. The tuning curve

of each spiking neuron can be represented as the state of the

variable. We suppose that the prior and conditional distributions

are known, the distributions of these spiking neurons follow

the prior distribution P(B1,B2,B3,B4), and the tuning curve

of the neuron i is proportional to the likelihood distribution

P(Bi1,B
i
2,B

i
3,B

i
4|A). We can then normalize the output of Poisson

spiking neurons through shunt inhibition and synaptic inhibition.

Here we use yi to denote the individual firing rate of the

spiking neuron i and Y to denote the overall firing rate, and

then:

E(yi/Y = n) =
P(Bi1,B

i
2,B

i
3,B

i
4|A)∑

i P(B
i
1,B

i
2,B

i
3,B

i
4|A)

. (4)

By multiplying and linearly combining the normalized results

with the synaptic weights, the posterior probability can be

calculated:

P(A = a|B1,B2,B3,B4) =
∑

l

I(Al = a)
∑

i

P(Bi1,B
i
2,B

i
3,B

i
4|A

l)
∑

l P(B
i
1,B

i
2,B

i
3,B

i
4|A

l)
.

(5)

The results of the accuracy test are shown in Figure 9B. The

error rate of the stimulus estimation keeps decreasing as the sample

size increases, and when there are 2,000 sampled neurons, the error

rate of stimulus estimation is already quite small. In addition, the

inference accuracy of the implementation on the FPGA is similar

to that on the PC. Therefore, the STM we run on the FPGA board

can guarantee the accuracy of inference.

In terms of performance, we compare the design with

multithreading and multiprogramming implementations on

traditional computing platforms, and the results are shown in

Table 2. It shows the processing time for each neuron sampling

when the number of sampled neurons is 4,000. It can be seen

from the results that multithreading and multiprogramming do

not achieve the desired speedup but have the opposite effect. The

possible reasons for this situation have been analyzed as follows:

(1) Multithreaded execution is not strictly parallel, and global

interpreter locks (GILs) can prevent parallel execution of multiple

threads, so it may not be possible to take full advantage of multicore

CPUs; (2) In terms of multiprogramming, perhaps the problem did

not reach a certain size, resulting in the process creation process

taking longer than the runtime. In addition, communication

between multiprocesses requires passing a large amount of sample

data, which introduces some overhead. For the above reasons, we

finally considered using vectorization operations to vectorize the
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FIGURE 9

Simulation of causal inference. (A) The neural network architecture of the basic Bayesian network. (B) Comparison of error rates under PC and FPGA

platforms.

TABLE 2 Results of sampling time and speed-up of each neuron in the two-layer model.

Processing

time/neural (ms)

Platform
Intel i7-10700

2.90 GHz
Intel i5-12500

2.50 GHz
ARM

Xilinx
ZCU104

Normal 8.556 4.315 53.814 0.389

Multithreading 2 12.217 6.091

4 13.098 6.907

10 13.355 7.578

20 13.778 8.386

50 16.085 10.631

100 20.323 14.772

Multiprogramming 2 344.00 250.88

4 394.43 278.46

8 564.03 454.81

16 948.47 844.73

Vectorization 3.662 2.993

Bold values represents the optimal time on the corresponding platform.

sample data to reduce the number of loops and avoid the speed

limitations caused by nested loops.

From Table, we can see that vectorization is significantly faster

than serial execution, multithreading, and multiprogramming,

while the processing speed of the model on the FPGA is

significantly better than that of the PC.

5.2 Causal inference with multi-layer
neural network

The simulation in the previous section verified the causal

inference under a simple model. The inference speed on the

CPU decreases exponentially as the problem size increases when

the need to shorten the inference time on the network model

through improvements and optimizations becomes even more

important. In this section, we will use a multi-layer neural network

model to test large-scale Bayesian inference based on the sampling

tree on the FPGA board. The STM is modeled by the Bayesian

network shown in Figure 10A, where I1, I2 and I3 denote the input

stimuli in causal inference, A denotes the cause, and the rest are

intermediate variables.

