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Background: Traumatic brain injury (TBI) increases the risk of mental disorders 
and neurodegenerative diseases in the chronic phase. However, there is limited 
neuropathological or molecular data on the long-term neural dysfunction and its 
potential mechanism following adolescent TBI.

Methods: A total of 160 male mice aged 8  weeks were used to mimic moderate 
TBI by controlled cortical impact. At 1, 3, 6 and 12  months post-injury (mpi), 
different neurological functions were evaluated by elevated plus maze, forced 
swimming test, sucrose preference test and Morris water maze. The levels 
of oxidative stress, antioxidant response, reactive astrocytes and microglia, 
and expression of inflammatory cytokines were subsequently assessed in the 
ipsilateral hippocampus, followed by neuronal apoptosis detection. Additionally, 
the morphological complexity of hippocampal astrocytes was evaluated by Sholl 
analysis.

Results: The adolescent mice exhibited persistent and incremental deficits in 
memory and anxiety-like behavior after TBI, which were sharply exacerbated at 
12 mpi. Depression-like behaviors were observed in TBI mice at 6 mpi and 12 
mpi. Compared with the age-matched control mice, apoptotic neurons were 
observed in the ipsilateral hippocampus during the chronic phase of TBI, which 
were accompanied by enhanced oxidative stress, and expression of inflammatory 
cytokines (IL-1β and TNF-α). Moreover, the reactive astrogliosis and microgliosis 
in the ipsilateral hippocampus were observed in the late phase of TBI, especially 
at 12 mpi.

Conclusion: Adolescent TBI leads to incremental cognitive dysfunction, and 
depression- and anxiety-like behaviors in middle-aged mice. The chronic 
persistent neuroinflammation and oxidative stress account for the neuronal 
loss and neural dysfunction in the ipsilateral hippocampus. Our results provide 
evidence for the pathogenesis of chronic neural damage following TBI and shed 
new light on the treatment of TBI-induced late-phase neurological dysfunction.
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Introduction

Traumatic brain injury (TBI) is the leading cause of disability and 
death in both children and young adults (Maas et al., 2017; Quaglio 
et al., 2017). Accumulated evidence in the past decades demonstrates 
that young adults and adolescent survivors after TBI may present 
cognitive, behavioral, or mental symptoms in their adulthood or late 
life (Moretti et al., 2012; Richmond and Rogol, 2014; Sun et al., 2017; 
Rodgin et al., 2021; Xu et al., 2021; Bourke et al., 2022; Max et al., 
2022; Sanchez et  al., 2022). Thereafter, TBI has been commonly 
recognized as a risk factor for many neurodegenerative diseases, such 
as Alzheimer’s disease, Parkinson’s disease, dementia, and chronic 
traumatic encephalopathy (VanItallie, 2019; Vázquez-Rosa et al., 2020; 
Brett et al., 2022). However, the underlying mechanisms of late-life 
neural dysfunction post TBI remains unclear.

Both primary and secondary injuries contribute to neuronal 
damage in the acute and subacute phase of TBI. Intracranial 
hemorrhage and brain destruction are caused by the initial external 
force (Maegele et al., 2017), followed by the reactive microglia and 
astrocytes that alter their transcriptional and morphological profiles 
and exert pro-or anti-inflammatory effects (Karve et al., 2016), which 
promotes the clearance of damaged tissue and neural regeneration 
after TBI (Corps et al., 2015). In the chronic phase, damage-associated 
molecular patterns, such as excitotoxicity, mitochondrial dysfunction, 
oxidative stress, and neuroinflammation, trigger secondary injuries 
(Braun et al., 2017). Chronic neuroinflammation, supported by the 
persisting reactive astrocytes and microglia in the injured animal and 
human brain (Smith et al., 1997; Ramlackhansingh et al., 2011; Faden 
et al., 2016; Pischiutta et al., 2018; van Vliet et al., 2020), can last for 
an extended period and contribute to the chronic neurological 
disorder post-injury (Faden et al., 2016; van Vliet et al., 2020). In 
addition, oxidative stress has been well recognized as a common 
denominator of both brain injury and TBI-related neurodegenerative 
disease (Mackay et al., 2006; Ma et al., 2017; Dong et al., 2018; Cheng 
et al., 2022). Excessive reactive oxygen species (ROS) and reactive 
nitrogen species are generated and cause neurotoxicity by increasing 
intracellular free Ca2+ and releasing excitatory amino acids (Khatri 
et al., 2021) or directly inducing peroxidation of lipid, protein, and 
DNA in the acute phase of TBI (Ma et  al., 2017). These findings 
provide evidence to link chronic inflammation and oxidative stress 
with TBI-related neurodegenerative pathology.

