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Natural image restoration based
on multi-scale group sparsity
residual constraints

Wan Ning, Dong Sun*, Qingwei Gao, Yixiang Lu and De Zhu

Anhui Engineering Laboratory of Human-Robot Integration System and Intelligent Equipment, Key

Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Electrical

Engineering and Automation, Anhui University, Hefei, China

The Group Sparse Representation (GSR) model shows excellent potential in

various image restoration tasks. In this study, we propose a novel Multi-Scale

Group Sparse Residual Constraint Model (MS-GSRC) which can be applied to

various inverse problems, including denoising, inpainting, and compressed sensing

(CS). Our newmethod involves the following three steps: (1) finding similar patches

with an overlapping scheme for the input degraded image using a multi-scale

strategy, (2) performing a group sparse coding on these patches with low-rank

constraints to get an initial representation vector, and (3) under the Bayesian

maximum a posteriori (MAP) restoration framework, we adopt an alternating

minimization scheme to solve the corresponding equation and reconstruct the

target image finally. Simulation experiments demonstrate that our proposedmodel

outperforms in terms of both objective image quality and subjective visual quality

compared to several state-of-the-art methods.

KEYWORDS

image restoration, group sparsity residual, low-rank regularization,multi-scale, non-local
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1. Introduction

Unsuitable equipment and other disturbances unavoidably contribute noise in the target

images. Image denoising is a crucial area of image processing and has attracted much

attention from scholars in related fields recently. Digital image denoising techniques have

a wide range of uses, involving disciplines of medicine and industry, and also in spectral

images for weather forecasting, remote sensing images, and so on. Taking image denoising

as a basis, the method can be introduced to more image restoration problems and be useful

in more fields (Buades et al., 2005; Osher et al., 2005; Elad and Aharon, 2006; Zoran and

Weiss, 2011; Gu et al., 2014; Zhang et al., 2014b; Liu et al., 2017; Keshavarzian et al., 2019;

Ou et al., 2020; Zha et al., 2020a, 2022; Jon et al., 2021). This task aims to generate a latent

image x from the degraded version y. The process modeling can be depicted as

y = Hx+ n (1)

Where H is an irreversible linear operator in matrix form and n is the additive white

Gaussian noise vector. By requiring H, Eq.(1) can be converted to diverse image restoration

problems. For example, Eq.(1) represents the image denoising problem if H is an identity

(Elad and Aharon, 2006; Ou et al., 2020); Eq.(1) denotes the image inpainting problem if H

is a mask (Liu et al., 2017; Zha et al., 2020a); and Eq.(1) stands for the image CS problem if

H is an undersampled random projection matrix (Keshavarzian et al., 2019; Zha et al., 2022).

We concentrate on image denoising, inpainting, and CS challenges in this article.
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Given that the problem always ill-posed, it is common to use

image priors to regularize the model so as to gain excellent restored

images. Namely, the Maximum A Posteriori (MAP) approach

allows for the image restoration problem to be formulated as a

mathematical equation to address the minimization problem:

x̂ = min
x

1

2

∥

∥y − Hx
∥

∥

2

2
+ λR (x) (2)

The former is the data-fidelity term and the latter is the image

prior constraint term. The weights between these two terms are

regulated by the parameter λ. After establishing the mathematical

model, we conceived an optimization algorithm to address various

image restoration problems. The method yields a reconstructed

image that approximates a clean image after several iterations.

Numerous image prior models have been put forward in earlier

studies, mainly classified into local smoothness (Rudin et al., 1992;

Osher et al., 2005; Dey et al., 2006), non-local self-similarity (Fazel

et al., 2001; Buades et al., 2005; Gu et al., 2014), and sparsity

(Zhang et al., 2014b; Ou et al., 2020, 2022a). Yet, the curse of

dimensionality makes it difficult to construct a global model for the

entire image. Therefore, the approach of building patch priors has

become popular in recent years for its efficiency and convenience.

Sparse representation is one of the most representative patch-

based priors. Elad and Aharon (2006) proposed K-SVD (K-

Singular Value Decomposition) which is a pioneering work in

applying sparse coding to image denoising. NSS is another crucial

prior information widely used. Buades et al. (2005) proposed

the first model using NSS for image denoising. In addition, the

high correlation between patches leading to the data matrix of

a clean image is as often low-rank. Related studies mainly fall

into two categories: low-rank matrix factorization (LRMF) (Srebro

and Jaakkola, 2003; Buades et al., 2005) and the Nuclear Norm

Minimization (NNM) (Fazel et al., 2001; Hu et al., 2012). NNM

is the more popular one in most cases. Gu et al. presented the

Weighted Nuclear NormMinimisation model (WNNM) (Gu et al.,

2014) which dramatically enhances the flexibility of NNM, and it

remains among most widespread image denoising methods. Apart

from this, RRC (Zha et al., 2019), which makes use of low-rank

residuals for modeling, has also achieved good quality in various

image restoration problems.

Some studies have combined image sparsity and self-similarity

to modeling, and these algorithms have shown great potential

in image restoration research. For instance, in the study by

Dabov et al. (2007), BM3D applies NSS to cluster patches before

collaborative filtering, which is a benchmark method in the current

area of image denoising. Both NCSR (Dong et al., 2012b) and GSR

(Zhang et al., 2014b) use the NSS property to aggregate image

patches into groups, and then perform sparse coding on the self-

similar groups. Mairal J et al. devised the LSSC (Mairal et al.,

2009) to force all self-similar groups to be imposed with the same

dictionary. Zha et al. (2017) designed an efficient GSRC model that

converts the task of image denoising into one of minimizing group

sparse residuals. In addition, Zha et al. (2020a) also proposed a

GSRC-NLP model with a better image restoration result based on

the above.

Another groundbreaking patch-based image recovery method

is Expected Patch Log Likelihood (EPLL) (Zoran and Weiss,

2011) which restores images by learning a Gaussian mixture

model(GMM). Later on, Zoran et al. introduces a multi-scale

EPLL (Papyan and Elad, 2015) model, which can improve the

performance of image restoration further. Subsequently, image

denoising methods using external GMM priors have been widely

used. Most of the relevant studies have combined external GMM

with internal NSS for modeling, such as Xu et al. (2015) proposed

PGPD, Chen et al. (2015) proposed PCLR, and Zha et al. (2020b)

proposed SNSS.

In addition to the above methods, deep convolutional neural

networks (CNNs) (Zhang et al., 2017; Zhang and Ghanem, 2018) is

an emerging approach in recent years, but it requires learning in an

external database before restoring damaged images.

It is not comprehensive to only consider the sparsity or low-

rankness property of the image. Hence, with the aim of obtaining a

higher-quality restored image, our study uses the low-rank property

of similar groups as a constraint in combination with sparsity to

design the model. Furthermore, based on the NSS property, we can

not only find similar patches for a specified patch on a single scale

image but also extend the search window to multi-scales. Finally,

we propose a novel Multi-scale Group Sparsity Residual Constraint

(MS-GSRC) model with the following innovations:

1. We propose a novel MS-GSRC model that provides a simple yet

effective approach for image restoration: find neighbor patches

with an overlapping scheme for the input degraded image using

a multi-scale strategy and perform a group sparse coding on

these similar patches with a low-rank constraint.

2. An alternating minimization mechanism with an automatically

tuned parameter scheme is applied to our proposed model,

which guarantees a closed-form solution at each step.

3. Our proposed MS-GSRC model is validated on three tasks:

denoising, inpainting, and compressed sensing. The model

performs competitive in both objective image quality and

subjective visual quality compared to several state-of-the-art

image restoration methods.