In this simulation, we use several spiking neurons to encode

variables C1, C2, and C3 respectively, and the distribution of these

neurons follows the prior distribution P(C1,C2) and P(C3). In

addition, the tuning curves of these neurons are proportional to
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FIGURE 10

Simulation of causal inference with a multi-layer neural network. (A) The Bayesian model for multi-layer network structure. (B) Comparison of error

rates under PC and FPGA platforms.

the distribution P(I1, I2|Ci
1,C

i
2) and P(I3|C

j
3). We can obtain the

average firing rates of spiking neurons Ci
1, C

i
2, and C

j
3, respectively:

E(Ci
1,C

i
2) =

P(I1, I2|Ci
1,C

i
2)∑

i P(I1, I2|C
i
1,C

i
2)
, (6)

E(C
j
3) =

P(I3|C
j
3)∑

j P(I3|C
j
3)
. (7)

The firing rate calculation of neurons in other layers is similar

to this layer. The firing rate of each layer is multiplied and fed

back to the next layer in the form of synaptic weights, and then

the posterior probability can be calculated:

P(A = a|I1, I2, I3) =

∑

l

I(Al = a)
∑

k

P(Bk1,B
k
2|A

l)
∑

l P(B
k
1,B

k
2|A

l)

∑

i,j

P(Ci
1,C

i
2,C

j
3|B

k
1,B

k
2)∑

k P(C
i
1,C

i
2,C

j
3|B

k
1,B

k
2)

P(I1, I2|C
i
1,C

i
2)P(I3|C

j
3)∑

i P(I1, I2|C
i
1,C

i
2)

∑
j P(I3|C

j
3)

(8)

Similar to the simple model, the result of the STM under the

multi-layer neural network on the FPGA is shown in Figure 10B.

From the figure, we can see that the model running on the

FPGA can guarantee the accuracy of the inference. Moreover, the

performance comparison is shown in Table 3, in the multilayer

network model, multithreading and multiprogramming are equally

limited to achieve the desired results, so the same vectorization

operation is used to optimize the program. We can also see

the processing speed of the STM on FPGA is also improved

compared with the traditional computing platform. In addition,

we can find that due to the increase in the problem size of the

multi-layer model, the acceleration of the model implemented on

FPGA is more pronounced than in the two-layer model, even more

than doubling.

5.3 Multisensory integration

In our daily life, we will obtain information from the

outside world from the sense such as vision, hearing, and tough

simultaneously, and the human brain can integrate this sensory

information in the optimal way to get detailed information about an

external object (Wozny et al., 2008). Some experiments have proved

that the linear combination of different neuronal population

activities with probabilistic population coding corresponds to the

process of multisensory integration (Ma et al., 2006). Here, to

demonstrate that our design can be generalized to other cognitive

problems, we show that the STM on the FPGA board can

solve multisensory integration problems with high performance

and accuracy, and the final results can demonstrate that this

work achieves good performance in the multisensory integration

problem as well.

The simulation first considers the visual-auditory-haptic

integration problem, and the STM is modeled by the Bayesian

network shown in Figure 11A. Here S denotes the position of the

object stimulus, SV , SH , and SA denote visual, auditory, and haptic

cues, respectively. We suppose that P(S) is a uniform distribution,

P(SV |S), P(SH |S), and P(SA|S) are three Gaussian distributions,

respectively. When given SV , SH , and SA, we can use importance

sampling to infer the posterior probability of S, as:

P(S = s|SV , SH , SA) =
∑

S

I(S = s)P(S|SV , SH , SA)

=
∑

iI(Si = s)
P(SV , SH , SA|Si)∑
iP(SV , SH , SA|Si)

, Si ∼ P(s).

(9)
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TABLE 3 Results of sampling time and speed-up of each neuron in the multi-layer model.

Processing

time/neural (ms)

Platform
Intel i7-10700

2.90 GHz
Intel i5-12500

2.50 GHz
ARM

Xilinx
ZCU104

Normal 1.103 0.635 12.75 0.024

Multithreading 2 1.048 0.622

4 1.019 0.617

10 1.006 0.617

20 1.012 0.618

50 1.012 0.618

100 1.013 0.624

Multiprogramming 2 1.174 0.749

4 1.056 0.706

8 1.113 0.762

16 1.371 1.097

Vectorization 0.569 0.403

Bold values represents the optimal time on the corresponding platform.

FIGURE 11

Simulation of multisensory integration. (A) Left: The Bayesian model for visual-auditory-haptic integration, Right: Comparison of model inference

results and theoretical values on FPGA. (B) Left: The Bayesian model for visual-haptic integration, Right: Comparison of model inference results and

theoretical values on FPGA.
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TABLE 4 Results of sampling time and speed-up of each neuron in the simulation of multisensory integration.

Processing

time/neural (ms)

Platform
Intel i7-10700

2.90 GHz
Intel i5-12500

2.50 GHz
ARM

Xilinx
ZCU104

Normal 7.632 5.169 94.608 0.328

Vectorization 3.882 2.160

Bold values represents the optimal time on the corresponding platform.

