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Hybrid UNet transformer
architecture for ischemic stoke
segmentation with MRI and CT
datasets

Wei Kwek Soh and Jagath C. Rajapakse*

School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore

A hybrid UNet and Transformer (HUT) network is introduced to combine

the merits of the UNet and Transformer architectures, improving brain lesion

segmentation from MRI and CT scans. The HUT overcomes the limitations of

conventional approaches by utilizing two parallel stages: one based on UNet

and the other on Transformers. The Transformer-based stage captures global

dependencies and long-range correlations. It uses intermediate feature vectors

from the UNet decoder and improves segmentation accuracy by enhancing the

attention and relationship modeling between voxel patches derived from the

3D brain volumes. In addition, HUT incorporates self-supervised learning on the

transformer network. This allows the transformer network to learn by maintaining

consistency between the classification layers of the di�erent resolutions of

patches and augmentations. There is an improvement in the rate of convergence

of the training and the overall capability of segmentation. Experimental results

on benchmark datasets, including ATLAS and ISLES2018, demonstrate HUT’s

advantage over the state-of-the-art methods. HUT achieves higher Dice scores

and reduced Hausdor� Distance scores in single-modality and multi-modality

lesion segmentation. HUT outperforms the state-the-art network SPiN in the

single-modality MRI segmentation on Anatomical Tracings of lesion After Stroke

(ATLAS) dataset by 4.84%of Dice score and a largemargin of 40.7% in theHausdor�

Distance score. HUT also performed well on CT perfusion brain scans in the

Ischemic Stroke Lesion Segmentation (ISLES2018) dataset and demonstrated an

improvement over the recent state-of-the-art network USSLNet by 3.3% in the

Dice score and 12.5% in the Hausdor� Distance score. With the analysis of both

single andmulti-modalities datasets (ATLASR12 and ISLES2018), we show that HUT

can perform and generalize well on di�erent datasets.

Code is available at: https://github.com/vicsohntu/HUT_CT.
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1 Introduction

Restrictive blood flow can lead to ischemic stroke in the brain. Among all of the strokes,

about 87% of them are ischemic strokes (Kuriakose and Xiao, 2020). It is often a result of

an accumulation of thrombocytes along the path of the blood vessel, which prevents the

mobility of the red blood cells. The hemoglobin’s vital oxygen can no longer be supplied to

the brain tissues. This leads to the death of the brain cells. Immediate identification and

relevant treatments are required before it becomes irreversible. The main objective is to
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restore the blood flow to the affected region to prevent further

damage to the brain tissues. According to Tsao et al. (2022), there

is a global estimate of 3.48 million deaths due to ischemic stroke

in 2020. It is, therefore, important to determine the region of the

obstruction of the blood flow and accurately segment the outline of

the ischemic stroke lesion.

Using non-contrast Computed Tomography (CT) imaging to

evaluate ischemic stroke is fast and cost-effective. However, it is

difficult to interpret the infarct core because of the subtle differences

in texture and intensity. It is also difficult to interpret due to

multiple artifacts, noise, and other tissue abnormalities. On the

contrary, one can inject a contrast agent into the bloodstream to

enhance CT imaging, also known as CT perfusion imaging, which

highlights the blood perfusion in the brain.

Although non-contrast CT imaging can still provide important

information about the lesion core, it does not offer more detailed

information. CT perfusion imaging provides more distinct regions

of ischemic stroke lesions, such as the infarct core and the

penumbra, which is treatable and reversible. We can mitigate

further damages by differentiating between the two regions. Non-

contrast and contrast CT imaging analysis provides important

information for further treatment.

In addition to CT imaging, magnetic resonance imaging (MRI)

scans, such as T1-weighted (T1-w) images, are also commonly used

to assess stroke lesions because they provide detailed anatomical

information and better classify brain tissues. From the T1-w MRI

scans, we can observe that the damaged tissue can appear as

hypointense regions.

The imaging information obtained from CT imaging

complements the information obtained from the MRI scans. The

MRI technique is more sensitive to early infarction changes, so

timely and accurate intervention can be provided. The downside

of using the MRI is the availability of such service at the healthcare

provider, while CT imaging is more widely accessible.

