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Introduction: Semantic segmentation is a crucial visual representation learning 
task for autonomous driving systems, as it enables the perception of surrounding 
objects and road conditions to ensure safe and efficient navigation.

Methods: In this paper, we present a novel semantic segmentation approach for 
autonomous driving scenes using a Multi-Scale Adaptive Mechanism (MSAAM). 
The proposed method addresses the challenges associated with complex driving 
environments, including large-scale variations, occlusions, and diverse object 
appearances. Our MSAAM integrates multiple scale features and adaptively 
selects the most relevant features for precise segmentation. We introduce a novel 
attention module that incorporates spatial, channel-wise and scale-wise attention 
mechanisms to effectively enhance the discriminative power of features.

Results: The experimental results of the model on key objectives in the 
Cityscapes dataset are: ClassAvg:81.13, mIoU:71.46. The experimental results on 
comprehensive evaluation metrics are: AUROC:98.79, AP:68.46, FPR95:5.72. The 
experimental results in terms of computational cost are: GFLOPs:2117.01, Infer. 
Time (ms):61.06. All experimental results data are superior to the comparative 
method model.

Discussion: The proposed method achieves superior performance compared 
to state-of-the-art techniques on several benchmark datasets demonstrating its 
efficacy in addressing the challenges of autonomous driving scene understanding.
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1. Introduction

Over the past several decades, autonomous driving technology has made remarkable strides. 
The current bottleneck impeding its mass adoption is safety, as it directly pertains to human life 
and well-being. Autonomous vehicles are increasingly becoming integral across a multitude of 
scenarios—from daily living and work commutes to travel and leisure—where safety emerges 
as a critical factor governing their application. These self-driving platforms are fundamentally 
built upon sophisticated visual perception systems (Hubmann et al., 2018; Jin et al., 2021; Hu 
et al., 2023), in which semantic segmentation plays an essential role for pixel-level classification 
of camera images. While recent research has primarily focused on enhancing the accuracy of 
semantic segmentation, high-precision pixel-level classification of objects often relies on strong 
supervised learning methods trained on large, fully-annotated datasets. These models are 
consequently limited to classifying conventional objects—that is, categories predefined in the 
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dataset—operating under the overly idealistic assumption that all 
objects in real-world driving environments remain constant. 
Unfortunately, the real world is ever-changing, and unpredictable 
situations can arise at any moment. For instance, an object with altered 
characteristics, such as an small obstacle in a driving scene in Figure 1, 
may not be  properly identified by the model, which may 
overconfidently misclassify it into another category. Such scenarios 
pose serious safety risks and significantly hamper the practical 
deployment of deep learning algorithms in autonomous driving. 
Moreover, collecting a dataset that encompasses every conceivable 
variation is impractical. Driving environments that present significant 
challenges due to their dynamic nature fall under the category of 
hazardous scenarios, where all dynamic elements could be termed 
‘anomalous obstacles.’ Therefore, it is crucial for a perception network 
to be  trained to adapt to variations and anomalies in these 
risky settings.

Several studies have addressed the challenge of detecting 
variations and anomalous targets in hazardous driving scenarios 
(Lis et al., 2019; Doshi and Yilmaz, 2020; Xia et al., 2020; Blum 
et al., 2021; Vojir et al., 2021). One line of approaches employs 
uncertainty estimation techniques, intuitively based on the low 
prediction probabilities associated with anomalous targets. These 
methods design specific functions to compute uncertainty 
probabilities and subsequently generate anomaly scores. However, 
these techniques often yield noisy and imprecise detection results 
due to the model’s overconfidence in identifying anomalous 
targets. Another primary approach involves augmenting the 
training pipeline with additional tasks specifically for detecting 
anomalous obstacles. Some methods employ external out-of-
distribution (OoD) datasets as training samples for this category, 
while others utilize feature reconstruction techniques to either 
manually design or learn the features of unknown classes to 
distinguish anomalies. Generative models are then used to 
resynthesize the input images. Although these methods have 

proven effective, they are either computationally expensive in 
terms of inference time or labor-intensive in their implementation. 
Moreover, the retraining process may compromise the original 
network’s performance in semantic segmentation. Therefore, 
there is a pressing need for more balanced solutions for 
perceiving and segmenting variations and anomalous objects in 
hazardous scenarios. The ideal approach should enhance the 
performance of uncertainty methods without significantly 
increasing computational overhead or training complexity, all 
while preserving the accuracy of semantic segmentation.