The remainder of this article is as follows: In Section 2, after

the brief overview of the GSRC framework and LR methods, we

introduce a novel MS-GSRCmodel. Section 3 adopts an alternating

minimization schemewith self-adjustable parameters to resolve our

proposed algorithm. Section 4 lists extensive experimental results

that prove the feasibility of our model. Conclusion is presented in

Section 5.

2. Models

In this part, we briefly review some relevant knowledge and

present our new model.

2.1. Group-based sparse representation

Principles of the GSR model can be described as follows:

divide the image into many overlapping patches, find self-similarity

groups for each image patch using the NSS property, perform

sparse coding for each self-similarity group, and finally reconstruct

the image (Dong et al., 2012b; Zha et al., 2020a; Ou et al., 2022a).
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Specifically, the image x ∈ R
M is divided into m overlapping

patches {xi}mi=1, where xi ∈ R
n×n. Next, for each overlapping patch

xi, we use the K-Nearest Neighbor classification (KNN) algorithm

(Keller et al., 1985; Xie et al., 2016) to select k neighbor patches

from aW ×W search window to form the group Ki. Subsequently,

stack all Ki into a data matrix Xi ∈ R
n×k; this matrix contains each

element of Ki as its column, i.e., Xi =
{

xi,1, xi,2 . . . xi,k
}

, where
{

xi,j
}k

j=1
denotes the k-th similar patch of the k-th group. Each

similarity group Xi is represented sparsely as X̂i = DB̂i, where Di

denotes the dictionary.

Nevertheless, solving the 0-norm minimization problem is NP-

hard, so for the ease of making the solution, The sparse code B̂i is

obtained from the following equation (Zhang et al., 2014b):

B̂i = min
Bi

(

1

2
‖Xi − DiBi‖2F + λ ‖Bi‖1

)

∀i (3)

It is well-known that clean images x are unavailable in image

restoration problems. Thus, we replace x with degenerate images

y ∈ R
M×M . Eq.(3) can be transformed into the problem of

recovering the group sparse code Ai from Yi:

Âi = min
Ai

(

1

2
‖Yi − DiAi‖2F + λ ‖Ai‖1

)

∀i (4)

The restored Xi is obtained by X̂i = DiÂi, and the final

complete image X can be gained by simple averaging {Xi}
m
i=1.

2.2. Group sparsity residual constraint

After observing the GSR model, it is clear that the closer the

computed A approximates to B, the better the quality of the final

restoration image. Consequently, the following definition of the

group sparsity residual constraint (GSRC) (Zha et al., 2017) is given:

R = A − B. Then, Eq.(4) for solving the group sparse coefficients

Ai can be converted into:

Âi = min
Ai

(

1

2
‖Yi − DiAi‖2F + λ ‖Ai − Bi‖1

)

∀i (5)

This model uses BM3D to restore the the degenerate

observation y to the image z. Moreover, z can be viewed as a good

approximation of the target x considering BM3D has an excellent

denoising performance. Thus, the group sparsity coefficients Bi can

be obtained from z. In the study by Zha et al. (2020a), GSRC-NLP

uses NLP before constraining the input image.

2.3. Low-rank approximation

According to Gu et al. (2014), Zha et al. (2019), and Zha

et al. (2020b), it can be found that NNM is a popular low-rank

approximations methods. For X, define the i-th singular value as

σi (x), and the nuclear norm as ‖X‖∗ = 6iσi(x). The specific

solution for X is:

X̂ = min
X

‖Y − X‖2F + ‖X‖∗ ∀i (6)

Equation (6) yields a simple solution: X̂ = USτV
T , where

Ŷ = U6VT is the SVD for Y and Sτ (6) is a soft-thresholding (Cai

et al., 2010) function. Namely, Sτ (6)ii = max(6ii − τ , 0), where

6ii is the diagonal element of 6.

2.4. Multi-scale GSRC

The established GSRC model has performed well in image

denoising, but it requires additional pre-processing of degraded

images for obtaining the group sparsity coefficients B. Thus, we

combine group sparsity and low-rank property to build a model.

Furthermore, the GSRC model only focuses on a single scale.

However, it is evident that NSS can appear not only on the

original scale of an image but also on a coarse scale, so we can

find neighbor patches for the original image patch at multi-scales

(Yair and Michaeli, 2018; Ou et al., 2022a,b). The specific steps of

our proposed new Multi-Scale Group Sparse Residual Constraint

(MS-GSRC) model are as follows:

(a) First, we use KNN to find a specified number of similar

patches from both the original scale and scaled-down version for

the overlapping patches of the input image.

(b) Then, these similar patches are stacked separately into

groups.

(c) Next, the low-rank constraint is imposed on each group to

obtain good group sparsity coefficients Bi.

(d) After estimating the group sparsity coefficients Ai by using

the group sparsity residuals Ri, each group was recovered in

sequence.

(e) Finally, we select the patch belonging to the original image

from each group, and aggregate the complete image by simple

averaging.

We propose the following constraint function:

x̂ = min
x

1

2σ 2
n

∥

∥y − Hx
∥

∥

2

2
+

1

2µ

m
∑

i=1

∥

∥Rix
MS

−DiAi‖2F + λ

m
∑

i=1

‖Ai − Bi‖1 ∀i
(7)

Rix
MS is a multi-scale similarity group, which is a matrix with

k nearest neighbor patches matched for each original image patch.

These similar patches are derived from both the original and coarse

scales of the image. The window size isW×W in the original scale,

and it isχW × χW in the other scale images, where χ indicates the

scale factor (0 < χ < 1). χ will be set to different values in different

experiments.

For image denoising, for example, the flowchart of MS-GSRC

model is shown in Figure 1.

3. Algorithm for image restoration

This section is a detailed analysis of our proposed MS-

GSRC model. The solution of this algorithm is obtained using

an alternating minimization method whose parameter is self-

adjustment.

First, we divide Eq.(7) into three sub-problems:
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FIGURE 1

Flowchart of the proposed MS-GSRC for image denoising.

Require: The observation y and the degradation

operator H.

1: Initialize x̂0 = y and parameters m, n, W, γ, ζ, α,

β, χ, ε,ǫ and Iter.

2: for t=1:Iter do

3: Update parameters by Eq.(21-23);

4: divide x(t) into patches {xi}mi=1.

5: for each xi do

6: Construct multi-scale group Rix
MS;

7: end for

8: for each group Rix
MS do

9: Construct dictionary Di by Pi by using PCA;

10: Compute Ai by Eq.(9);

11: Compute Bi by Eq.(12);

12: end for

13: ADMM:

14: Initialize:c = 0 and s = x̂.

15: Compute s(t+1) by Eq.(18);

16: Compute c(t+1) by Eq.(17);

17: if H is an unnstructured random projection

matrix then

18: Construct x(t+1) by Eq.(20);

19: else

20: Construct x(t+1) by Eq.(19);

21: end if

22: end for

23: Output:Restored image x̂.

Algorithm 1. The MS-GSRC algorithm for image restoration.