Segmenting CT perfusion lesions involves dividing the brain

image obtained from CT perfusion scans into distinct regions,

specifically focusing on identifying and outlining areas affected

by an ischemic stroke. The first step is to identify and locate the

affected area so that the clinicians can determine the traits of the

lesion and provide the right treatment for the patient to slow down

the damage. On the one hand, manually segmenting the lesions

is frequently time-consuming. It requires expertise and sometimes

produces inconsistent results. On the other hand, an automatic

brain lesion segmentation method is more efficient in diagnosing

and providing appropriate treatment for the condition of the brain.

The supervised deep learning methods have been improved

over existing machine learning techniques in just a short

period of time. One of the pioneering deep-learning methods,

such as the UNet (Ronneberger et al., 2015), has been

vastly popular in biomedical image segmentation due to

its consistent and outstanding performance. It consists of a

series of downsampling and upsampling convolutional layers,

coupling with skip-connection between the layers to improve the

learning stability.

Wong et al. (2022) proposed Subpixel Network (SPiN) that

uses two networks to achieve state-of-the-art lesion segmentation

on the ATLAS R1.2 dataset. The first network maps the input

image to a high-dimensional embedding space at twice the input

resolution. The second network then produces a confidence map

using “subpixel” predictions. Four predictions from a 2 × 2

neighborhood represent each pixel in the output segmentation.

The final output class for each pixel is obtained using a

learnable downsampler to predict the contribution of each subpixel

prediction in a local region corresponding to the pixel in the

original resolution. This avoids using hand-crafted downsampling

techniques such as bilinear or nearest neighbor interpolation. Prior

works that addressed the challenges in ischemic stroke lesion

segmentation include DUNet (Jin et al., 2019), CLCI-Net (Yang

et al., 2019), and X-Net (Qi et al., 2019). DUNet extracts 2D and

3D features to improve the computation, while X-Net attempts to

improve the long-range correlation of the regions by using a feature

similarity module. On the contrary, CLCINet introduced another

network to handle the segmentation of smaller parts of an organ.

Recently, USSLNet improved the multi-scale convolution structure

of Clerigues et al. (2019) and increased the receptive field to capture

greater details.

While UNet has been highly successful in the field of biomedical

segmentation, Transformer architecture has recently made its

way to show good performance in both image classification

and segmentation. The transformer architecture was originally

introduced by Vaswani et al. (2017) as self-attention networks in

the application of Natural Language Processing (NLP).

Apart from performing extremely well in NLP tasks when

trained on a large corpus, the Transformer model has also

performed well in computer vision. Although it works on

sequences, we can apply a workaround by converting the images

into patches represented in a sequence. The conversion is achieved

by splitting the images into patches and mapping the patches

through learnable network layers before providing them as input

to the Transformer. Vision Transformer (ViT) has recently been

used in medical imaging analysis, such as tumor-type classification

of ultrasound images (Dosovitskiy et al., 2020). In brain tumor

segmentation, there has been increasing research using ViT.

However, convolutional neural network (CNN)-based U-Net

remains a strong contender. ViT fits well for image classification

tasks because it can learn long-range dependencies between pixels.

However, they do not perform as well in segmentation tasks, which

require the model to learn local and global information.

Hybrid architectures that combine ViT and U-Net have been

proposed to address this. For example, the Swin-Unet architecture

from Cao et al. (2021) uses a hierarchical structure to reduce

the complexity of the ViT architecture and improve performance.

However, this architecture is only designed for 2D scans because it

is pre-trained on the ImageNet dataset. Tang et al. (2021) proposed

a 3D Swin-Unet architecture with self-supervised learning to

improve performance in brain tumor segmentation. There are

other hybrid architectures such as the Mixed-Transformer UNet

(MT-UNet; Wang H. et al., 2021), the Transformer Brain Tumor

Segmentation (TransBTS; Wang et al., 2021a), and the UNet

Transformer (Unetr; Hatamizadeh et al., 2022). These architectures

use multiple transformers for the bottleneck to reduce the size of

the ViT and the overall complexity. These hybrid architectures have

shown promising results in brain tumor segmentation but there is

still a lack of research on ischemic stroke segmentation.
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Both MRI and CT perfusion scans are commonly used in