Human attention mechanisms serve as the foundation for 
various cognitive processes, allowing us to selectively focus on 
specific stimuli from an array of available inputs for deeper 
processing. While psychology offers critical methodologies for 
studying these attention mechanisms, neuroscience also stands as a 
primary field in which they are explored (Desimone and Duncan, 
1995). Human attention can be conceptualized as a filtering process, 
determining which pieces of information merit further consideration 
and which should be  disregarded (Treisman and Gelade, 1980). 
Psychological research delves into the behavioral aspects of 
attention, such as its selectivity, concentration, and shifting focus. 
Extensive inquiries into the operational aspects of attention have 
been made through experiments, observations, and surveys, 
covering theories of selective attention, filtering models, theories of 
attention allocation, and the attentional blink, among others 
(Broadbent, 1958; Kahneman, 1973; Raymond et  al., 1992). 
Neuroscience examines the neural underpinnings of attention, 
identifying specific brain regions involved in the attention process. 
Utilizing functional Magnetic Resonance Imaging (fMRI) and 
electrophysiological techniques, scientists have identified the 
prefrontal and parietal cortices as key areas for regulating attention 
(Corbetta and Shulman, 2002), with additional research focusing on 
neurotransmitter systems and neural oscillations (Arnsten and Li, 
2005; Jensen and Mazaheri, 2010). Given that attention mechanisms 

FIGURE 1

Examples of hazardous scenarios.
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are integral to human cognition and crucial for learning, memory, 
decision-making, and other cognitive functions, they have inspired 
research and applications in computer science and artificial 
intelligence. In fields ranging from resource allocation to state-of-
the-art deep learning models—particularly in scenarios dealing with 
big data and large volumes of information—attention mechanisms 
have found robust applications (Mnih et al., 2014; Bahdanau et al., 
2015; Ma et al., 2019). Drawing inspiration from psychological and 
neuroscience research into attention mechanisms, significant 
progress has also been made in developing attention algorithms 
within the domain of artificial intelligence (Vaswani et al., 2017; 
Nobre and van Ede, 2018; Cichy and Kaiser, 2019).

Inspired by human attention mechanisms, humans demonstrate 
remarkable environmental perception skills, effortlessly identifying 
invariant and ordinary elements amidst variations and anomalies such 
as large-scale changes in object dimensions, occlusions, and diverse 
object appearances. This keen attention to the constant and ordinary 
amidst flux and irregularities equips humans with robust capabilities 
for environmental perception. How might this attention paradigm 
be mapped onto the domain of semantic segmentation in autonomous 
driving scenes? First, by analyzing and constructing the feature 
attributes associated with variations and anomalies in hazardous 
scenarios; and second, by aligning these identified feature attributes 
with the most fitting attention mechanisms.

One of the most pervasive attributes of variation and anomaly in 
autonomous driving scenarios is the substantial and high-frequency 
scale change of environmental objects. Objects may vary considerably 
in size and shape, and can be particularly challenging to recognize at 
differing image resolutions. For instance, a distant car may appear 
small in the image, whereas a nearby car would be considerably larger, 
leading to anomalies such as two objects at different distances with 
similar scales and contours being misperceived as the same category. 
To address this issue, we employ a scale attention mechanism that 
operates over multiple image scales within the network architecture. 
These results are then integrated to enhance the accuracy and 
robustness of semantic segmentation, thereby providing more reliable 
and granular information for autonomous driving scenarios.

Due to the spatially diverse distribution of objects at different 
scales—for instance, distant vehicles may occupy a diminutive spatial 
footprint, while nearby pedestrians may occupy a more substantial 
one—a scale attention mechanism necessitates integration with spatial 
attention. Without such a fusion, the model may struggle to ascertain 
the relative spatial positions and importance of differently sized 
structures or objects. For example, a distant small vehicle might 
be semantically more critical than a proximal large tree, but in the 
absence of spatial context, the model might disproportionately focus 
on the tree. Additionally, spatial attention allows the model to home 
in on partially obscured yet crucial areas, such as the legs or head of 
an obstructed pedestrian. Given that different features or attributes 
may reside in different channels—for instance, some channels may 
prioritize edge information, while others may focus on texture or color 
information—structures or objects of different scales may exhibit 
diverse feature expressions across these channels. For a scale attention 
mechanism to properly weight these features, channel attention 
integration becomes necessary, failing which could lead to information 
loss or confusion at certain scales. Moreover, objects in driving 
environments display various characteristics owing to changes in 
lighting, weather, and object types, among other factors. For instance, 

the same object category—such as a car—can display significant 
variations in color, model, and design. Since different appearance 
features may be  distributed across different channels, channel 
attention allows the model to focus on key channels instrumental in 
identifying specific appearances.

This paper introduces a Multi-Scale Adaptive Attention Mechanism 
(MSAAM) for Semantic Segmentation in Autonomous Driving Scenes. 
Initially, a scale attention module is incorporated at the end of the 
Convolutional Neural Network (CNN) encoder. Subsequently, spatial 
and channel attention models are synergistically integrated to enhance 
the performance of the multi-scale attention mechanism. Building on 
this, a composite weighting model encompassing scale, spatial, and 
channel attention is established. This model is trained through a 
compact neural network to meet the requirements for adaptive 
weighting and employs the Softmax function to ensure the sum of the 
weights equals one, thereby preventing disproportionately large weights. 
Finally, an attention-specific loss function is proposed to further amplify 
the distance between the attention values focused on specific pixels and 
those on the remaining pixels. These methodologies allow us to train a 
semantic segmentation network based on MSAAM, effectively 
addressing the perceptual challenges posed by hazardous scenarios in 
autonomous driving, such as large-scale variations, occlusions, and 
diverse object appearances, among others.