3.1. Ai sub-problem

Given x and Di, we get a sub-problem of Ai:

Âi = min
Ai

n
∑

i=1

1

2µ

∥

∥Rix
MS − DiAi

∥

∥

2

F
+ λ ‖Ai − Bi‖1

= min
Ai

m
∑

i=1

‖Pi − Ai‖2F + 2λµ ‖Ai − Bi‖1

= min
αi

m
∑

i=1

∥

∥pi − αi

∥

∥

2

F
+ 2λµ ‖αi − βi‖1

(8)

where Pi = D−1
i Rix

MS, αi, βi, pi stand for the vector

representations of Ai, Bi, and Pi, respectively. Di is a dictionary,

A crucial step for solving the Ai problem is to design an efficient

Di. The restored image is prone to visual artifacts (Lu et al., 2013)

if learning the over-complete dictionary. To reduce this terrible

phenomenon, we choose to adopt principal component analysis

(PCA) (Abdi and Williams, 2010) for learning the dictionary Di in

this study because PCA is more robust and adjustable.

Equation (8) can be deduced as a closed-form solution:

Âi = Soft
(

p̃i − β̃i, 2λµ

)

+ β̃i ∀i (9)
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FIGURE 2

The 27 widely tested images for experiences.

Soft(·) represents the soft-thresholding operator.

Since x is an unknown target image, it is impossible to gain the

group sparse coefficients Bi directly. Consequently, we must utilize

methods to gain an approximation value.

The introduction of low-rank constraints into the model is a

practical approach. After applying LR constraints to the Yi group,

we can obtain a matrix Si. The clean group sparsity coefficients Bi

can be computed from Si. It is easy to derive the following equation:

‖Yi − Si‖2F = ‖Ai − Bi‖2F (10)

So,we can obtain

Ŝi = argmin
Si

1

2
‖Yi − Si‖2F + θ ‖Si‖∗

⇔ B̂i = argmin
Bi

=
1

2
‖Ai − Bi‖2F + θ ‖Bi‖∗

where ‖Bi‖∗ = 6jδi,j,
{

δi,j
}s

j=1
are singular value of matrix.

Apparently, we are able to get a closed-form solution for Bi:

B̂i = Uisoft (1i, θ)VT
i ∀i (11)

where Ai = Ui1iV
T
i is the SVD for Ai and 1i is the diagonal

element of the singular matrix.

3.2. x sub-problem

Given Ai and Di, subproblem of x in Eq.(7) turns into:

x̂ = min
x

1

2σ 2
n

∥

∥y − Hx
∥

∥

2

2
+

1

2µ

m
∑

i=1

∥

∥Rix
MS − DiAi

∥

∥

2

F
(12)

Clearly, Eq.(13) is a quadratic optimization equation. We adopt

Alternate DirectionalMultiplicationMethod (ADMM) (Boyd et al.,

2011) to simplify the optimization process.

First, we bring in an auxiliary variable s = xMS, and Eq.(13) can

be converted into an equivalence equation:

〈

x̂, ŝ
〉

= min
x,s

1

2σ 2
n

∥

∥y − Hx
∥

∥

2

2
+

1

2µ

m
∑

i=1

‖Ris − DiAi‖2F (13)

By observing Eq.(14), it is plain that this equation has three

unknown variables requiring solutions. Thus, we decompose

Eq.(14) into three iterative processes. In the t-th iteration:

x̂t+1 = minx
1

2σ 2
n
‖y − Hx‖22 +

1
2ζ

∥

∥x − st − ct
∥

∥

2

2
(14)

ŝt+1 = mins
1
2µ

∑m
i=1 ‖Ris − DiAi‖2F +

1
2ζ

∥

∥xt+1 − s − ct
∥

∥

2

2
(15)

ct+1 = ct −
(

xt+1 − st+1
)

(16)

The parameter c indicates the Lagrangian multiplier. To make

the derivation process lookmore concise, we omit t in the following

formulation expression.

Update s : Given DiAi, x, and c, s can be represented as a

closed-form solution by Eq.(16), namely:

ŝ =

(

µI + ζ

m
∑

i=1

RT
i Ri

)−1 (

µx− µc+ ζ

m
∑

i=1

RT
i DiAi

)

(17)

Since I is a matrix of identities and RT
i Ri represents a diagonal

matrix,
(

µI + ζ
∑m

i=1 R
T
i Ri

)

is positive. So the above formula is

valid.

Update x : Given s and c, Eq.(15) provides a solution to the

variable x:

x̂ =
(

ζHTH + σ 2
n I
)−1 (

ζHTy+ σ 2
n s+ σ 2

n c
)

(18)

Notably, sinceH is an unstructured random projection matrix,

the cost required to solve x using Eq.(19) directly is too high in CS
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TABLE 1 PSNR (dB) and SSIM comparison of di�erent methods for image denoising.

Image Airplane Flower Foreman J.Bean Lake Leaves Lena Lin Monarch Starfish Pentagon Peppers Average

σ = 15

BM3D
32.14 31.57 35.68 35.70 30.45 31.72 33.04 34.23 31.86 31.15 29.68 31.80 32.42

0.9230 0.9074 0.9178 0.9693 0.9063 0.9648 0.9209 0.9243 0.9353 0.8958 0.8716 0.8764 0.9177

PGPD
32.31 31.85 35.51 35.65 30.67 32.02 33.13 34.16 32.23 31.31 29.72 31.78 32.53

0.9193 0.9076 0.9140 0.9582 0.9086 0.9671 0.9185 0.9110 0.9362 0.9024 0.8724 0.8725 0.9156

WNNM
32.47 32.04 35.88 36.56 30.83 32.83 33.34 34.47 32.72 31.83 30.06 32.03 32.92

0.9252 0.9132 0.9234 0.9735 0.9129 0.9735 0.9248 0.9227 0.9424 0.9081 0.8810 0.8770 0.9231

NCSR
32.95 31.77 35.52 37.89 31.21 32.16 33.04 34.27 32.31 31.46 29.93 31.86 32.86

0.9201 0.9082 0.9189 0.9782 0.8965 0.9694 0.9192 0.9190 0.9401 0.9042 0.8779 0.8725 0.9187

RRC
32.38 31.81 35.71 36.16 30.70 32.55 33.23 34.31 32.61 31.50 29.72 31.85 32.71

0.9248 0.9076 0.9225 0.9734 0.9091 0.9719 0.9233 0.9197 0.9435 0.8988 0.8693 0.8720 0.9197

LGSR
32.47 32.02 35.88 36.40 30.84 32.73 33.32 34.43 32.69 31.67 30.05 32.00 32.87

0.9255 0.9127 0.9244 0.9751 0.9130 0.9732 0.9249 0.9222 0.9435 0.9040 0.8818 0.8753 0.9230

GSRC-NLP
32.37 31.97 35.84 36.10 30.76 32.61 33.23 34.33 32.59 31.55 29.96 31.96 32.77

0.9240 0.9107 0.9235 0.9720 0.9107 0.9729 0.9234 0.9183 0.9422 0.9007 0.8764 0.8748 0.9208

OURS
32.56 32.10 35.80 36.69 30.93 32.99 33.33 34.46 32.78 31.83 30.03 32.03 32.96

0.9266 0.9141 0.9229 0.9741 0.9162 0.9745 0.9245 0.9203 0.9436 0.9072 0.8860 0.8764 0.9239

σ = 30

BM3D
28.49 27.97 32.75 31.97 26.74 27.81 29.46 30.95 28.36 27.65 26.41 28.66 28.94

0.8642 0.8204 0.8779 0.9371 0.8256 0.9254 0.8590 0.8701 0.8808 0.8217 0.7492 0.8167 0.8540

PGPD
28.63 28.11 32.83 31.99 26.90 27.99 29.60 30.96 28.49 27.67 26.31 28.70 29.02

0.8646 0.8213 0.8818 0.9317 0.8294 0.9300 0.8622 0.8606 0.8853 0.8277 0.7400 0.8164 0.8542