brain lesion segmentation. In this work, we compare our proposed

method HUT, with other state-of-the-art methods using MRI

and CT perfusion datasets. We only utilize a single-modality

T1-weighted dataset for the MRI scans, namely the Anatomical

Tracings of Lesion After Stroke (ATLAS) R1.2 dataset. The brain

tissue may appear darker for the damaged or dead brain tissue

than the healthy brain tissue. This is due to a lower signal strength

produced by inactive brain tissue. In contrast to MRI scans, we use

multiple image modes in the CT perfusion dataset. Multi-modal

images providemore diverse information on the brain tissue, which

helps enhance analysis, diagnosis, and segmentation performances.

The CT perfusion dataset we employ is the Ischemic Stroke Lesion

Segmentation (ISLES) 2018 dataset. The dataset comprises images

with three different parameters, namely the mean transit time

(MTT), cerebral blood flow (CBF), and cerebral blood volume

(CBV). An observation of a persistent MTT, decreased CBF and

reduced CBV signify that it could be an infarct core. Observing

persistent MTT, slightly reduced CBF, and near-mean CBV implies

that it could be an ischemic penumbra that can still be treated.

Although CT perfusion is a valuable tool for detecting and outlining

acute ischemic stroke lesions, it does not have the same spatial

resolution as MRI. Therefore, CT perfusion may not be as accurate

as MRI in identifying the infarct core and penumbra.

Small lesions often occur in ischemic stroke, and segmenting

them becomes a real challenge when using convolutional neural

network (CNN) architectures. CNN models obtain global features

through the aggregation operation of the convolution and pooling.

A reduction of the spatial resolution can result in a loss of

information about the smaller features of the images. This is why

most CNN architectures may miss the detection and outlining of

the smaller lesion, leading tomisdiagnosis of themedical condition.

On the contrary, the Vision Transformer (ViT) performs better

than its CNN counterpart because it captures long-range and

short-range correlations in sequence data using a self-attention

mechanism. However, the ViT architecture requires a lot of data to

train (Dosovitskiy et al., 2020). Similar to the application of NLP,

the images are transformed into patches and arranged sequence

data to be used for the model.

Our approach differs from existing hybrid systems such as

UNETR, TransBTS (Wang et al., 2021a), TransUnet (Chen J. et al.,

2021), and STHarDNet (Gu et al., 2022). TransBTS places the

transformer at the bottleneck of the UNet architecture. Similarly,

STHarDNet adds a Swin Transformer at the first skip connection

of UNet and concatenates its output at the second layer before the

final layer of the UNet decoder. TransUnet is similar to TransBTS

but has an additional downsampling CNN layer at the transformer’s

output. UNETR utilizes CNN layers at the output of the skip

connections and concatenates the output sequence representation

from the upsampled CNN layers with a decoder similar to UNet.

In contrast, our architecture takes two patches of different sizes

at the input and multiplies the attention map from the output of

the cross-transformer at the UNet decoder. Additionally, we utilize

self-supervised training for the CLS token at the output of the

cross-transformer to enhance performance.

A two-fold approach is established to exploit the inter-

correlation between the modalities and the intra-correlation

between the voxels. First, we introduce the ViT with convolution

layers to address lesion anomalies. Second, we present a self-

supervised methodology to improve the convergence rate and the

learning of the latent features.

In summary, we have made the following novel contributions

to this work:

1. Introduce a Hybrid U-Net Transformer Segmentation system

that performs state-of-the-art ischemic stroke segmentation on

ATLASR12 and ISLES 2018 datasets. ATLASR12 contains one

modalityMRI (T1w), while the ISLES contain four CT perfusion

images (CBF, CBV, MTT, and Tmax).

2. Our framework allows simultaneous self-supervised and

supervised training on the UNet and Transformer networks.

2 Methods

2.1 Hybrid UNet transformer (HUT)
architecture

The U-Net architecture uses convolution layers that provide

an inductive bias to a system and increase the convergence rate,

exploiting the local correlation between pixels via the kernels. On

the other hand, the Transformer offers a long-range relationship

between the tokens, represented mainly by the image patches.