The main contributions of our work are as follows:
This paper introduces the Multi-Scale Adaptive Attention 

Mechanism (MSAAM) specifically designed for semantic 
segmentation in driving scenarios. It is an attention mechanism that 
seamlessly integrates three channels—scale, spatial, and channel—and 
adaptively allocates their weights.

The multi-scale adaptive attention model that fuses multiple 
channels is adept at handling various attributes encountered in scenes, 
such as large-scale variations, occlusions, and diverse object 
appearances. Moreover, this attention model is highly modular and 
can be flexibly adapted to integrate with various Convolutional Neural 
Network (CNN) architectures, essentially offering a plug-and-
play solution.

Our approach improves the performance of pixel-level semantic 
segmentation without substantially increasing the number of 
parameters or complicating the training process.

2. Related work

In the realm of hazardous scenario analysis, research work 
predominantly focuses on two main approaches for detecting 
variations and abnormal feature attributes: one that leverages 
uncertainty estimation and another that incorporates additional 
training tasks. This article also explores studies relevant to multi-scale 
attention mechanisms, which is the focus of our work. In this section, 
we  provide an overview of research conducted in these three 
key areas.

2.1. Anomaly segmentation via uncertainty 
estimation

Methods based on uncertainty estimation serve as the most 
straightforward approach in abnormality detection, where 
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uncertainty scores are utilized to identify obstacles on the road. 
Early studies employed Bayesian neural networks and Monte Carlo 
dropout to assess uncertainty. However, these techniques are often 
slow in inference and prone to boundary misclassifications 
(Kendall et  al., 2015; Kendall and Gal, 2017; He et  al., 2020). 
Alternative approaches focus on utilizing maximum softmax 
probabilities or maximum logits to improve uncertainty 
assessment, but these too suffer from the issue of boundary 
misclassification (Hendrycks and Gimpel, 2016; Jung et al., 2021; 
Hendrycks et al., 2022). Generally speaking, without additional 
fine-tuning using outlier data, methods based on uncertainty tend 
to perform poorly in terms of overconfidence and false positives 
at boundaries.

2.2. Anomaly segmentation via introducing 
additional training tasks

Another approach to abnormal segmentation involves 
incorporating extra training tasks. These tasks primarily fall under 
three categories: feature reconstruction, leveraging auxiliary datasets, 
and image re-synthesis. Feature reconstruction methods operate by 
analyzing the normality and deviations in the input features but are 
dependent on precise pixel-level segmentation (Creusot and Munawar, 
2015; Di Biase et  al., 2021). Methods based on auxiliary datasets 
employ external data to enhance detection accuracy but struggle to 
capture all potential anomalies, compromising the model’s 
generalizability (Bevandic´ et  al., 2019; Chan et  al., 2021). Image 
re-synthesis techniques, such as those employing autoencoders and 
Generative Adversarial Networks (GANs), create more diverse 
abnormal samples but at the cost of computational complexity and 
extended inference time (Ohgushi et al., 2020; Tian et al., 2021). While 
these additional training tasks contribute to improving abnormality 
detection, they may also adversely impact the primary task, i.e., 
semantic segmentation performance.

2.3. Multi-scale attention mechanisms for 
image segmentation or fine-grained image 
classification

Effective learning of multi-scale attention regions is pivotal in 
the domains of image segmentation and fine-grained image 
classification (Ge et al., 2019; Zheng et al., 2019). Earlier research 
largely relied on manually annotated object bounding boxes, a 
process that is both time-consuming and impractical. Xiao et al. 
were the first to introduce a multi-scale attention model that does 
not depend on manual annotation, incorporating both object-level 
and part-level attention (Xiao et al., 2015). More recent studies 
have evolved to be  more intricate, involving adaptive region 
localization, weakly-supervised learning, and Feature Pyramid 
Networks (Fu et al., 2017; Rao et al., 2019; Ding et al., 2021). These 
advancements contribute to more precise localization and 
classification of target areas, thereby enhancing the performance 
of pixel-level segmentation or fine-grained classification (Li et al., 
2016a,b; Nian et al., 2016; Zhang et al., 2019, 2020; Jiang et al., 
2020; Liu et al., 2021).

3. Methodology

This section elucidates the Multi-Scale Adaptive Attention 
Mechanism (MSAAM) approach that we  employ for semantic 
segmentation in autonomous driving scenes. Initially, in Subsection 
3.1, we  articulate the motivations underlying our methodology. 
Following this, Subsection 3.2 presents an overview of the 
comprehensive architecture of MSAAM. Subsection 3.3 details the 
multi-scale attention module, while Subsection 3.4 describes a weight-
adaptive fusion attention system.