Nuclear factor erythroid-derived 2-related factor 2 (NRF2), is 
widely recognized as a key transcription factor that regulates both the 
antioxidant responses and neuroinflammation (Buendia et al., 2016). 
Our previous study presented that NRF2 is widely expressed in neurons 
and glia post TBI (Dong et al., 2019). Many evidence has demonstrated 
that NRF2 plays neuroprotective roles against TBI-induced brain 
injury (Li et al., 2014; Lu et al., 2015; Dong et al., 2018; Sigfridsson 
et al., 2020; Wang et al., 2020; Cui et al., 2021) and neurodegenerative 
diseases (Rojo et al., 2010, 2018; Osama et al., 2020; Ren et al., 2020; 
Zgorzynska et al., 2021). Considering the critical role of NRF2 in TBI 
and numerous neurodegenerative diseases, it is necessary to explore 
the expression pattern of NRF2 during the late phase of TBI.

In this study, to reveal the underlying mechanisms of long-lasting 
neurological dysfunction following TBI in mice, we  explored the 
lifespan change of neurological dysfunction, oxidative stress and 
neuroinflammation in ipsilateral hippocampus from young age to late 
life of TBI mice.

Materials and methods

Animals and controlled cortical impact 
models

A total of 160 male C57BL/6 mice (8 weeks old, 20–26 g) were 
used in our study. Mice were randomly divided into TBI and 
age-matched control groups. Then mice were subdivided into four 
subgroups as the indicated timepoints (1, 3, 6 and 12 mpi, n = 20 in 
each subgroup). All the mice were housed under constant 
temperature (23 ± 1°C), humidity (60%) and a 12-h light–dark 
cycle, with free access to food and water. In the TBI group, CCI 
was used to mimic the stable moderate TBI model (considerable 
cortical tissue loss without hippocampal injury) as in our previous 
studies (Siebold et al., 2018; Ma et al., 2019; Cheng et al., 2023). 
Briefly, the mice were placed on a stereotaxic apparatus after being 
anesthetized. A scalp incision was subsequently made at the 
midline to expose the skull. A 4 mm craniotomy was performed 
in the left hemisphere between the bregma and lambda to expose 
the dura mater. The craniocerebral strike apparatus (PinPoint™ 
PCI3000, Hatteras instruments, America) was used to perform a 
vertical impact on the cortex (3 mm diameter impactor, velocity 
1.5 m/s, residence time 50 ms, depth 1 mm), followed by sutured 
scalped. The comatose mice were then placed on a 37°C heating 
pad and returned to the cages until the vital signs were stable. The 
mice in the sham group underwent the same surgical procedure 
without any cortical impact. No mice died after the surgery or 
during feeding. All the experiments were approved by the Animal 
Ethics Committee of China Medical University.

Behavior tests

The following behavioral tests were conducted at the indicated 
timepoints post injury. Mice were tested by sucrose preference test 
(SPT) and elevated plus maze (EPM) first, and followed by the force 
swimming test (FST) and Morris water maze (MWM). To avoid the 
effects among different behavior tests, mice were kept in the cages for 
1 day to recover before the next test.

SPT
The SPT was adapted from a previous protocol (Leng et al., 

2018; Browne et al., 2022). Briefly, each mouse was allowed free 
access to 1% sucrose solution and tap water for 16 h, and the 
placement of the two bottles was changed every 12 h to avoid side 
preference at the training stage. After 12 h of food deprivation, the 
mice were allowed free access to tap water and 1% sucrose solution 
for the next 24 h. Sucrose preference was calculated as the 
percentage of the consumed sucrose solution from the total 
consumed fluid (sucrose + water).

FST
The FST was performed as previously described (Li et al., 2021). 

Briefly, the mice were placed in a cylindrical glass filled with no less 
than three quarters of water for 6 min, and their activity was recorded 
for the last 5 min at a temperature of 23 ± 1°C. SMART™ tracking 
software (San Diego Instruments, San Diego, CA, USA) was used to 
record the time of immobility.
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EPM
To measure anxiety-like behavior post-injury, the EPM test was 

performed as previously described (Toshkezi et al., 2018). The EPM 
was consisted of two opened arms and two closed arms. Mice were 
placed at the center of the junction of the maze facing one open arm 
and allowed to explore freely for 5 min. The spent time and number of 
entries into the open arms were recorded using SMART™ tracking 
software for further analysis.

MWM
To evaluate the spatial memory of mice post injury, we performed 

the MWM test at 1, 3, 6 and 12 mpi as previously described (Ren et al., 
2020). Briefly, the mice were trained to find a platform that relied on 
distal cues from four different starting positions in an open circular 
tank. Mice that failed to find the platform within 60 s were guided and 
remained on the platform for 30 s before being returned to their cages. 
On the first day, mice were trained to find the platform 0.5 cm above 
the water. Then, the mice were trained for four more days to find the 
platform below the opaque water. On the sixth day, mice were placed 
at the starting quadrant opposite to the quadrant with removed 
platform and several variables were recorded and measured for 60 s: 
the distance in the platform quadrant, time spent in the platform 
quadrant, and number of crossings between the platform and platform 
quadrant, using SMART™ tracking software (San Diego Instruments, 
San Diego, CA, United States).