However, transformers are not data-efficient and require large

datasets for the training to converge effectively. We also know that

annotated data is costly and scarce in medical imaging. In light of

the limitation, we introduce a hybrid network incorporating the

merits of convolution layers and Transformers (Wang et al., 2021a;

Wang H. et al., 2021). Moreover, we extract the information from

the lower layers of the decoder of the UNet for the self-supervision

learning of the CLS tokens.

Figure 1 illustrates the overall architecture of the network

for ischemic stroke segmentation, which consists of two stages,

namely the UNet stage (UNS) and the Vision Transformer stage

(VTS). First, we incorporate the transformer blocks parallel to

the U-Net structure. We instantiate a voxel embedding, a local

Transformer, a position embedding, and a global transformer

within the transformers module. The small patch transformer acts

on the smaller voxel patches, whereas the large patch transformer

acts on the larger voxel patches. The small patch transformer

gathers information about local features, whereas the large patch

transformer gathers information about the overall image. The

traditional U-Net has better convergence, mainly due to inductive

bias from the CNN architecture. We adopt a hybrid architecture

to improve the voxels’ local and global correlation and achieve

faster convergence than training a pure transformer-based U-Net.

In our proposed architecture, the transformers operate on each skip

connection. By providing essential attention to important regions,

we observed that the system performs better when incorporating

transformers at the upper layers of the UNet.

We introduced the HUT architecture to address the

shortcomings of the convolutional networks and transformer

networks. Due to the inductive bias of the convolutional network,

the UNet model is very data-efficient as it generalizes image

features well. The transformer network uses self-attention

to correlate long-range dependencies between image tokens.
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However, the transformer architecture requires large amounts of

data to train to generalize well. The HUT architecture incorporates

the VTS parallel to the UNS to overcome these limitations.

Through this combination, we observe that UTP can capture

long-range relationships between different patches, while VTS is

trained more efficiently with the aid of the UNet.

2.2 The UNet stage (UNS)

We adopt the conventional UNet structure. As illustrated in

Figure 1, we proposed introducing an extra upsampling layer to the

first skip connection at the UNet stage via a conventional transpose

layer with a kernel of 5 and stride of 2, followed by a pooling.

It allows the model to capture smaller details while increasing

the receptive field compared to the implementation of the first

passthrough skip connection. By combining the UNSwith VTS, the

transformer can effectively leverage the advantage of an inductive

bias of UNS and allow the learning to converge faster. In other

words, compared to the traditional training of the transformer that

requires a large amount of data, the training of the VTS is now

more data-efficient with the help of the UNS. It is also important to

note that the fusing of the transformer’s output occurs at the lower

layers of the decoder of the UNet. Fusing at higher layers incurs

higher computation complexity and, naturally, does not help in the

training efficiency of the transformer.

2.3 The Vision Transformer stage (VTS)

The original transformer architecture was introduced to

address the long-term forgetfulness of the LSTM. It has been very

effective on many natural language processing tasks. In contrast, a

Vision Transformer (ViT) is an alternative form of the transformer

that is developed especially for classifying and outlining objects in

the images. Similar to the tokens in the NLP, we divide the images

into smaller patches and map them into a sequence of patch tokens.

In most NLP applications, an extra token called the CLS

(Classification token) is introduced to the input sequence to

aggregate the relationship between the tokens. Training it with

a label allows the Transformer to perform classification tasks

such as sentiment analysis or text classification (Devlin et al.,

2018). The transformer calculates the CLS token’s representation

by transversing every token’s hidden states in the input sequence.

As the tokens pass through the transformer’s encoder layers,

information is aggregated and represented within the CLS token.

This aggregation and compressed representation of data is

important to classification. Therefore, training the CLS token

against the label can guide the model to learn a particular

classification task. A couple of ViT variants use the CLS token

for the task identification objects. A system that learns to identify

objects performs well in the segmentation task.