3.1. Motivation

Human attention mechanisms assist us in selecting and focusing 
on a particular stimulus among various inputs for in-depth 
processing. This mechanism is not only a focal point in psychological 
research but also a principal area of study in neuroscience. 
Psychology investigates the behavioral characteristics of attention, 
utilizing a range of experiments and questionnaires to understand 
how attention is selected and allocated. Neuroscience, on the other 
hand, delves into the brain regions responsible for attention, 
employing technologies such as fMRI and electrophysiology. 
Attention plays a crucial role in cognitive functions like learning, 
memory, and decision-making. Inspired by these insights, the fields 
of computer science and artificial intelligence have also begun to 
explore and implement attention mechanisms, especially in contexts 
that involve large-scale data and high information volume. Advances 
in attention mechanisms within artificial intelligence have been 
made by drawing upon foundational research in psychology 
and neuroscience.

Inspired by human attention mechanisms, we can identify stability 
and regularity amidst environmental variations and anomalies, 
thereby perceiving the environment more effectively. How can such 
an attention paradigm be  applied to semantic segmentation in 
autonomous driving scenarios? First, it involves analyzing and 
identifying the characteristics of variations and anomalies in 
hazardous scenes; second, it calls for choosing suitable attention 
mechanisms tailored for these specific traits.

In autonomous driving scenes, rapid and substantial changes in 
object scale pose a significant challenge. For instance, cars at varying 
distances appear drastically different in size within the same image, 
potentially leading to erroneous identification. To tackle this issue, 
we employ scale attention mechanisms to process multiple image 
scales and integrate the results. This enhances the accuracy and 
robustness of semantic segmentation, making autonomous driving 
more reliable.

In autonomous driving contexts, both the scale and spatial 
positioning of objects are of paramount importance. For example, a 
distant car may hold more significance than a nearby tree, yet the 
model may overemphasize the tree due to a lack of spatial context. 
Therefore, scale attention must be combined with spatial attention to 
comprehend the relative positioning and importance of objects in 
space. Spatial attention also helps the model focus on partially 
occluded yet crucial areas. Additionally, object features of different 
scales and appearances might reside in different channels, such as edge 
or color information. To avoid losing or confusing these details, the 
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scale attention model also incorporates channel attention. In this way, 
the model can more accurately identify a variety of appearances under 
different lighting conditions, weather, and object types.

3.2. Overall architecture

Semantic segmentation models are generally formulated as 
encoder-decoder architectures. An input image is initially transformed 
into high-dimensional features via the encoder. Subsequently, with 
these intermediate features as input, the MSAAM first infers a 
two-dimensional attention map. Importantly, attention should not 
be unbounded. A constant-sum constraint on attention values forces 
pixels within the attention map to compete against each other for 
maximal gain, thereby circumventing the pitfall of the model setting 
all attention values unfavorably high. We  then select multi-layer, 
multi-scale features generated by the encoder and fuse them with the 
attention map. These fused features are fed into the decoder network 
to produce the predictive output. To widen the gap in attention values 
between focus pixels and other pixels, we introduce a penalty term in 
the loss function, termed as MSAAM Loss. Finally, the network’s 
predictive output is combined with MSAAM’s attention map to 
generate the ultimate integrated prediction.

Within the architecture, the MSAAM module situated between the 
encoder and the decoder serves as the linchpin for the attention 
mechanism. Initially, a Pyramid Attention Module is integrated at the 
terminal phase of the encoder. This module employs Pyramid Pooling 
to capture information across different scales, thereby establishing a 
multi-scale attention mechanism. Subsequently, we  utilize the 
Convolutional Block Attention Module (CBAM) to concurrently 
address both spatial and channel attention. CBAM enriches contextual 
information by employing Global Average Pooling and Global Max 
Pooling techniques. To precisely calculate the weights across the three 
dimensions—scale, space, and channel—we have engineered a 
miniature neural network. This network comprises several fully 
connected layers and a Softmax layer, designed to learn the aggregate 
attention weights across different dimensions. As a specific 
implementation detail, Gated Recurrent Units (GRU) are employed to 
update the weights for each dimension, thus constructing a weight-
adaptive model. The basic architecture of attention is shown in Figure 2.

3.3. Multi-scale attention module

Addressing the large-scale variations of objects poses a significant 
challenge for semantic segmentation in autonomous driving scenarios. 
Integrating a multi-scale attention mechanism into the segmentation 
process ameliorates these challenges by enabling the model to focus 
on regions of varying sizes.

The Pyramid Pooling Attention module (PSA) is specifically 
designed to capture contextual information across different 
dimensions and spatial resolutions. Traditional attention 
mechanisms often operate at a single scale, which could limit their 
ability to understand either broader or more nuanced details. In 
contrast, pyramid models, by creating representations at various 
granularities, can effectively tackle the multi-scale challenges 
inherent in computer vision. These representations offer a 
more comprehensive understanding of the scene, which is 
crucial for enhancing segmentation performance in diverse and 
dynamically changing environments, such as those encountered 
in autonomous driving.

The scale-wise attention module f
sc in our framework is a 

sophisticated operation that effectively combines the input feature 
map Fin  with an attention map produced by the PSA module. 
Mathematically, it is represented as:

 f
sc F F F PSA Fin in in in( ) = + ( )  (1)

in this context, symbolizes the scale-wise attention module, Fin  is 
the input feature map,  stands for element-wise multiplication, and 
PSA denotes the Pyramid Pooling Attention module. The essence of 
this formula is that given an intermediate feature map, our module 
produces an attention map through the Pyramid Pooling Attention 
module and then multiplies this attention map with the input feature 
map, achieving adaptive feature refinement.