Animal selection and sample collection

TBI mice with abnormal behavior were selected for the subsequent 
biological experiments (n ≥ 12 in each time point) according to the 
method proposed by Rodney M Ritzel with a slight modification 
(Ritzel et al., 2022). Briefly, we established a baseline according to the 
means of behavioral parameters (SPT, EPM, MWM and FST) from 
age-matched control mice, and then evaluate the neurological 
dysfunction of TBI mice. The mice with behavioral parameters 
exceeding the baseline were selected for the followed experiments. The 
proportion of TBI mice meeting these criteria was presented in 
Supplementary Table S3. Brain samples were collected as previously 
described (Dong et al., 2018). For immunoblotting, malondialdehyde 
(MDA) detection and quantitative real time polymerase chain reaction 
(RT-qPCR), mice were perfused with cold phosphate buffered saline. 
The ipsilateral hippocampus was dissected on ice and placed in liquid 
nitrogen for use. For immunohistochemical or immunofluorescence 
staining, the mice were perfused with cold 4% paraformaldehyde. The 
brains were embedded in paraffin and 5 μm sections were prepared for 
histological staining.

MDA
MDA was detected using the commercial kit (Nanjing Jiancheng 

Bioengineering Institute, Nanjing, China). The total protein 
concentration was quantified with the bicinchoninic acid assay kit 
(Beyotime, P0009) according to the manufacturer’s instructions. The 
MDA content was expressed in nmol/mg protein.

Immunofluorescence and immunohistochemistry
Immunofluorescence and immunohistochemical staining were 

performed as previously described (Dong et al., 2018). Breifly, tissue 

sections were deparaffinized and hydrated, followed by antigen 
retrieval in citrate buffer at 95°C for 5 min. Then sections were 
incubated by primary and secondary antibodies, which were listed in 
the Supplementary Table S1. Three animals per group were used for 
immunofluorescence or immunohistochemical staining, and the 
definite fields of two sections per animal were evaluated (n = 6). The 
number of positive cells in the ipsilateral hippocampal CA1 and hilus 
was counted at ×200 magnification. The average optical density and 
positive area were quantified using ImageJ, version 6.0 (National 
Institutes of Health).

Fluoro-Jade C staining
Fluoro-Jade C (FJC; Millipore, AG325–30MG) was used to assess 

the number of degenerating neurons following injury. As previously 
described (Dong et al., 2018), the sections of ipsilateral hippocampus 
were incubated with 0.06% potassium permanganate solution and 
then incubated in 0.01% FJC solution for 10 min.

Western blot
The ipsilateral hippocampus was collected for protein extraction 

as previously described (Dong et al., 2018). Protein concentration was 
measured using a BCA kit (P0012; Beyotime Biotechnology, Shanghai, 
China). The primary and secondary antibodies used in this study are 
listed in Supplementary Table S1. Relative band density was quantified 
using ImageJ software (National Institutes of Health).

RT-qPCR
RNA extraction, and RT-qPCR were performed as previously 

described (Dong et al., 2018). The housekeeping gene Gapdh was 
amplified to ensure the addition of equal amounts of cDNA to the 
PCR reactions. ΔΔCT was used to quantify the target gene expression, 
with Gapdh as the reference gene. Primers used in this study were 
listed in Supplementary Table S2.

Morphological data collection and Sholl 
analysis

Fluorescence images were captured using Zeiss Axio Scan.Z1 
under ×200 magnification. Morphological reconstruction of glial 
fibrillary acidic protein (GFAP) positive astrocytes was performed 
using ImageJ (version 6.0; National Institutes of Health), as previously 
described (Bondi et  al., 2021). Briefly, images of the ipsilateral 
hippocampal hilus were converted to an 8-bit format. Two sections 
were taken from each animal, and two GFAP-positive cells (n = 12) 
were randomly selected from the hilus region of each section. Then 
the total and maximum lengths of the process and the number of 
intersections were measured with circles of different diameters 
increasing by 4 μm from the center of the cell body.

Statistical analysis

Data are expressed as mean ± standard deviation. All the data were 
analyzed using Prism software (version 8.0; GraphPad Software, Inc.). 
Two-way ANOVA was used to measure the differences between Sham 
and TBI groups of different time points, and multi-group comparisons 
were performed using Tukey’s post hoc test. Mann–Whitney U test was 
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used for comparison between two groups with non-normal distributed 
data. Statistical significance was set at p < 0.05.