WNNM
28.75 28.34 33.23 32.50 27.02 28.61 29.72 31.07 28.91 28.07 26.66 28.84 29.31

0.8698 0.8318 0.8892 0.9438 0.8355 0.9389 0.8670 0.8643 0.8926 0.8357 0.7615 0.8201 0.8625

NCSR
28.40 27.58 32.66 32.85 26.65 28.24 29.35 30.71 28.59 27.77 26.37 28.64 28.99

0.8473 0.7704 0.8853 0.9468 0.7902 0.9377 0.8583 0.8669 0.8890 0.8304 0.7492 0.8153 0.8489

RRC
28.63 28.12 33.27 32.33 26.89 28.35 29.67 30.96 28.79 27.95 26.33 28.67 29.16

0.8716 0.8240 0.8952 0.9482 0.8323 0.9366 0.8672 0.8703 0.8954 0.8304 0.7374 0.8184 0.8606

LGSR
28.76 28.30 33.36 32.32 27.05 28.48 29.78 30.96 28.87 28.02 26.58 28.77 29.27

0.8749 0.8316 0.8960 0.9491 0.8378 0.9386 0.8718 0.8663 0.8952 0.8348 0.7541 0.8204 0.8642

GSRC-NLP
28.68 28.21 33.15 32.28 26.89 28.56 29.66 30.92 28.80 28.02 26.41 28.71 29.19

0.8726 0.8262 0.8941 0.9482 0.8303 0.9401 0.8682 0.8647 0.8939 0.8313 0.7383 0.8186 0.8605

OURS
28.85 28.38 33.09 32.63 27.10 28.90 29.79 31.13 28.97 28.23 26.50 28.82 29.37

0.8767 0.8332 0.8912 0.9470 0.8418 0.9431 0.8692 0.8680 0.8957 0.8405 0.7551 0.8218 0.8653

σ = 50

BM3D
25.76 25.49 30.36 29.26 24.29 24.68 26.90 28.71 25.82 25.04 24.21 26.17 26.39

0.7967 0.7311 0.8396 0.9038 0.7381 0.8639 0.7938 0.8200 0.8197 0.7377 0.6282 0.7548 0.7856

PGPD
25.98 25.63 30.45 29.20 24.49 25.03 27.15 28.79 26.00 25.11 24.17 26.31 26.53

0.8059 0.7324 0.8410 0.8934 0.7483 0.8794 0.7990 0.8118 0.8269 0.7457 0.6206 0.7578 0.7885

WNNM
26.18 25.93 30.98 29.63 24.56 25.47 27.27 28.74 26.32 25.43 24.47 26.41 26.78

0.8133 0.7502 0.8548 0.9098 0.7567 0.8926 0.8074 0.8138 0.8350 0.7596 0.6418 0.7630 0.7998

(Continued)
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TABLE 1 (Continued)

Image Airplane Flower Foreman J.Bean Lake Leaves Lena Lin Monarch Starfish Pentagon Peppers Average

NCSR
25.63 25.31 30.41 29.24 24.15 24.94 26.94 28.23 25.73 25.06 23.92 26.04 26.30

0.8066 0.7217 0.8559 0.9134 0.7420 0.8787 0.8009 0.8171 0.8252 0.7440 0.6058 0.7567 0.7890

RRC
26.13 25.72 30.87 29.38 24.48 25.30 27.17 28.51 26.22 25.34 24.21 26.23 26.63

0.8171 0.7413 0.8611 0.9125 0.7571 0.8910 0.8073 0.8140 0.8361 0.7589 0.6162 0.7643 0.7981

LGSR
26.15 25.92 31.03 29.40 24.59 25.39 27.27 28.56 26.24 25.40 24.47 26.37 26.73

0.8212 0.7544 0.8637 0.9141 0.7629 0.8930 0.8140 0.8171 0.8364 0.7616 0.6423 0.7655 0.8039

GSRC-NLP
26.17 25.76 30.77 29.58 24.44 25.66 27.06 28.60 26.25 25.36 24.24 26.32 26.69

0.8201 0.7416 0.8610 0.9166 0.7492 0.8991 0.8014 0.8153 0.8297 0.7540 0.6125 0.7633 0.7970

OURS
26.23 26.02 31.08 29.67 24.64 25.79 27.34 28.82 26.39 25.59 24.49 26.44 26.87

0.8209 0.7530 0.8605 0.9067 0.7631 0.8991 0.8110 0.8188 0.8369 0.7663 0.6473 0.7665 0.8042

σ = 75

BM3D
23.99 23.82 28.07 27.22 22.63 22.49 25.17 26.96 23.91 23.27 22.59 24.43 24.55

0.7331 0.6515 0.7880 0.8613 0.6636 0.8021 0.7310 0.7704 0.7557 0.6619 0.5240 0.6973 0.7200

PGPD
24.15 23.82 28.39 27.07 22.76 22.61 25.30 27.05 24.00 23.23 22.55 24.46 24.62

0.7492 0.6468 0.7965 0.8503 0.6760 0.8121 0.7356 0.7669 0.7642 0.6638 0.5145 0.7026 0.7232

WNNM
24.25 24.07 28.95 27.42 22.76 23.06 25.52 26.91 24.31 22.84 24.45 23.47 24.84

0.7601 0.6697 0.8133 0.8707 0.6850 0.8351 0.7514 0.7717 0.7754 0.5412 0.7035 0.6801 0.7381

NCSR
23.76 23.50 28.18 27.15 22.48 22.60 25.02 26.22 23.67 23.18 22.10 24.19 24.34

0.7547 0.6409 0.8171 0.8792 0.6743 0.8234 0.7415 0.7730 0.7648 0.6685 0.4881 0.7073 0.7277

RRC
24.10 23.77 28.83 27.17 22.64 22.91 25.33 26.86 24.24 23.32 22.56 24.35 24.67

0.7638 0.6499 0.8259 0.8749 0.6822 0.8377 0.7498 0.7729 0.7782 0.6741 0.5028 0.7172 0.7358

LGSR
24.25 24.14 29.10 27.37 22.74 23.09 25.55 26.97 24.31 23.43 22.91 24.56 24.87

0.7709 0.6772 0.8296 0.8828 0.6836 0.8410 0.7577 0.7839 0.7794 0.6805 0.5354 0.7190 0.7451

GSRC-NLP
24.13 23.88 28.76 27.29 22.61 23.33 25.32 26.84 24.35 23.32 22.65 24.45 24.74

0.7671 0.6614 0.8251 0.8796 0.6772 0.8512 0.7480 0.7806 0.7779 0.6712 0.5146 0.7179 0.7393

OURS
24.32 24.19 29.11 27.62 22.80 23.49 25.51 27.24 24.48 23.56 22.65 24.64 24.97

0.7721 0.6677 0.8273 0.8851 0.6916 0.8514 0.7545 0.7873 0.7807 0.6859 0.5269 0.7231 0.7461

The data marked in red represent the best values.

problem. Hence, after setting step size γ and gradient direction q,

we employ the gradient descent method (Ruder, 2016): x̂ = x− γ q

to rewrite Eq.(19) as:

x̂ = x− γ

(

1

σ 2
n

(

HTHx − HTy
)

+
1

ζ
(x − s − c)

)

(19)

In addition, it is recommended to compute HTH and HTy in

advance to further enhance the algorithm efficiency.