The definition of the Pyramid Pooling Attention module PSA is 
as follows:

 
PSA F softmax P Fin

i

N
i i in( ) = ∗











=
∑

1

ω
 

(2)

FIGURE 2

Architecture of the MSAAM attention mechanism.
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in this equation, N represents the number of layers in the pyramid, 
Pi refers to the pooling operation at the i-th layer, wi is the weight for 
that layer, and ∗ denotes the convolution operation. The resulting 
attention map amalgamates information from different scales by using 
a weighted combination of pyramid layers.

3.4. Weight-adaptive fusion attention 
system

Following the scale attention layer, we integrate both spatial and 
channel attention layers, formalized as follows:

 
f ,

sp F Conv
C F

f F F g F
j

i j j( ) = ( ) ( ) ( )
























×

∀
∑σ 7 7

1

 
(3)

where, f sp represents the spatial attention module, Ã denotes the 
sigmoid function, Conv7 7×  stands for a convolutional layer with a 
kernel size of 7 7× , Fi and Fj  represent the input features from any 
two positions, f is a function for calculating the relationship between 
two positions, g is a function to compute the embedding of input 
features, and C signifies a normalization factor.

 
f

c F F W W W F bin in in( ) = ( )( ) +( )( )σ δ δ3 2 1 3  
(4)

here, fc indicates the channel-wise attention module, Fin  is the 
input feature map,  refers to element-wise multiplication, σ  
represents the Sigmoid function, δ  is the ReLU function, W1, W2, and 
W3 are convolution kernel parameters, and b3 is the bias parameter.

To accurately calculate the weights across three dimensions—
scale, space, and channel—a compact neural network is designed. It 
consists of several fully connected layers and a Softmax layer, 
employed for learning the composite attention weights across 
different dimensions. Specifically, Gated Recurrent Units (GRU) are 
utilized to update the weights for each dimension. The formal 
definition is:

 

h GRU
W f F W f F

W f F h
t

sc
sc

in sp
sp

c
c

in t
=

⋅ ( ) + ⋅ ( )
+ ⋅ ( )










−, 1  

(5)

here, ht represents the hidden state at time t, employed for weight 
calculation. Wsc, Wsp, and Wc  are weight matrices corresponding to 
scale, space, and channel, respectively.

The computation of the weights can be  realized through a 
straightforward fully connected layer:

 
αsc, ,α αsp c h tSoftmax W h= ⋅( )  (6)

here, α α αsc sp c, ,and denote the weights across the 
three dimensions.

To enlarge the attention-value gap between the focus pixels and 
the remaining pixels, a penalty term is introduced in the loss function, 
known as MSAAM Loss, defined as:

 

MSAAMLoss CrossEntropy Y,=








 +

( ) + ( ) + (

∧
Y

Var Var Varsc sp cλ α α α ))( )  
(7)

here, Y is the ground truth, Y
∧

 is the model prediction, and λ  is 
a hyperparameter that balances the importance of the two terms. 
Var α( ) indicates the variance of the weights; a higher variance implies 
that the model has allocated significantly different weights across 
different scales, spaces, or channels—something we wish to encourage.

In summary, the GRU model maintains a hidden state that 
captures the significance of the scale, space, and channel information 
observed thus far. These weights are normalized through a Softmax 
layer for subsequent use in the attention mechanism. The MSAAM 
Loss is an extension of the basic cross-entropy loss for semantic 
segmentation tasks. The second term is a variance term, intended to 
encourage the model to allocate different weights across the three 
disparate dimensions—scale, space, and channel—to enhance the 
model’s diversity and robustness. Finally, we merge the network’s 
predicted output with the MSAAM attention map to obtain the final 
integrated prediction. Such a design helps the model better capture 
the importance across different scales, spaces, and channels, 
while also encouraging greater attention to the variances among 
these dimensions.

4. Experiments

4.1. Datasets

MSAAM is proposed to improve the semantic segmentation 
for autonomous driving cars in street scenes, we empirically verify 
it on CamVid dataset and Cityscapes dataset in this section. 
CamVid contains 367 training images, 101 validation images, and 
233 test images. The resolution of images in this dataset is 960 × 720 
which will be  downsampled to 480 × 360 for accelerating the 
training stage of SS models. Cityscapes is comprised of a large, 
diverse set of high-resolution (2048 × 1,024) images recorded in 
streets, where 5,000 of these images have high quality pixel-level 
labels of 19 classes and results 9.43 × 10^9 labeled pixels in total. 
Following the standard setting of Cityscapes, the 5,000 images are 
split into 2,975 training and 500 validation images with publicly 
available annotation, as well as 1,525 test images with annotations 
withheld and comparison to other methods is performed via a 
dedicated evaluation server.

4.2. Experimental setup

4.2.1. Implementation details
We adopt DeepLabv3+ with ResNet101 backbone for our 

segmentation architecture with the output stride set to 8. MSAAM is 
incorporated at the end of the encoder. We train our segmentation 
networks on Cityscapes. We use the same pre-trained network for 
all experiments.