Results

Adolescent TBI causes exacerbated neural 
impairment in the middle-aged mice

To explore neural function impairment during the late phase of 
TBI, we  conducted the SPT, FST, EPM, and MWM to evaluate 
depression-like and anxiety-like behaviors and memory deficits at 1, 
3, 6 and 12 mpi (Figure 1A). As shown in Figures 1B,C, the mice in 
the TBI group demonstrated a significant decrease in the sucrose 
consumption and increase in the immobility time compared with 
sham mice from 6 mpi, which was exacerbated sharply at 12 mpi, 
suggesting that injured mice exhibited depression-like behaviors at 6 
mpi and beyond. Furthermore, the decrease of the number and the 
time of entries in the open arms were worsened at 12 mpi in EPM 
(Figures 1D–F), demonstrating a prolonged anxiety-like behavior in 
injured mice. In MWM test (Figure 1G), the path length, the time in 
the platform quadrant (Figures  1H,I), the number of platform 
quadrants (Figure 1J) and the number of platform in the probe test 
(Figure 1K) decreased in the TBI mice compared with the age-matched 
mice; all of them were significantly decreased at 12 mpi 
(Figures  1H–K), indicating a persistent and incremental spatial 
memory impairment post-injury. In summary, these behavioral 
observations revealed that TBI in adolescent mice resulted in the 
deterioration of neurological function in the late phase of their life (6 
mpi and 12 mpi).

Apoptosis contributes to chronic neuron 
loss in ipsilateral hippocampus following 
TBI

Since the hippocampal neurons play the key roles of both 
processing memory storage and regulating depression/anxiety-like 
behaviors (Tunc-Ozcan et  al., 2019; Takahashi et  al., 2021), 
we  explored the relationship between neural dysfunction and 
ipsilateral hippocampal neuron loss. A progressive neuronal decrease 
in ipsilateral hippocampal CA1 (Figure 2A; Supplementary Figure S1) 
and hilus (Figure 2B; Supplementary Figure S1) was revealed by the 
NeuN-positive staining from 3 mpi, which was not affected by the 
ageing of the mice (Figures  2A,B). In addition, as shown in 
Figures 2C,D,G,H, FJC-positive cells remained at a constant low level 
within 6 months post-injury and increased sharply at 12 mpi both in 
CA1 and hilus. In line with this, immunohistochemical staining of 
cleaved caspase 3 demonstrated the same pattern (Figures 2E,F,I,J). 
Although the objective number of apoptotic cells gradually increased 
with ageing, no statistical difference was observed among the mice 
with different age in the sham group (Figures 2G–J), demonstrating 
ageing-related neuron apoptosis in the hippocampus could not 
account for the neural dysfunction in middle-aged mice. Furthermore, 
the protein band of cleaved-caspase 3 in the TBI hippocampus was 
densified at 12 mpi compared with the age-matched mice 
(Figures  2K,L), which accounted for the exacerbated neural 
dysfunction in the middle-aged mice. Our data revealed that neuronal 

apoptosis in the ipsilateral hippocampus contributes to chronic neural 
dysfunction following TBI.

Chronic persistent oxidative stress is 
associated with robust neuronal damage in 
middle-aged mice

To explore whether neuronal damage is associated with chronic 
oxidative stress during the pathological process following TBI, we first 
evaluated the protein level of 4-hydroxynonenal (4-HNE), a marker 
of lipid peroxidation. As shown in Figures 3A,B, the level of 4-HNE 
in the TBI groups was elevated compared with the corresponding 
sham mice at all indicated timepoints, which was increased sharply at 
12 mpi (fold change = 2.05 ± 0.43). Then, 4-HNE was further 
confirmed by immunostaining, and the average optical density of 
4-HNE in the CA1 and hilus increased following injury (Figures 3C,D; 
Supplementary Figures S2A,B). To further evaluate oxidative stress 
alteration, MDA was detected in the ipsilateral hippocampus. As 
shown in Figure 3E, MDA was elevated with the same trend as 4-HNE 
at all intervals post-injury. Unexpectedly, no difference was observed 
on 4-HNE and MDA in the hippocampus of the sham mice 
(Figures  3B–E). To assess endogenous protective capability, 
we subsequently determined the level of the antioxidant response. 
NRF2 and its regulated antioxidant enzymes, heme oxygenase-1 
(HMOX-1) and quinone oxidoreductase-1(NQO-1), were upregulated 
at both protein and mRNA levels following TBI within 6 mpi 
(Figures 3F–L) and significantly decreased at 12 mpi both in the TBI 
and its age-matched mice (Figures 3F–L). Whereas, ccompared with 
the age-matched sham mice, the protein level of glutamate-cysteine 
ligase catalytic subunit (GCLC) and its modifier subunit (GCLM) 
were only decreased at 12 mpi, with no significant changes at 1, 3, and 
6 mpi (Supplementary Figures S3A–D). Our data indicated that 
persistent oxidative stress contributes to neuronal damage following 
TBI, which was also related to the ageing.