The VTS comprises two layers: a self-attention layer and a

feedforward layer. The self-attention layer allows the model to

learn the importance of various tokens and build this part of

the information into the representation. A position embedding

is included within each token to avoid excluding important

information about the relative position between the image patches.

Most of the information will be combined into a representation in

the CLS token and then used to train against the ground truth label.

The CLS token will be used for prediction during the inference of a

classification task.

As illustrated in Figure 2, we introduce two parallel transformer

networks to process small and large image patches of two different

resolutions (Chen C.-F. R. et al., 2021). Each voxel in the images

is mapped to a vector embedding. The small patch attention

(SPA) operates on tokens of voxel embedding to compute the self-

attention correlation. The large patch attention (LPA) works on the

coarser resolution. We denote X as the input voxel data such that

X ∈ R
W×H×D×C, whereW,H, and D are the dimensions of input,

and C is the channel length. fs and fl are the linear network mapper

functions that transform the input to the same dimension and Rs is

the residual operation such that Rs(f (X)) = f (X)+ X.

The large patch embedding output YLA
∈

R
(W/k)×(H/k)×(D/k)×CL , with dimensions W/k,H/k,D/k, are

the voxel patches from embedding function with patch size k with

k > p, and CL is the new embedding channel length. Similarly,

the small patch embedding output YSA
∈ R

(W/p)×(H/p)×(D/p)×CS ,

with dimensions W/p,H/p,D/p, are the voxel patches from

embedding function with patch size p and CS is the new embedding

channel length.

The following is a description of the operation of the HUT

architecture:

S = SE(X)+ PE

YSA
= fs(Rs(LN(SPA(Rs(LN(S))))))

(1)

L = LE(X)+ PE

YLA
= fl(Rs(LN(LPA(Rs(LN(L))))))

(2)

where S and L are the outputs of voxel patch embedding of

small and large patches, respectively. YSA and YLA denote the

outputs from SPA and LPA blocks, respectively. The learnable

small and large voxel patch embedding and position encoding

function is denoted as SE, LE, and PE, respectively, and LN as

layer normalization operation. The combined output Y of the two

transformers is given by

Y = Concatenate(YSA,YLA)

Z = Rs(f (LN(CPA(Rs(LN(Y))))))
(3)

where Z denotes the output of the cross-transformermodule, which

consists of the cross-patches attention (CPA) function.

Figure 2 illustrates that the VTS produces two attention maps

that will be fused with UNS. Furthermore, the CLS tokens will be

used for self-supervised training with neither additional annotated

nor extra unannotated data. We attempted a few options for the

fusing mechanism between the UNS and VTS and found that the

multiplication operation produces the best outcome. We merge

the CLS tokens from the large and small patch transformers by

mapping them to appropriate dimensions and exchanging them

with other tokens. This is also known as the cross-attention of

tokens (Wang et al., 2021b). We utilize the CLS token at each stage

to exchange data between the tokens of the other branch. The CLS
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FIGURE 1

The HUT architecture consists of two separate stages: the UNet stage (UNS) and the Vision Transform stage (VTS).

tokens can extract abstract details across the large and small patch

tokens by relating the information between the patch tokens in

another branch. Combining this additional information provides

a better representation of the encoder output. We use the softmax

function to transform the two final CLS tokens with linear layers to

the output. A self-supervised training is introduced bymatching the

two probability distributions of the two CLS tokens. This method

further improves the performance of the system.

2.4 Training the model

During the learning of the model, both the self-supervised

training of the output of the ViT and the supervised training of

the encoder-decoder structure of the UNet are trained concurrently

with the training dataset. To ensure a low KL divergence between

the probabilities of the outputs of the cross-transformer, we seek to

minimize the cross-entropy loss between the CLS tokens. The self-

supervised training at the CLS tokens ensures consistency between

the probability distributions of the CLS tokens from the large and

small patch transformers.

2.4.1 Self-supervised loss function
Since the output of the classification layer from the large

and small patch transformers should be similar in principle, we

match the two output probability distributions from the CLS

tokens through KL divergence. This is to ensure the consistency of

the output.