3.3. Parameter settings

In the model we proposed above, there are four parameters

(µ,λ, θ , ζ ) requiring setting. Here, we set a strategy for the

parameters that can be automatically adjusted in each iteration,

which allows us to achieve more robust and accurate experimental

results.

The noise standard deviation σn is automatically updated in

each iteration (Osher et al., 2005):

σ t
e = ω

√

σ 2
n −

∥

∥

∥y − x̂(t)
∥

∥

∥

2

2
(20)

Where ω represents a scaling factor, it is evident from Gu et al.

(2014) and Chen et al. (2015) that this approach to regularize σe

has been implemented in diverse models and has exhibited positive

performance.

After setting σe, the value of µ is tuned to change in proportion

to σ 2
e (Zha et al., 2022):

µ = ρ
(

σ 2
e

)t
(21)

where ρ denotes a constant.
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Moreover, the regularization parameters λ and θ represent the

constraint penalties on sparsity and LR, respectively. Inspired by

Dong et al. (2012a), they are adjusted in each iteration as follows:

λ(t) =
2
√
2α
(

σ t
e

)2

mi + ε
θ (t) =

2
√
2β
(

σ t
e

)2

ni + ǫ
(22)

wheremi is the estimated standard variance of Ri and ni stands for

the estimated standard variance of 1i. The ε and ǫ are two small

constants to avoid zero divisors. α and β are set to two constants.

Finally, parameter ζ is also set to a fixed constant.

The detailed procedure of theMS-GSRC algorithm is presented

in Algorithm 1.

4. Experiences

In this chapter, extensive trial are conducted on image

denoising, inpainting, and CS to verify that our proposed MS-

GSRC model possesses better image restoration capabilities

compared to some classical methods. To obtain intuitive

comparison results, we set on two metrics: peak signal-to-noise

ratio (PSNR) and structural self-similarity (SSIM) (Wang et al.,

2004).

PSNR is commonly used to measure signal distortion. This

parameter is calculated based on the gray scale values of the

image pixels. Although sometimes the value of PSNR is not

consistent with competent human perception, it remains an

important reference evaluation metric. SSIM is a metric intended

for assessing similarity between two images, which is an intuitive

human standard for evaluating image quality.

If the degraded image is in color, we mainly recover the

luminance channel due to the fact that variations in the luminance

of color images are more easily perceived by the human eye.

The codes for all comparison algorithms used in this study are

obtained from the original author’s homepage and uses the given

default parameters directly. For reasons of limited space, only a few

images frequently used for testing are detailed list in Figure 2. In all

tables, the data marked in red represent the best values.

4.1. Image denoising

First, we verify the performance of our MS-GSRC model on

the image denoising task. The corresponding parameters are set as

follows. We set the search windowW×W to 30×30, the patch size√
m×

√
m to 6×6, 7×7, 9×9 for σ ≤ 15, 15 < σ ≤ 30, and 30 <

σ ≤ 75, with the number of neighbor patches k to 70, 110, 120 for

σ ≤ 30, 30 < σ ≤ 50, 50 < σ ≤ 75, respectively. The parameters

(α,β ,ω, ζ ) are set to (0.03, 1.75, 0.81, 0.085), (0.015, 1.8, 0.86, 0.07),

(0.05, 2.2, 0.81, 0.12), (0.006, 2, 0.86, 0.05) for σ ≤ 15, 15 < σ ≤ 30,

30 < σ ≤ 50, 50 < σ ≤ 75. In addition, we set the multi-scale

to [1,0.8], [1,0.85], and [1,0.9] for σ ≤ 15, 15 < σ ≤ 50, and

50 < σ ≤ 75, separately.

Our MS-GSRC method is compared with several recently

proposed popular denoising methods and classical traditional

denoising methods, including BM3D (Dabov et al., 2007), PGPD

(Xu et al., 2015), WNNM (Gu et al., 2014), NCSR (Dong et al.,

TABLE 2 PSNR (dB) and SSIM comparison of di�erent methods for image

denoising on BSD68 dataset.

σ 15 30 50 75 Average

BM3D
31.08 27.76 25.62 24.21 27.17

0.8722 0.7732 0.6869 0.6221 0.7386

PGPD
31.14 27.81 25.75 24.30 27.25

0.8697 0.7698 0.6873 0.6214 0.7370

WNNM
31.32 27.97 25.86 24.39 27.39

0.8766 0.7802 0.6983 0.6348 0.7475

NCSR
31.18 27.78 25.57 24.04 27.14

0.8769 0.7771 0.6858 0.6209 0.7402

RRC
31.07 27.74 25.67 24.18 27.17

0.8644 0.7643 0.6840 0.6117 0.7311

LGSR
31.37 27.99 25.86 24.35 27.39

0.8817 0.7862 0.7025 0.6347 0.7512

GSRC-NLP
31.15 27.74 25.66 24.15 27.18

0.8681 0.7646 0.6835 0.6217 0.7345

OURS
31.38 28.01 25.88 24.38 27.41

0.8827 0.7889 0.7042 0.6400 0.7539

The data marked in red represent the best values.

2012b), RRC (Zha et al., 2019), LGSR (Zha et al., 2022) and GSRC-

NLP (Zha et al., 2020a). Of all the comparison methods, BM3D

is a frequently adopted benchmarking method, NCSR, PGPD,

and GSRC-NLP all use GSR as a prior, and WNNM and RRC

exploit low-rankness knowledge. And LGSR combines GSR and

LR. Besides, both GSRC-NLP and our proposed model use the

GSRC framework. Taking 12 frequently used images as an example,

Table 1 lists the PSNR and SSIM results for various denoising

methods at different noise levels. It is observed that our proposed

MS-GSRC method produced superior performance. Specifically,

the average PSNR and SSIM we achieve are improved by (0.47

dB, 0.0149) compared to BM3D, (0.38 dB, 0.0107) compared to

PGPD, (0.07 dB, 0.0032) compared to WWNM, (0.42 dB, 0.0149)

compared to NCSR, (0.25 dB, 0.0066) compared to RRC, (0.1 dB,

0.0005) compared to LGSR, and (0.19 dB, 0.0054) compared to

GSRC-NLP.

We also utilize the BSD68 dataset (Wang et al., 2004) to

assess the denoising ability of all compared approaches. We can

observe from Table 2 that the average PSNR gains obtained by

our proposed MS-GSRC method in comparison to the BM3D,

PGPD, WNNM, NCSR, RRC, GSRC-NLP, and LGSR methods are

0.24 dB, 0.16 dB, 0.02 dB, 0.27 dB, 0.24 dB, 0.23 dB, and 0.03

dB. Meanwhile, on average, the proposed MS-GSRC achieve an

SSIM improvement of 0.0153 on BM3D, 0.0169 on PGPD, 0.0064

on WNNM, 0.0137 on NCSR, 0.0228 on RRC, 0.0027 on LGSR,

and 0.0194 on GSRC-NLP. Evidently, our proposed MS-GSRC

method yields better PSNR and SSIM in almost all noise cases. Our

method is only 0.01 dB lower than WWNM in PSNR, but 0.0052

higher than in SSIM at σ = 75. Beyond objective metrics, the

subjective perception of the human body is also a crucial criterion

for assessing the quality of an image. Consequently, we present

the visual contrast between the two images of starfish and 223,061
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FIGURE 3

Denosing results on image starfish (σ = 75). (A) Noise image. (B) BM3D (PSNR = 23.27 dB and SSIM = 0.6619). (C) PGPD (PSNR = 23.23 dB and SSIM =

0.6638). (D) WNNM (PSNR = 22.84 dB and SSIM = 0.5412). (E) NSRC (PSNR = 23.18 dB and SSIM = 0.6685). (F) RRC (PSNR = 23.32 dB and SSIM =

0.6741). (G) LGSR (PSNR = 23.43 dB and SSIM = 0.6805). (H) GSRC-NLP (PSNR = 23.32 dB and SSIM = 0.6712). (I) OURS (PSNR = 23.56 dB and SSIM =

0.6859).