Persistent inflammation induced by TBI is 
exacerbated in middle-aged mice

To explore the changes in neuroinflammation in the ipsilateral 
hippocampus at different intervals post-injury, we tested the protein 
and mRNA levels of interleukin (IL)-1β, IL-6, and tumor necrosis 
factor-alpha (TNF-α). As shown in Figure 4, the protein and mRNA 
levels of IL-1β and TNF-α were elevated following TBI compared with 
the age-matched sham mice at each indicated time point. However, 
IL-6 expression was only increased at 12 mpi (fold change = 1.56 ± 0.20) 
and revealed no significant difference at 1, 3, and 6 mpi (Figures 4B–E). 
Our data demonstrated that long-lasting neuroinflammation in the 
ipsilateral hippocampus was present following TBI, which was 
aggravated in middle-aged mice (12 mpi).

Alteration of hippocampal astrocytes 
during the chronic phase of TBI

To assess the reactive astroglia, we detected GFAP expression by 
immunofluorescence, a marker of astrocytes. As shown in 
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Figures 5A,B, the immunoreactivity of GFAP and the percentage of 
GFAP+ area in the ipsilateral hippocampus were higher than those in 
sham mice at each time point, especially at 12 mpi (Figure 5C). In line 
with these, the protein levels of GFAP were also upregulated upon 
Western blot (Figures  5D,E). Our data proved that TBI led to 
astrogliosis in the hippocampus, and the astrocytic response was 
intensified in the hippocampus of middle-aged mice. It has been 

known that A1 astrocytes contribute to the pathogenesis of TBI and 
neurodegenerative diseases (Diaz-Castro et al., 2019; Song et al., 2020; 
Taylor et al., 2020). We explored the A1 astrocytes by C3d and GFAP 
double immunostaining. Several C3d + astrocytes signal colocalized 
with GFAP+ cells in the ipsilateral hippocampus post injury 
(Supplementary Figure S4A, lower panel). Whereas, no double-
positive astrocyte was found in the hippocampus of sham mice from 

FIGURE 1

The late phase changes on neurological function post injury. (A) Schematic diagram of the experimental design. (B) Schematic diagram of the SPT (left 
panel) and the percentage of sucrose consumption over total fluid volume of mice at 1, 3, 6 and 12 mpi (right panel). (C) Schematic diagram of the FST 
(left panel) and the statistical analysis of immobility time at each indicated timepoints (right panel). (D) The representative moving path of mice in EPM 
test at 1, 3, 6 and 12 mpi. (E) The percentage of time in the open arm. (F) The number of entries in the open arm. (G) The representative moving path of 
MWM in probe test at 1, 3, 6 and 12 mpi. (H) The path length in the platform quadrant. (I) The time in the platform quadrant. (J) The number of platform 
quadrant. (K) The number of platform. n  =  20, *p  <  0.05 compared with the age-matched sham (Mann–Whitney U Test); $p  <  0.05 1, 3, 6 mpi versus 12 
mpi (Tukey’s post hoc test); #p  <  0.05 compared with the preceding adjacent TBI group (Tukey’s post hoc test).
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adolescence to middle age (Supplementary Figures S4A,B). Then the 
complexity of the reactive astrocytes was evaluated in the ipsilateral 
hippocampus by Sholl analysis. The representative astrocytes and their 
reconstructed skeleton in each group were shown in Figure 5F. A 

significant difference in the morphological complexity of astrocytes in 
sham mice was observed only in middle-aged mice (12 mpi) 
(Figure 5G). However, in TBI mice, the reactive astrocytes sustained 
the complex morphology post injury, which was presented by the total 

FIGURE 2

Apoptosis contributes to chronic neuron loss in ipsilateral hippocampus following TBI. (A,B) The quantitative analysis of the number of NeuN positive 
cells in CA1 and hilus at different indicated time points post injury, n  =  6. (C,D) Representative images of FJC staining in CA1 and hilus of ipsilateral 
hippocampus at different time post injury. (E,F) Representative immunostaining images of cleaved caspase-3 in CA1 and hilus of ipsilateral 
hippocampus at different time post injury. (G–J) The quantitative analysis of the number of FJC and cleaved caspase-3 positive cells in CA1 and hilus at 
different time post injury, n  =  6. (K,L) The representative immunoblots and relative densities of cleaved caspase-3 in the ipsilateral hippocampus of each 
group; n  =  3. Scale bar, 20  μm. *p  <  0.05 compared with the age-matched sham mice (Mann–Whitney U Test); #p  <  0.05 compared with the TBI mice of 
preceding adjacent group (Tukey’s post hoc test).
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FIGURE 3