The similarity between the probability distribution pCLS of the

small patch CLS token and the probability of the large patch CLS

token, qCLS, is ensured through the cross-entropy loss function. We

express the cross-entropy loss between the large patch CLS token

probability output, qCLS, and the small patch CLS token probability

output, pCLS as:

LSS = −pCLSlog(qCLS) (4)

2.4.2 Supervised loss functions
The motivation for a mixed segmentation loss of dice loss and

cross-entropy is that dice loss handles class imbalance while cross-

entropy loss allows a faster convergence in training. A weighted

cross-entropy focusing on the minority class is well-suited for

class imbalance datasets. Under supervised learning, combining a

weighted sum of soft dice loss and cross-entropy loss forms the

segmentation loss.

The cross-entropy loss measures the difference between the

probability of predicted output qic and the ground truth of pixel i

and the probability distribution pic of the class label c. We write the
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FIGURE 2

The Vision Transformer stage (VTS) comprises two branches of transformers for the small patches and large patches of the image. The last stage of

cross-transformer is to relate the tokens from the output of the earlier branches.

loss function as:

LCE = −
1

N

∑

c

∑

i

piclog(q
i
c) (5)

The soft dice loss at the output of the softmax function of the

network is represented as follows:

LDice =
1

N

∑

c

1−
2
∑

i q
i
cp

i
c∑

i(q
i
c + pic)

(6)

where N denotes the number of batches. With λDice chosen

empirically for the ATLAS lesion segmentation task and qic is the

probability of a predicted class, pic is the probability of actual class

at pixel i, we represent the total loss for the segmentation network

as:

L = λCELCE + λDiceLDice + λSSLSS (7)
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where λDice, λCE, and λSS are the weighting factors for the dice and

self-supervised losses.

The λDice and λCE are set as 0.5 and 0.5 for the lesion

segmentation task in all the experiments. For λSS, it works

empirically better with the value of 1e − 4 for the ATLAS dataset.

For the lesion segmentation task on the ISLES dataset, an empirical

value of 1e− 5 is chosen for the λSS factor.

3 Experiments and results

In this section, we perform experiments with a single modality

for ischemic stroke lesion segmentation with the ATLASR12

dataset and four modalities of CT perfusion scans with the

ISLES2018 dataset.

We use the Dice score, HD95 score, IOU, Precision, and

Recall as the evaluation metrics to evaluate the testing set. The

Dice and HD95 scores are the more important metrics for lesion

segmentation. We employ an equal weighting of soft dice and

cross-entropy loss to train all the segmentation networks in these

experiments.

3.1 Ischemic stroke lesion segmentation
from T1-weighted MRI scans

In this section, we demonstrate experiments with the ATLAS

R1.2 dataset.

The ATLAS dataset (Liew, 2017; Liew et al., 2018) comprises

304 T1-weighted MRI scans of stroke patients with corresponding

lesion annotations. The data were manually annotated to identify

the stroke lesions. It was collected from 11 research locations

worldwide. The scans were then processed for privacy by

smoothing and defacing. The remaining data contains 239 patient

scans. To reduce the requirement of GPU memory, we cropped

each 3D scan to a resolution of 160 × 160 × 192 and focused on

relevant regions of the image. The ischemic stroke dataset contains

very small lesions, which can make segmentation tasks difficult.

To compare with the results in Wong et al. (2022), we used the

same random data split of the ATLAS dataset that the authors

had evaluated, with 212 train and 27 test subjects, with about 89%

training subjects and 11% testing subjects.

In the paper of Wong et al. (2022), the authors qualify

anomalies <100 pixels as small lesions. We evaluated the

performance of segmenting small lesions in a similar fashion. In

the experiment, the same criteria for the evaluation of the task of

small lesion segmentation were used.

All the segmentation networks in the experiments used equal

weighting of soft dice loss and cross-entropy loss for the training.

The metrics used to evaluate the ischemic stroke lesion

segmentation are Dice (Zou et al., 2004), HD95 (Cárdenes et al.,

2009), IOU (Cárdenes et al., 2009), Precision (Udupa et al., 2006),

and Recall (Udupa et al., 2006).