FIGURE 4

Denosing results on image 223061 (σ = 75). (A) Noise image. (B) BM3D (PSNR = 22.27 dB and SSIM = 0.5470). (C) PGPD (PSNR = 22.30 dB and SSIM =

0.5420). (D) WNNM (PSNR = 22.51 dB and SSIM = 0.5690). (E) NSRC (PSNR = 22.15 dB and SSIM = 0.5383). (F) RRC (PSNR = 22.22 dB and SSIM =

0.5351). (G) LGSR (PSNR = 22.32 dB and SSIM = 0.5545). (H) GSRC-NLP (PSNR = 22.13 dB and SSIM = 0.5313). (I) OURS (PSNR = 22.42 dB and SSIM =

0.5761).

restored by different methods in Figures 3, 4, respectively. Figure 3

indicates that BM3D, PGPD, WNNM, and RRC are likely to over-

smooth the restored image, whereas NCSR, GSRC-NLP, and LGSR

can lead to the appearance of some undesired visual artifacts. As

can be seen in Figure 4, although the image restored by WNNM

has a higher PSNR, the image restored by our MS-GSRC method

has a higher SSIM value and presents a better visual effect. PGPD,

NCSR, RRC, and GSRC-NLP are susceptible to loss of detail in the

restored images, while BM3D, WNNM, and LGSR may result in

undesirable artifacts.

4.2. Image inpainting

Next, we verify the superiority of the MS-GSRC model on

inpainting. We likewise compare the proposed MS-GSRC method

with many classical or recently popular methods, such as SAIST

(Afonso et al., 2010), TSLRA (Guo et al., 2017), GSR (Zhang

et al., 2014b), JSM (Zhang et al., 2014c), JPG-SR (Zha et al.,

2018b), LGSR (Zha et al., 2022), and IDBP (Tirer and Giryes,

2018). Among these, SAIST is one of the earliest proposed

methods for image restoration, GSR, JPG-SR, LGSR, TSLRA,
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TABLE 3 PSNR (dB) and SSIM comparison of di�erent methods SAIST, TSLRA, GSR, JSM, JPG-SR, LGSR, IDBP, and OURS for image inpainting.

Images Bahoon Bear House Lake Leaves Lena Lily Pepper Nanna Butterfly Gilrs Fireman Average

Pixels missing = 80%

SALSA
23.15 27.29 26.63 22.20 19.78 25.96 24.31 25.55 21.96 19.95 21.80 22.17 23.40

0.5815 0.7952 0.8421 0.7420 0.7749 0.8294 0.7485 0.8633 0.7288 0.7883 0.7078 0.6812 0.7569

JSM
25.21 29.35 34.28 25.57 26.17 30.50 27.92 30.26 25.16 25.38 25.07 25.25 27.51

0.6577 0.8378 0.9102 0.8302 0.9209 0.8991 0.8410 0.9214 0.8196 0.9011 0.8015 0.7664 0.8423

GSR
24.58 30.28 35.57 25.67 27.46 31.42 28.87 31.10 25.23 26.03 25.50 25.46 28.10

0.6893 0.8650 0.9313 0.8560 0.9452 0.9250 0.8820 0.9393 0.8531 0.9223 0.8386 0.8041 0.8709

TSLRA
25.44 29.34 31.30 25.31 25.09 30.09 27.96 28.39 25.32 24.91 24.99 25.44 26.96

0.6714 0.8401 0.9106 0.8103 0.8934 0.8904 0.8400 0.9087 0.8163 0.8835 0.7974 0.7759 0.8365

JPG-SR
24.99 30.15 34.92 25.93 27.42 31.46 28.97 31.23 25.66 26.29 25.60 25.48 28.18

0.6904 0.8562 0.9148 0.8508 0.9409 0.9193 0.8767 0.9326 0.8500 0.9214 0.8373 0.7977 0.8657

LGSR
25.24 30.55 35.83 26.33 27.48 31.69 29.07 31.75 25.91 26.53 25.81 25.79 28.50

0.6989 0.8678 0.9333 0.8611 0.9419 0.9251 0.8813 0.9383 0.8541 0.9244 0.8423 0.8078 0.8730

IDBP
25.03 30.06 33.69 25.84 26.48 30.29 28.10 30.89 25.42 25.60 25.48 25.46 27.70

0.6695 0.8447 0.9060 0.8319 0.9233 0.8979 0.8486 0.9153 0.8214 0.9011 0.8146 0.7645 0.8449

OURS
25.32 30.62 35.55 26.38 27.60 31.91 29.20 31.97 26.06 26.78 25.97 26.04 28.62

0.7006 0.8694 0.9246 0.8619 0.9436 0.9267 0.8840 0.9405 0.8564 0.9278 0.8461 0.8125 0.8745

Pixels missing = 70%

SALSA
24.32 29.29 27.49 24.33 22.01 28.10 26.20 28.40 23.93 22.41 23.53 23.96 25.33

0.6867 0.8542 0.8827 0.8325 0.8572 0.8864 0.8278 0.9159 0.8179 0.8669 0.7962 0.7703 0.8329

JSM
26.48 31.56 36.69 27.56 29.28 32.67 29.74 33.28 27.19 27.84 27.18 27.07 29.71

0.7514 0.8895 0.9402 0.8854 0.9581 0.9351 0.8924 0.9535 0.8819 0.9374 0.8739 0.8385 0.8948

GSR
26.17 32.01 37.63 28.08 31.18 33.54 31.10 34.77 27.89 28.92 27.86 27.47 30.55

0.7797 0.9043 0.9543 0.9057 0.9744 0.9507 0.9246 0.9633 0.9076 0.9506 0.9015 0.8681 0.9154

TSLRA
26.71 31.65 35.86 27.30 27.94 32.58 29.91 32.64 27.27 27.74 27.05 27.23 29.49

0.7602 0.8917 0.9485 0.8770 0.9440 0.9355 0.8942 0.9494 0.8808 0.9342 0.8668 0.8412 0.8936

JPG-SR
26.38 32.21 37.41 28.04 30.89 33.58 31.12 34.49 27.95 29.18 27.91 27.54 30.56

0.7774 0.8997 0.9445 0.9011 0.9707 0.9469 0.9197 0.9580 0.9036 0.9494 0.8982 0.8624 0.9110

LGSR
26.65 32.28 37.98 28.72 31.31 33.76 31.19 34.92 28.21 29.39 28.14 27.90 30.87

0.7846 0.9065 0.9555 0.9097 0.9729 0.9507 0.9237 0.9619 0.9065 0.9523 0.9025 0.8707 0.9165

IDBP
26.39 31.74 36.48 27.92 29.23 32.58 30.08 33.36 27.16 28.25 27.49 27.37 29.84

0.7582 0.8872 0.9293 0.8856 0.9549 0.9340 0.8974 0.9460 0.8767 0.9387 0.8766 0.8391 0.8936

OURS
26.76 32.38 37.97 28.77 31.57 33.88 31.53 35.11 28.42 29.62 28.35 28.13 31.04

0.7867 0.9078 0.9541 0.9102 0.9744 0.9515 0.9284 0.9632 0.9090 0.9542 0.9053 0.8743 0.9183