Adolescent TBI-induced persistent oxidative stress is enhanced in middle-aged mice. (A,B) Representative immunoblots and relative densities of 
4-HNE in the ipsilateral hippocampus at 1, 3, 6 and 12 mpi, n  =  3. (C,D) The quantitative analysis of the average optical density of 4-HNE 
immunohistochemical staining in CA1 and Hilus, n  =  6. (E) The quantitative analysis of MDA content, n  =  3. (F) Representative immunoblots of NRF2, 
HMOX-1, NQO-1 of the ipsilateral hippocampus at 1, 3, 6 and 12 mpi. (G–I) Relative densities of NRF2, HMOX-1, NQO-1, n  =  3. (J–L) The mRNA levels 
Nrf2, Hmox-1, Nqo-1 of the ipsilateral hippocampus at 1, 3, 6 and 12 mpi, n  =  3. *p  <  0.05 compared with age-matched sham (Mann–Whitney U Test); 
$p  <  0.05 comparison between sham groups (Tukey’s post hoc test); #p  <  0.05 compared with the TBI mice of preceding adjacent group (Tukey’s post 
hoc test).
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and maximum process length in Figures 5H,I. Our data revealed the 
alternation of reactive astrocytes and their morphological complexity 
in the ipsilateral hippocampus after TBI.

Reactive microglia is aggravated in the late 
phase of TBI

To evaluate the reactive microgliosis during the chronic phase of 
TBI, we  measured the protein levels of ionized calcium binding 
adaptor molecule 1 (IBA1), CD16/32, and Arginase 1 (ARG-1). As 
shown in Figures 6A–C, the protein levels of IBA1 and CD16/32 were 
increased in the hippocampus of TBI mice at each indicated time 
point compared with that of sham mice. However, the ARG-1 level 
only increased slightly at 1 mpi in TBI mice (Figures 6A,D). Moreover, 
double immunofluorescence staining of IBA1 + CD16/32 and 
IBA1 + ARG-1 (Figures 6E,G) supported M1 polarization of microglia 
in TBI mice. The ratio of CD16/32+ microglia in the hilus at 1, 3, 6 
mpi were 31.5 ± 3.8%, 30.7 ± 5.2% and 32.8 ± 3.9% separately, which 

increased sharply to 64.8 ± 10.8% at 12 mpi (Figure  6F). While 
ARG-1+ microglia accounted for approximately 13.7 ± 5.0% of the 
microglia at 1 mpi and 1.1 ± 2.7%, 1.0 ± 2.6%, 1.3 ± 3.1% at 3–12 mpi 
in hilus (Figure 6H). These data indicated that persistent reactive 
microglia could contributed to neuronal damage following TBI, 
especially in middle-aged mice.

Discussion

Chronic pathophysiological changes post-TBI are responsible for 
neurological dysfunction and neurodegenerative diseases. Despite 
growing awareness of the chronic progressive nature of TBI 
(Tomaszczyk et  al., 2014), there is still a need to characterize the 
pathogenesis of long-term neurological function post-injury. In this 
study, we described that adolescent TBI led to chronic neurological 
dysfunction, which was aggravated in middle-aged mice. Chronic 
oxidative stress, sustained reactive astrocyte and microgliosis 
contribute to the pathogenesis of neurological dysfunction and 

FIGURE 4

The increased expression of proinflammatory cytokines in ipsilateral hippocampus induced by adolescent TBI. (A–D) Representative immunoblots and 
relative densities of IL-1β, IL-6 and TNF-α of the ipsilateral hippocampus, n  =  3. (E) The mRNA levels of Il-1β, Il-6 and Tnf-α of the ipsilateral 
hippocampus, n  =  3. *p  <  0.05 compared age-matched sham (Mann–Whitney U Test); #p  <  0.05 compared with the TBI mice of preceding adjacent 
group (Tukey’s post hoc test).
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hippocampal neuron loss following TBI. Moreover, the aggravated 
neurological dysfunction in middle-aged TBI mice was partly due to 
the decrease of NRF2-mediated antioxidant response. Our present 
study suggests that ageing might be a contributory factor for long-
term neural damage following TBI. The potential mechanism of long-
term neural dysfunction after TBI is schematically illustrated in 
Figure 7.

Brain injuries trigger various neurological complications, 
including epilepsy, depression, and dementia (Burke et al., 2021; Stopa 
et  al., 2021; Wang et  al., 2021). Our observations revealed that 
adolescent traumatic brain injury results in spatial memory 
impairment and anxiety/depression-like behavior in middle-aged 
mice, which is consistent with the previous study (Mao et al., 2020). 
Although epidemiological study has revealed no obvious correlation 