To avoid over-fitting, common data augmentations are used as 
preprocessing, including random flipping horizontally, random 
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scaling in the range of [0.5, 2], random brightness jittering within the 
range of [−10, 10], and random crop of 512 × 512 image patches. For 
training, we use the Adam optimizer (Kahneman, 1973) with an initial 
learning rate of 0.0003 and weight decay of 0.00001. The learning rate 
is scheduled by multiplying the initial learning rate with 

1

0 9

−










epoch
maxEpoches

. . All models are trained for 80 epochs with 

minibatch size of 8.

4.2.2. Evaluation metrics
For quantitative evaluation, mean of class-wise Intersection over 

Union (mIoU) are used. We also use the class accuracy (ClassAcc) to 
evaluate the performance of compared methods on different datasets. 
We compare the performance by the area under receiver operating 
characteristics (AUROC) and average precision (AP). In addition, 
we  measure the false positive rate at a true positive rate of 95% 
(FPR95) since the rate of false positives in high-recall areas is crucial 
for safety-critical applications.

4.2.3. Baselines
In Cityscapes dataset, we pick up 19 the most frequently occurred 

classes from the original 35 classes based on the official evaluation 
metrics (Raymond et al., 1992), and their importance groupings from 
trivial to important are.

Group 1 = {Sky, Building, Vegetation, Terrain, Wall};

Group 2 = {Pole, Road, Sidewalk, Fence};
Group  3 = {Traffic sign, Traffic light, Car, Truck, Bus, Train, 

Motorcycle, Person, Rider, Bicycle};
We compare our method with important approaches including 

Synboost, SML, Max logits, Entropy, MSP, Energy, SynthCP, 
Meta-OoD (Broadbent, 1958; Treisman and Gelade, 1980; 
Desimone and Duncan, 1995; Hubmann et al., 2018; Lis et al., 2019; 
Doshi and Yilmaz, 2020; Xia et al., 2020; Blum et al., 2021; Vojir 
et  al., 2021) on test sets of CamVid and on validation sets of 
Cityscapes. Note that Synboost and SynthCP requires additional 
training of extra network and utilizing OoD data. Energy and 
Meta-OoD requires additional training of extra component or 
network. SML, Max logits, Entropy and MSP do not require 
additional training or utilize external datasets.

4.3. Evaluation results

In this section, we  compare the performances of important 
approaches with MSAAM under the above experimental settings. The 
experimental results of compared methods on the investigated classes 
of the two datasets are shown in Tables 1–4, respectively. A more 
comprehensive set of quantitative analysis metrics is shown in Table 5.

From the results shown in Tables 1, 2, we find that by embedding 
our MSAAM to the adopted deep models, the performance of the 

TABLE 1 The comparison results (%) of various methods on the Groups 1 and 2 of Camvid Dataset.

Models Group 1 Group 2

Sky Building Tree Column Road Sidewalk Fence

Synboost 97.06 71.61 77.84 34.31 93.41 90.35 53.57

SML 93.77 86.75 83.29 21.59 98.28 86.38 31.38

Max logits 94.21 71.6 90.88 48.92 93.17 88.78 45.19

Entropy 89.98 88.92 84.58 9.71 94.56 81.27 19.86

MSP 93.38 87.45 83.87 17.23 90.24 88.76 43.33

Energy 85.12 86.4 71.77 20.23 98.66 75.03 25.56

SynthCP 94.44 78.71 88.09 42.28 98.29 94.57 44.84

Meta-OoD 97.87 86.28 81.18 30.04 98.66 86.04 32.74

MSAAM 96.82 75.16 82.81 60.36 92.11 95.19 62.02

The bold values mean highlighting the best results in the data comparison.

TABLE 2 The comparison results (%) of various methods on the Group 3 of Camvid Dataset.

Models Group 3

Sign Car Pedestrian Bicyclist ClassAvg mIoU

Synboost 50.49 82.92 67.21 33.11 71.21 51.19

SML 40.79 80.28 59.93 15.19 64.21 51.08

Max logits 26.58 79.38 39.43 42.29 67.88 52.34

Entropy 0.72 75.37 25.09 0.48 52.32 45.35

MSP 32.33 83.53 36.08 23.45 58.91 47.71

Energy 29.39 80.82 48.08 28.25 60.11 48.51

SynthCP 43.37 76.01 66.39 52.05 72.51 55.31

Meta-OoD 19.58 76.56 37.65 36.08 63.07 53.21

MSAAM 67.57 91.63 78.17 62.51 74.81 55.87

The bold values mean highlighting the best results in the data comparison.
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investigated important classes like sign/symbol, pedestrian, and 
bicyclist can be  significantly improved when compared with the 
results of other approaches. Not surprisingly, the performance on 
unimportant classes such as sky, building, and tree weakly drop 
because they are the target of the attention mechanism. The 
performance gain of MSAAM over the second approach are 17.08, 8.1, 
11.04, 10.46 on sign, car, pedestrian, bicyclist, respectively. Meanwhile, 

MSAAM achieve better performance than other approaches of 
ClassAvg and mIoU values.