Pixels missing = 60%

SALSA
25.40 29.73 29.99 25.84 24.65 29.69 28.11 30.60 25.37 25.28 25.06 25.37 27.09

0.7648 0.8880 0.9096 0.8772 0.9192 0.9203 0.8848 0.9443 0.8688 0.9186 0.8536 0.8349 0.8820

JSM
27.71 33.07 38.53 29.35 31.43 34.60 31.56 35.35 29.06 29.77 28.96 28.72 31.51

0.8175 0.9182 0.9580 0.9213 0.9748 0.9559 0.9278 0.9678 0.9182 0.9567 0.9151 0.8871 0.9265

GSR
27.74 33.60 39.68 29.86 33.39 35.81 33.05 36.42 30.13 31.09 29.55 29.32 32.47

(Continued)
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TABLE 3 (Continued)

Images Bahoon Bear House Lake Leaves Lena Lily Pepper Nanna Butterfly Gilrs Fireman Average

0.8445 0.9298 0.9674 0.9366 0.9849 0.9668 0.9505 0.9739 0.9383 0.9667 0.9359 0.9086 0.9420

TSLRA
27.92 32.77 37.23 29.01 30.19 34.26 31.55 34.96 29.17 29.42 28.79 28.73 31.17

0.8239 0.9195 0.9641 0.9156 0.9666 0.9555 0.9282 0.9654 0.9173 0.9531 0.9097 0.8860 0.9254

JPG-SR
27.92 33.61 39.22 30.13 33.26 35.73 33.10 36.40 30.21 31.30 29.84 29.46 32.52

0.8404 0.9240 0.9594 0.9328 0.9829 0.9626 0.9464 0.9692 0.9350 0.9641 0.9326 0.9039 0.9378

LGSR
28.15 33.94 39.82 30.66 33.70 35.97 33.31 36.85 30.40 31.58 30.13 29.83 32.86

0.8481 0.9320 0.9678 0.9396 0.9848 0.9665 0.9506 0.9732 0.9381 0.9673 0.9373 0.9119 0.9431

IDBP
27.71 33.53 38.18 29.76 31.55 34.35 31.85 35.27 29.22 29.71 29.24 28.98 31.61

0.8226 0.9176 0.9487 0.9209 0.9728 0.9531 0.9301 0.9628 0.9184 0.9544 0.9153 0.8839 0.9251

OURS
28.23 34.10 39.90 30.71 34.11 36.08 33.54 36.99 30.55 31.84 30.43 30.05 33.04

0.8481 0.9331 0.9676 0.9402 0.9861 0.9672 0.9528 0.9740 0.9396 0.9684 0.9395 0.9142 0.9442

Pixels missing = 50%

SALSA
26.50 31.79 31.64 27.83 26.61 30.98 29.59 31.08 26.85 27.28 26.90 27.09 28.68

0.8270 0.9226 0.9326 0.9176 0.9471 0.9436 0.9181 0.9595 0.9062 0.9452 0.8992 0.8826 0.9168

JSM
29.05 34.63 40.43 30.99 33.80 36.37 33.41 37.32 30.73 31.35 30.63 30.27 33.25

0.8697 0.9415 0.9710 0.9447 0.9848 0.9705 0.9523 0.9773 0.9440 0.9692 0.9433 0.9196 0.9490

GSR
29.41 35.62 41.62 32.14 35.87 37.63 35.41 38.53 32.16 32.78 31.93 31.00 34.51

0.8923 0.9509 0.9768 0.9575 0.9909 0.9779 0.9685 0.9817 0.9589 0.9759 0.9582 0.9353 0.9604

TSLRA
29.15 33.01 40.22 30.53 32.56 35.52 33.20 36.61 30.87 31.01 30.48 30.25 32.79

0.8734 0.9407 0.9748 0.9409 0.9803 0.9702 0.9518 0.9758 0.9433 0.9672 0.9397 0.9186 0.9480

JPG-SR
29.49 35.53 40.85 31.89 35.83 37.39 35.21 38.19 32.27 32.89 32.02 30.96 34.38

0.8887 0.9454 0.9704 0.9533 0.9896 0.9732 0.9647 0.9771 0.9558 0.9737 0.9556 0.9310 0.9565

LGSR
29.74 35.89 41.78 32.57 36.35 37.89 35.41 38.59 32.50 33.38 32.19 31.42 34.81

0.8950 0.9524 0.9772 0.9592 0.9910 0.9775 0.9684 0.9810 0.9592 0.9771 0.9592 0.9379 0.9613

IDBP
29.14 34.85 40.20 31.51 34.05 36.36 33.66 37.60 30.86 31.99 31.11 30.53 33.49

0.8726 0.9383 0.9653 0.9447 0.9836 0.9668 0.9523 0.9738 0.9420 0.9686 0.9427 0.9170 0.9473

OURS
29.80 35.99 41.80 32.58 36.60 38.07 35.63 38.89 32.53 33.44 32.38 31.58 34.94

0.8950 0.9530 0.9769 0.9595 0.9915 0.9780 0.9694 0.9817 0.9597 0.9775 0.9604 0.9395 0.9618

The data marked in red represent the best values.

and JSM use the NSS prior, and IDBP is a deep learning-

based method. In simulation experiments, we test images by

randomly generated masks that included missing pixels of 80%,

70%, 60%, and 50%. Following are the parameters that we set

for the MS-GSRC model in different cases. We set the patch

size to 7 × 7, the search window size to 25, and the non-local

similar patches to 60. In addition, for all cases, we set the multi-

scales to [1,0.85]. Moreover, we set (0.0002, 0.0001, 1.5, 15) and

(0.0001, 0.0001, 1.5, 15) as parameters (ω, ζ ,α,β)when the missing

pixels are 0.8 and others, respectively. In addition, σ =
√
2 for all

experiences.

Table 3 illustrates the PSNR and SSIM results for each method

on the 12 frequently used test images. As observed in Table 3, our

proposed method exceeds the comparison algorithm virtually often

when it comes to image inpainting performance. The proposed

MS-GSRC outperforms SAIST, JSM, GSR, TSLRA, JPG-SR, LGSR,

and IDBP approaches in average PSNR performance, with gains

of 5.8 dB, 1.43 dB, 0.51 dB, 1.82 dB, 0.51 dB, 0.13 dB, and 1.26

dB, respectively. Additionally, on average, the proposed MS-GSRC

surpasses SAIST by 0.0776, JSM by 0.0216, GSR by 0.0025, TSLRA

by 0.0238, JPG-SR by 0.007, LGSR by 0.0012, and IDBP by 0.022.

Similarly, two images are selected for detailed visual analysis.

The image butterfly with a 80% loss of pixels restored by different

methods are presented in Figure 5. Moreover, Figure 6 displays the

outcomes of a visual comparison of image flowers with a 70% loss

of pixels restored with different algorithms. By analyzing the visual

comparison images, we can find that images restored using SAIST,

JSM, TSLRA, IDBP GSR, and JPG-SR are susceptible to excessive

smoothing, and images restored using LGSR tend to show excessive

visual artifacts. The images restored using our proposed MS-GSRC

model have significantly better restoration capabilities with regard

to image detail and edges.
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FIGURE 5

Inpainting results on image butterfly (missing ratio=80%). (A) Missing pixels image. (B) SAIST(PSNR = 19.95 dB and SSIM = 0.7883). (C) JSM (PSNR =

25.38 dB and SSIM = 0.9011). (D) GSR (PSNR = 26.03 dB and SSIM = 0.9223). (E) TSLRA (PSNR = 24.91 dB and SSIM = 0.8835). (F) JPG-SR (PSNR =

26.29 dB and SSIM = 0.9214). (G) LGSR (PSNR = 26.53 dB and SSIM = 0.9244). (H) IDBP (PSNR = 25.60 dB and SSIM = 0.9011). (I) OURS(PSNR = 26.78

dB and SSIM = 0.9278).