FIGURE 5

The alteration of reactive astrocytes during the chronic phase of adolescent TBI. (A,B) Representative images of GFAP (red) immunofluorescent staining 
of CA1 and hilus of ipsilateral hippocampus; scale bar, 20  μm; n  =  6. (C) The quantitative analysis of GFAP positive area of CA1 and hilus, n  =  6. (D,E) 
Representative immunoblots and relative densities of GFAP of the ipsilateral hippocampus at 1, 3, 6 and 12 mpi, n  =  3. (F) Representative image of 
GFAP+ astrocytes in hilus at 1, 3, 6 and 12 mpi, the reconstructed skeleton of representative astrocytes was present in the lower right corner of the 
image; scale bar, 5  μm. (G) Intersection profile of astrocytes in hilus at 1, 3, 6 and 12 mpi, n  =  12. (H) The quantitative analysis of total length of astrocytic 
process. (I) The quantitative analysis of the max length of astrocytic process; n  =  12. *p  <  0.05 comparison between TBI and age-matched Sham groups 
(Mann–Whitney U Test); #p  <  0.05 comparison between 6 and 12 mpi groups (Tukey’s post hoc test); $p  <  0.05, comparison between Sham mice of 6 
and 12 mpi groups (Tukey’s post hoc test).
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between injury severity and depression occurrence (Vadlamani and 
Albrecht, 2020), previous study observed that mice underwent severe 
TBI showed depression-like behavior at 3 months post-injury (Mao 
et al., 2020), while this neural dysfunction was observed at 6 months 
post moderate TBI in our present study, the time delay of depression-
like behavior post injury may be  associated with the severity of 
TBI model.

In addition, local TBI could promote the secondary damage of 
certain remote brain regions in the late phase, resulting in a diverse 
range of neurological disorders. Numerous studies reported that 
chronic atrophy and degenerative disease of white matter post brain 
trauma aggravate cognitive dysfunction, depression, and apathy 

(Filley and Fields, 2016; Cole et al., 2018; Bartnik-Olson et al., 2021; 
Mohamed et al., 2021; Navarro-Main et al., 2021; Medeiros et al., 
2022). Demyelination, blood–brain barrier impairment, and increased 
neuroinflammation are revealed in the thalamus of late stage TBI, 
which is accompanied by the appearance of sleep spindles and 
epilepsy64,65. Given that the hippocampus is a fundamental region in 
regulating mood and memory (Tartt et al., 2022) and is particularly 
vulnerable to brain injury, even to mild TBI (Obenaus et al., 2023), our 
present study provided evidence that the neurological dysfunction 
after TBI in mice is associated with the exacerbation of inflammation 
and oxidative stress in hippocampus, demonstrating that hippocampus 
would be a crucial brain region for preventing and ameliorating the 

FIGURE 6

Reactive microglia is aggravated in the late phase of adolescent TBI. (A–D) Representative immunoblots and relative densities of IBA1, CD16/32, ARG-1 
of the ipsilateral hippocampus at 1, 3, 6 and 12 mpi, n  =  3. (E) Representative images of immunofluorescent double staining of IBA1 (red) and CD16/32 
(green) of the ipsilateral hippocampal hilus; white arrows, IBA1 and CD16/32 double positive cells. (F) The quantitative analysis of the percentage of 
IBA1 and CD16/32 double positive cells, n  =  6. (G) Representative images of immunofluorescent double staining of IBA1 (red) and ARG-1 (green) of the 
ipsilateral hippocampal hilus; white arrows, IBA1 and ARG-1 double positive cells. (H) The quantitative analysis of the percentage of IBA1 and ARG-1 
double positive cells, n  =  6. *p  <  0.05 compared with age-matched sham (Mann–Whitney U Test), #p  <  0.05 compared with the TBI mice of preceding 
adjacent group (Tukey’s post hoc test); scale bar, 20  μm.
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secondary neurological dysfunctions at the late stage of TBI. Future 
studies are still needed to explore the link between the damage of 
neurological functions and the pathophysiological changes in different 
brain regions in the late stage of TBI.

Different mechanisms of neuronal death have been reported during 
the acute phase of TBI, including apoptosis, autophagy, necrosis, and 
ferroptosis (Dong et al., 2018; Liu et al., 2018; Xie et al., 2019; Akamatsu 
and Hanafy, 2020; Sarkar et al., 2020; Cheng et al., 2023). Abnormal 
autophagy is detected in the perilesional cortex after 12 weeks following 
TBI (Ritzel et al., 2022). However, few studies have focused on the pattern 
of cell death in the ipsilateral hippocampus during chronic phase of 
TBI. In the present study, we disclosed that apoptosis accounted for the 
long-term chronic neuronal loss in the ipsilateral hippocampus following 
TBI, which is consistent with the previous study that elevated cleaved-
caspase-3 in the ipsilateral thalamus resulted in chronic myelin pathology 
following TBI (Glushakov et al., 2018). Further studies on the manner of 
neuronal impairment in different regions during the late phase of TBI 
are warranted.

During the early stage of TBI, excessive ROS are generated by 
granulocytes and macrophages rather than activated or resting 
microglia, leading to extensive oxidative stress at the lesion site (Abe 
et al., 2018; Wu et al., 2022). In the chronic phase of TBI, microglia or 
macrophages contribute more to ROS generation and oxidative stress 
in the injured brain, which is supported by the increased NADPH 
oxidase (NOX2) in the microglia or macrophages at 1 year post injury 
(Loane et al., 2014). Although we did not explore the source of ROS 
in the late phase of adolescent TBI, the aggravated oxidative stress in 
the ipsilateral hippocampus may contribute to the neurological 
dysfunction in middle-aged mice. Our present data is consistent with 
the previous study that oxidative stress is one of the etiologies of 
various neurodegenerative diseases (George et al., 2022).