In our simulation, multisensory integration inference is

achieved through neural circuits based on PPC and normalization.

We use 1,000 spiking neurons to encode stimuli whose states follow

the prior distribution P(S). We suppose that the tuning curve of

the neuron i is proportional to the distribution P(SV , SH , SA|Si),

and then use shunting inhibition and synaptic depression to make

the output of spiking neurons normalized, the result will be fed

into the next spiking neuron with synaptic weights I(Si = s).

Figure 11A shows the simulation results, where the inference result

obtained from the STM on the FPGA board is in good agreement

with the theoretical values. Similar to the visual-auditory-haptic

integration, we also add a simulation of visual-haptic integration

to improve the completeness, which is illustrated in Figure 11B.

Furthermore, the performance comparison is shown in Table 4,

which shows a significant improvement in the sampling speed of

each neuron on the FPGA. Since the results of multi-threading and

multi-process experiments were not ideal in previous experiments,

only vectorization methods are compared here. The results also

show that the running speed on FPGA is still better than that

on CPU.

6 Conclusion

In this work, we design an FPGA-based hardware accelerator

for PGM-based SNNs with the help of the PYNQ framework.

Firstly, the STM, as a novel SNN simulation model for causal

inference, can convert a global complex inference problem into

a local simple inference problem, thus realizing high-precision

approximate inference. Furthermore, as a generalized neural

network model, the STM does not formulate a neural network for a

specific task and thus can be generalized to other problems. Our

hardware implementation is based on this solid and innovative

theoretical model, which solves the problem of slow model

computation based on its realization of large-scale multi-layer

complex model inference.

Secondly, As the first work to realize the hardware acceleration

of the STM, we chose the FPGA platform as the acceleration

platform of the model. For CPUs and GPUs, both of them need to

go through operations such as fetching instructions, decoding, and

various branch logic jumps, and the energy consumption of GPUs

is too high. In contrast, the function of each logic unit of an FPGA

is determined at the time of reprogramming and does not require

these instruction operations, so FPGAs can enjoy lower latency

and energy consumption. Compared to hardware platform ASICs,

FPGAs are more flexible. Although ASICs are superior to FPGAs in

terms of throughput, latency, and power consumption, their high

cost and long cycle time cannot be ignored, and the design of an

ASIC cannot be easily changed once it is completed. In contrast,

FPGAs are programmable hardware that can be changed at any

time according to demand without having to remanufacture the

hardware, and this flexibility is the reason why we ultimately chose

FPGAs. FPGA is a compromise between the above two platforms,

although some aspects of the performance is not up to the two, but

it is a combination of the advantages of the two. It also provides

reasonable cost, low power consumption, and reconfigurability for

neuromorphic computing acceleration.

Thirdly, The experimental results and data on causal inference

validate our conclusion: in the two-layer model, we can then see

that the inference accuracy of the implementation on the FPGA

can approximate that of the implementation on the CPU, with an

accuracy of up to 98%, and at the same time achieve a multifold

speedup. The acceleration effect becomes more and more obvious

as the problem size increases, which is proved in the multi-layer

model, and from the results we can see that the acceleration effect

in the multi-layer model is more than twice as much as that in the

two-layer model. Moreover, in the experiments on multisensory

integration, the experimental results also demonstrate that our

design implementation can be used for other real-world cognitive

problems while guaranteeing the accuracy of reasoning and the

acceleration effect.

Finally, the hardware acceleration method proposed in the

paper can simulate the working principle of biological neurons

very well. Meanwhile, due to the characteristics of low power

consumption and real-time response of FPGA, this method can

have a wide range of applications in the embedded field. The

realized causal inference problems can be used in policy evaluation,

financial decision-making and other fields, and the multisensory

integration can be used in vehicle environment perception, medical

diagnosis and other fields. Specifically, in application scenarios

such as smart home application environments, causal inference

can be used to achieve reasoning about factors affecting health

and provide personalized health advice. Sensory cues such as

vision and hearing are combined to provide a better perceive

the home environment and thus provide intelligent control. Our

work provides a solution for such application scenarios and these

practical applications are expected to promote the progress of

the neuromorphic computing field and make it better meet the

practical application requirements. In addition, so far the STM

does not consider learning, which is an important aspect of

adaptation between tasks. All the results of our simulations are

based on inference with known prior probabilities and conditional

probabilities. Therefore, in future work, we need to combine

learning and inference into one framework and introduce some

learning mechanisms to make the model more complete and

flexible for multiple tasks.
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