FIGURE 6

Inpainting results on image flowers (missing ratio = 70%). (A) Missing pixels image. (B) SAIST (PSNR = 27.69 dB and SSIM = 0.8422). (C) JSM (PSNR =

29.74 dB and SSIM =0.8924). (D) GSR (PSNR = 31.10 dB and SSIM = 0.9246). (E) TSLRA (PSNR = 29.91 dB and SSIM = 0.8942). (F) JPG-SR (PSNR =

31.12 dB and SSIM = 0.9197). (G) LGSR (PSNR = 31.19 dB and SSIM = 0.9237). (H) IDBP (PSNR = 30.08 dB and SSIM = 0.8974). (I) OURS (PSNR = 31.53

dB and SSIM = 0.9284).

4.3. Image compressed sensing

Finally, we validate the restoration capability of our proposed

MS-GSRC model on the image compressed sensing problem.

In this part of experiments, we use the Gaussian random

projection matrix (Zhang et al., 2014b) to generate blocks of

size 32 × 32 to test the CS restoration effects. The parameters

set for the MS-GSRC model are as follows: For all cases, the

patch size is set to be 8 × 8, the patch number to 80, the

search window size to be 25, and the multi-scales to be [1,0.75].

In addition, (0.004, 0.00002, 0.6, 25), (0.0014, 0.00005, 0.9, 15),

(0.0015, 0.00001, 0.5, 10), and (0.0015, 0.00001, 1.4, 6) are set for

(ζ ,ω, α,β) when subrate is 0.1N, 0.2N, 0.3N, and 0.4N.

BSC (Mun and Fowler, 2009), RCOS (Zhang et al., 2012), ALSB

(Zhang et al., 2014a), GSR (Zhang et al., 2014b), ASNR (Zha et al.,

2018a), and LGSR (Zha et al., 2022) are choosen as competing
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methods. Among them, GSR performs a sparse representation on

similar groups of images, ASNR is an image of the CS method

that extends on the basis of NCSR, and LGSR combines sparsity

and LR. Similarly, we selected 12 images frequently used in image

restoration experiments as test images. Table 4 presents the average

outcomes of PSNR and SSIM of the restored images using different

method. To be concrete, the proposed MS-GSRC model over BCS,

TABLE 4 PSNR (dB) and SSIM comparison of di�erent methods for image

CS on 12 test images.

Subrate 0.1 0.2 0.3 0.4 Average

BCS
23.60 26.26 28.19 29.88 26.98

0.6308 0.7418 0.8117 0.8609 0.7445

RCOS
25.92 29.20 31.54 33.34 30.00

0.7163 0.8298 0.8909 0.9236 0.8402

ALSB
26.66 30.19 32.67 34.87 31.10

0.7778 0.8751 0.9209 0.9484 0.8806

GSR
27.00 30.96 33.66 35.89 31.88

0.8002 0.8963 0.9367 0.9587 0.8980

ASNR
27.24 31.04 33.51 35.78 31.89

0.7965 0.8953 0.9329 0.9568 0.8954

LGSR
27.51 31.34 33.89 36.07 32.20

0.8062 0.8994 0.9379 0.9593 0.9007

OURS
27.91 31.40 33.94 36.09 32.34

0.8150 0.9009 0.9387 0.9598 0.9036

The data marked in red represent the best values.

RCOS, ALSB, GSR, ASNR, and LGSRmethods are 5.36 dB, 2.34 dB,

1.24 dB, 0.46 dB, 0.45 dB, and 0.14d B in PSNR and 0.1591, 0.0634,

0.0023, 0.0056, 0.0082, and 0.0029 in SSIM, respectively.

Due to the other competing algorithms used in this thesis,

all use BCS to pre-process CS images, and here we use the BCS-

processed images as corrupted images. Figure 7 shows the visual

contrast of the image fence with 0.1 N CS measurements, and we

can observe that RCOS and ALSB are less capable of restoring

details, GSR and LGSR lead to over-smooth, and ASNR generates

some redundant artifacts. Figure 8 illustrates the visual comparison

of the image leaves measured with 0.1N CS. All comparison images

have strong ringing phenomena and present terrible artifacts. In

Figure 9, we have selected the image airplane processed with 0.2N

CS for detailed analysis. It is obvious that the details of the images

restored by ALSB and LGSR are seriously missing. The images

restored by RCOS, GSR, and ASNR produced more artifacts. In the

above three cases, our proposed MS-GSRC algorithm significantly

outperforms other competing algorithms in recovering the image

overall and some texture details.

5. Conclusion

In this study, we propose a novel model Multi-Scale

Group Sparse Residual Constraint Model (MS-GSRC) for image

restoration. This model introduces the low-rank property into

the group sparse residual framework and finds similar patches

for overlapping patches of the input image using a multi-scale

strategy. Furthermore, under the MAP restoration framework, an

alternatingminimizationmethod with adaptive tunable parameters

is used to deliver a robust optimization solution for our

FIGURE 7

CS results on image fence (subrate = 0.1 N). (A) BCS (PSNR = 19.54 dB, SSIM = 0.5034). (B) RCOS (PSNR = 23.29 dB, SSIM = 0.6932). (C) ALSB (PSNR =

25.05 dB and SSIM = 0.7736). (D) GSR (PSNR = 26.06 dB and SSIM = 0.8047). (E) ASNR (PSNR = 26.01 dB and SSIM = 0.8006). (F) LGSR (PSNR = 26.58

dB and SSIM = 0.8107). (G) OURS (PSNR = 27.26 dB and SSIM = 0.8216).
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FIGURE 8

CS results on image leaves (subrate = 0.1 N). (A) BCS (PSNR = 18.37 dB, SSIM = 0.5767). (B) RCOS (PSNR = 22.17 dB, SSIM = 0.0.8323). (C) ALSB

(PSNR = 21.52 dB and SSIM = 0.7939). (D) GSR (PSNR = 23.22 dB and SSIM = 0.8731). (E) ASNR (PSNR = 23.48 dB and SSIM = 0.8805). (F) LGSR (PSNR

= 23.75 dB and SSIM = 0.8824). (G) OURS (PSNR = 24.57 dB and SSIM = 0.8992).

FIGURE 9

CS results on image airplane (subrate = 0.2 N). (A) BCS (PSNR = 25.87 dB, SSIM = 0.8111). (B) RCOS (PSNR = 28.22 dB, SSIM = 0.8854). (C) ALSB

(PSNR = 28.39 dB and SSIM = 0.8942). (D) GSR (PSNR = 28.87 dB and SSIM = 0.9082). (E) ASNR (PSNR = 29.17 dB and SSIM = 0.9075). (F) LGSR (PSNR

= 29.43 dB and SSIM = 0.9110). (G) OURS (PSNR = 29.59 dB and SSIM = 0.9120).

MS-GSRC method. We employ the MS-GSRC model to three

image restoration problems, namely, denoising, inpainting, and

compressed sensing. Extensive simulation trials show that our

novel model performs superior to many classical methods in terms

of both objective image quality and subjective visual quality.
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