It has been reported that astrocytes and microglia/macrophages 
play important roles in the initiation and persistence of inflammatory 
responses following TBI (Mira et al., 2021). Our present study revealed 

that the persistent reactive astrocytes undergo morphological changes 
in the ipsilateral hippocampus during the whole observed chronic 
phase, which is consistent with the previous study that reactive gliosis 
is maintained for up to 60 days following injury in the CCI model 
(Villapol et al., 2014). The reactive astrogliosis may secrete various 
cytokines/chemokines and transform into A1 neurotoxic astrocytes 
to influence the local inflammatory microenvironment, which is 
supported by the evidence that astrocytic complement C3 is linked to 
various neurological diseases (Yun et al., 2018; Clark et al., 2019; Li 
et al., 2022; Stym-Popper et al., 2023). In line with the intricate spatial 
morphological structure of reactive astrogliosis post injury, 
we  observed that certain astrocytes in the hippocampal hilus 
underwent morphological complexity, which might contribute to the 
neuronal damage in the chronic phase of TBI.

Microglia is recognized as the most important contributor to 
inflammation following TBI. Reactive microglia are found in multiple 
brain regions in the early and late stages of TBI (Loane et al., 2014). In 
our study, M1 subtype of the microglia was demonstrated to be a 
chronic and possibly lifelong event in the ipsilateral hippocampus post 
injury, which is also consistent with the previous opinion that 
microglia maintains a prolonged proinflammatory state after brain 
trauma (Loane et  al., 2014). Some studies have reported that the 
reactivate microglia and the proinflammatory subtype of microglia 
may enhance the phagocytosis of degenerative axons and synapsis in 
mouse models of multiple neurodegenerative diseases (Alawieh et al., 
2021; Guo et  al., 2022). Though we  did not test the phagocytotic 
capability of reactive microglia in hippocampus, the reactive microglia 
in the late stage of TBI may partly account for the neurological 
dysfunction in the late life of TBI mice.

Considering that NRF2 is the most important element for 
mediating antioxidant and anti-inflammatory response in both 
human and rodent TBI models (Dong et al., 2018, 2019; Guo et al., 
2019; He et  al., 2019), our previous study reveals that NRF2 is 
ubiquitously activated in neurons, astrocytes, microglia, and 

FIGURE 7

Schematic diagram of changes in neurological function, oxidative stress and neuroinflammation during the late phase of TBI. Oxidative stress and 
neuroinflammation occur in the hippocampus of adolescent TBI mice within 6 mpi, accompanied by increased expression of NRF2, HMOX-1, and 
NQO-1. TBI mice developed persistent memory impairment and anxiety behavior within 6 mpi, and began to develop depression-like behavior at 6 
mpi. At 12 mpi, the expression of NRF2, HMOX-1, and NQO-1 was significantly decreased, leading to aggravated oxidative stress and 
neuroinflammation, as well as exacerbated memory impairment, anxiety-and depression-like behaviors.
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oligodendrocytes in the early stages of TBI in a spatial and temporal 
pattern (Dong et al., 2018, 2019; Guo et al., 2019; He et al., 2019). In 
our present study, persistent NRF2, and its regulated genes, HMOX-1 
and NQO-1 were triggered by TBI within 6 mpi. However, it is not 
sufficient to antagonize the chronic oxidative stress. In addition, 
NRF2-mediated antioxidative response decreased sharply in the 
middle-aged mice (12 mpi), which is consistent with the previous 
studies that downregulation of NRF2 results in increased oxidative 
stress in aged mice (Zhang et al., 2015; Schmidlin et al., 2019) and 
neurodegenerative diseases (Osama et al., 2020; Zgorzynska et al., 
2021). The lack of NRF2 in the late life of TBI mice may also account 
for the enhanced inflammation and neural dysfunction, which is 
supported by the evidence that NRF2 ablation leads to the increase of 
proinflammatory cytokines and modulation of microglial dynamics 
(Rojo et al., 2010; Chen et al., 2018). Thus, chronic oxidative stress and 
neuroinflammation in the hippocampus may be  linked with the 
physical deficiency of NRF2 in the late life of TBI mice, which also 
needs further investigation.

Conclusion

Our study describes the dynamic neurological dysfunction in the 
chronic late phase of TBI. The persistent neuroinflammation and 
oxidative stress contribute to the neuronal apoptosis and neural 
dysfunction in the late life of adolescent TBI mice. The aggravated 
neurological dysfunction in middle-age of the TBI mice may be partly 
associated with the physical deficiency of NRF2. Our present study 
provides significant insights into the mechanism underlying the long-
term neurological decline post-injury in adolescent individuals and 
the detrimental effects of TBI in the late life of the victims.
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