From the results in Tables 3, 4, we observe that the important 
classes in Group 3 are segmented with very high performance by 
MSAAM. The performance gain of MSAAM on ClassAvg and mIoU 
are 1.14 and 2.12. For some unimportant classes in Group 1 and 2, the 
performances of the MSAAM-based model are inferior to the other 
models. However, they will not have a large impact on safe-driving as 
explained above.

To further evaluate the experimental results through quantitative 
analysis, we conducted a data analysis on the three metrics, AUROC, 
AP, FPR95 presented in Table 5. From the results, we observe that 
embedding our MSAAM to the adopted deep models, the performance 
achieved the best results compared to all other models. The 
performance gain of MSAAM on AUROC, AP and mIoU are 1.41, 
1.05, 8.04, respectively.

4.4. Auxiliary hierarchical representation

To qualitatively analyze the experimental results, we design 
an algorithm to extract the weights from multiple attention 
modules. It then simplifies the attention pixels into rectangular 

TABLE 4 The comparison results (%) of various methods on the Group 3 of Cityscapes Dataset.

Models Group 3

Traffic 
Sign

Traffic 
Light

Car Truck Bus Train Motorcycle Person Rider Bicycle ClassAvg mIoU

Synboost 75.96 71.18 98.92 68.10 73.87 61.07 42.50 87.29 57.79 81.82 74.66 58.20

SML 62.75 27.42 91.60 0.00 62.93 0.00 0.00 83.05 0.00 63.91 58.52 44.84

Max logits 55.08 21.27 96.42 44.86 41.29 16.94 3.14 67.28 39.47 66.89 59.72 42.58

Entropy 15.03 7.57 90.01 13.20 1.04 52.52 2.55 62.68 0.00 50.58 45.80 38.92

MSP 45.98 14.01 91.50 1.34 29.85 1.02 0.52 67.59 3.57 61.25 48.52 40.20

Energy 42.59 11.60 93.85 2.25 3.51 11.83 0.29 61.65 0.10 57.02 46.28 37.76

SynthCP 83.64 77.40 95.90 77.59 87.49 78.30 56.92 85.37 66.96 85.38 75.69 67.89

Meta-OoD 74.72 67.08 96.56 72.26 82.57 72.02 53.00 87.59 64.57 81.22 79.99 69.34

MSAAM 89.55 81.61 99.36 88.85 89.52 85.82 57.41 89.11 70.11 89.64 81.13 71.46

The bold values mean highlighting the best results in the data comparison.

TABLE 5 The comparison results of various methods on AUROC, AP, and 
FPR95.

Models AUROC↑ AP↑ FPR95↓
Synboost 92.48 47.88 49.04

SML 96.77 50.09 17.37

Max logits 93.75 28.07 29.86

Entropy 90.39 21.93 34.75

MSP 88.26 14.85 33.97

Energy 92.61 30.30 38.37

SynthCP 89.34 22.26 32.72

Meta-OoD 97.38 67.41 13.76

MSAAM 98.79 68.46 5.72

The bold values mean highlighting the best results in the data comparison.

TABLE 3 The comparison results (%) of various methods on the Groups 1 and 2 of Cityscapes Dataset.

Models Group 1 Group 2

Sky Building Vegetation Terrain Wall Pole Road Sidewalk Fence

Synboost 95.57 94.27 94.73 77.53 57.85 74.28 94.89 84.84 64.16

SML 99.21 92.21 97.64 66.35 35.54 49.66 98.36 82.78 59.97

Max logits 98.58 85.37 95.73 52.48 43.38 59.65 93.39 86.97 36.92

Entropy 94.17 92.95 93.06 61.71 12.45 40.11 96.48 81.23 43.69

MSP 92.19 81.63 93.44 64.77 32.95 30.43 97.81 80.23 35.33

Energy 93.56 95.02 90.73 41.24 16.85 28.79 98.61 77.03 25.84

SynthCP 99.52 90.52 90.79 76.21 68.52 70.03 96.80 87.28 64.95

Meta-OoD 94.67 93.04 93.72 75.85 58.48 67.48 99.62 92.61 59.81

MSAAM 93.55 86.86 91.26 67.14 54.47 70.73 94.66 94.48 62.03

The bold values mean highlighting the best results in the data comparison.
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blocks for visualization. This algorithm is named auxiliary 
hierarchical representation.

The original image dimensions are H W C× × . The attention 
weights αsc , αsp  and αc  are extracted from the GRU model. In 
the Scale Attention Auxiliary Hierarchical Representation, the 
weight αsc  and the scale attention output f sc Fin( ) are utilized to 
compute an H W×  scale weight matrix. In this matrix, the weight of 
each pixel (i, j) is the weighted sum of αsc ⋅ fijsc  across all scales, 
defined as follows:

 
ScAHij =∑

s
sc s s ij

scfα , ,·

 
(8)

here, ScAH stands for Scale Attention Highlight.
In the case of Spatial Attention Auxiliary Hierarchical 

Representation, the weight αsp  and the spatial attention output 
f

sp F( )  are employed to calculate an H W×  spatial weight matrix, 
defined as:

 
SpAHij sp= α · fij

sp
 (9)

here, SpAH stands for Spatial Attention Highlight.
For Channel Attention Auxiliary Hierarchical Representation, the 

weight αc  and the channel attention output f c Fin( ) are used to 
compute an H W×  channel weight matrix. Here, the weight of each 
pixel (i, j) is the weighted sum of αc· fijc  across all channels, defined 
as follows:

 
CAHij

c

=∑αc c c ij
cf, ,·

 
(10)

in this context, CAH represents Channel Attention Highlight.
Upon the completion of the hierarchical model construction, the 

model undergoes normalization and color mapping to facilitate the 
high-contrast highlighting of attention regions. For an optimized 
visual experience, a simplified treatment is generally applied to the 
regions of attention.

After auxiliary hierarchical modeling is accomplished for all three 
attention mechanisms—scale, spatial, and channel—their respective 
weights are combined to create a rectangular attention visualization 
model, providing a more straightforward and interactive way to 
represent attention intervals.

Initially, the weights are amalgamated by integrating the weight 
matrices of Scale, Spatial, and Channel into a new weight matrix 
termed as Combined Attention Highlight, abbreviated as CoAH. The 
combination is formalized as:

 CoAHij p= + +α α αsc ij s ij c ijScAH SpAH CAH· · ·  (11)

here, αsc , αsp , and αc  are normalized weights retrieved from 
the GRU model.

Subsequently, a simplified rectangular model is established. A 
simplification algorithm, such as a greedy algorithm or another 
optimization technique, is employed to identify a rectangular 
region with the highest average attention weight. Assuming the 
rectangular region is defined by the top-left corner x ,y1 1( ) and the 

bottom-right corner x ,2 2y( ) , the average weight for this area is 
computed as follows:

 
AW =

− +( )× − +( ) = =
∑ ∑1

1 12 1 2 1
1

2

1

2

x x y y
CoAH

i x

x

j y

y

ij
 

(12)

in this equation, AW stands for Average Weight.
The visualization of the auxiliary hierarchical representation 

based on the MSAAM attention mechanism is shown in Figure 3. 
Scale attention captures objects of the focused category at different 
sizes. Subsequently, spatial attention tends to prioritize obscured 
targets, while channel attention is inclined toward targets with 
significant appearance variations. Both spatial and channel 
attentions assist scale attention in optimizing the areas and objects 
of focus, culminating in an integrated attention model. Auxiliary 
hierarchical representation is for the purpose of visualizing 
this process.

4.5. Ablation study

We integrated the MSAAM into the models that do not require 
additional training or utilize external datasets. These models 
include SML, Max logits, Entropy and MSP. From the results in 
Table 6, we observe that all performance metrics of every model 
improved. The experimental outcomes underscore the versatility 
and effectiveness of MSAAM.

4.6. Comparison on effectiveness

To demonstrate the effectiveness of MSAAM on Cityscapes 
dataset, Figure 4 shows some representative segmentation results of 
the SML, Max logits, Entropy and MSAAM. We  find that the 
interested regions segmented by the MSAAM are highly compact, and 
the shapes of the segmented objects are also more close to that of the 
ground truth. Therefore, MSAAM is effective in emphasizing the 
small but critical targets, and thus is useful for semantic 
segmentation tasks.

4.7. Comparison on computational cost

To demonstrate that our method requires a negligible amount of 
computation cost, we report GFLOPs (i.e., the number of floating-
point operations used for computation) and the inference time. As 
shown in Table 7, our method requires only a minimal amount of 
computation cost regarding both GFLOPs and the inference time 
compared to the other approaches.

5. Conclusion

In this paper, we present the Multi-Scale Adaptive Attention 
Mechanism (MSAAM), a specialized framework tailored for 
enhancing semantic segmentation in automotive environments. The 
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attention mechanism uniquely harmonizes three critical 
dimensions—scale, spatial context, and channel features—while 
adaptively balancing their respective contributions. By integrating 
these multi-faceted channels, MSAAM excels in addressing 
complex scene attributes such as scale discrepancies, object 
occlusions, and diverse visual appearances. Notably, the architecture 

of this attention mechanism is highly modular, enabling seamless 
incorporation into a wide array of Convolutional Neural Network 
(CNN) models. As a result, it serves as a versatile, plug-and-play 
component that augments pixel-level semantic segmentation 
performance without significantly inflating the parameter count or 
complicating the training regimen.

TABLE 6 Comparison of metric gains after embedding our MSAAM to models that do not require additional training or utilize external datasets.

AUROC↑ AP↑ FPR95↓ mIoU

SML + MSAAM +0.63 +1.66 +2.70 +1.49

Max logits + MSAAM +0.10 +6.90 +2.47 +0.42

Entropy + MSAAM +1.54 +7.21 +1.85 +1.65

MSP + MSAAM +1.45 +2.34 +1.63 +0.19

FIGURE 3

Visualization of the working process of the MSAAM attention mechanism.
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