As illustrated in Table 1, our HUT method improves the mean

Dice score (DSC) performance over the state-of-the-art SPiN

(Wong et al., 2022) architecture by 4.84%. HUT gains the mean

of 95th percentile Hausdorff Distance score (HD95) over SPiN

by 40.7%.

USSLNet performs close to SPiN for the dice score and

outperforms SPiN for HD95. Furthermore, USSLNet is currently

the state-of-the-art method on CT Perfusion dataset such as

the ISLES2018 dataset. nnUNet outperforms both SPiN and

USSLNet. It is currently the state-of-the-art method for Brain

Tumor Segmentation (BraTS) dataset. However, HUT still has

the performance advantage over nnUnet on the ATLASR12 and

ISLES2018 datasets.

HUT performs much better than UNETR on the ATLASR12

dataset, with a 16.9% improvement in the dice score and a 24.5%

improvement in HD95. It is 22.6% better than UNETR in dice

score for small lesion segmentation. We compare the performance

of another hybrid transformer Unet-based implementation and

observe that HUT gains 11.5% in dice score over TransBTS. All

other methods described in Wong et al. (2022) performed worse

than HUT and are shown in Table 1. In terms of dice and HD95

scores for the task of lesion segmentation, HUT surpasses the

performance of all other methods by a noticeable margin.

Table 2 shows HUT gains the dice score of small lesion

segmentation over state-of-the-art SPiN by 18.6%. It improves the

HD95 score of small lesion segmentation over SPiN by 42.6%. As

for small lesion segmentation, our method indeed outperforms all

other methods in Wong et al. (2022) by a larger margin.

Figure 3 compares the performance of various methods for

predicting segmentation on a representative scan, including

TRANSBTS, UNETR, SPiN, KiUnet, CLCInet, X-Net, and HUT.

We also include methods like USSLNet, UShape, and ERFNet

used in CT perfusion datasets. Most methods cannot accurately

predict the two locations of small lesions, except for UShape, and

HUT. Methods like SPiN, nnUNet, UNet3D, X-Net, USSLNet and

ERFNet cannot detect the lesion at the upper region. Meanwhile,

methods like DUNet, KiUNet, and CLCI-Net cannot detect

any lesion.

Figure 4 shows a case with only a small lesion at this brain

location. All methods can locate the right lesions, although

nnUNet, UNet3D, UShape, and TransBTS incorrectly detect a

lesion on the left side of the brain, yielding a false positive of

a lesion.

Figure 5 examines a case where there is a large lesion. In

this case, all methods can detect the region of the lesion. The

difference between the segmentations is the shape of the lesion.

USSLNet, UNETR, and HUT have the closest shapes, similar to

the ground truth. CLI-Net, KiU-Net, X-Net, and nnUNet are more

conservative in detecting the lesion on the right side nearer to

the skull.

3.2 Ischemic stroke lesion segmentation
using CT perfusion scans

For the second ischemic stroke lesion segmentation, we used

the ISLES 2018 dataset (Cereda et al., 2016; Hakim et al., 2021),

which consists of 94 CT perfusion scans. Each volume’s width,

height, and depth are 240 pixels, 240 pixels, and 2, 4, or 8 layers,

respectively. The dataset has four CT perfusion modalities: CBF,

CBV, MTT, and Tmax. A segmentation map of each volume
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TABLE 1 Comparison between mean and standard deviation (in parentheses) of dice score, HD95 score, IoU, precision, and recall of the ischemic stroke

lesion segmentation by HUT against state-of-the-art methods with ATLASR12 dataset.

Methods Dice HD95 (mm) IOU Precision Recall

UNet3D 0.665 13.947 0.523 0.765 0.614

(Ronneberger et al., 2015) (0.186) (15.756) (0.175) (0.240) (0.192)

DUNet 0.548 22.809 0.404 0.652 0.521

(Jin et al., 2019) (0.216) (24.393) (0.187) (0.258) (0.241)

ERFNet 0.670 13.262 0.522 0.818 0.609

(Romera et al., 2017) (0.150) (13.957) (0.156) (0.202) (0.165)

UShape 0.673 13.714 0.530 0.777 0.628

(Clerigues et al., 2019) (0.182) (16.168) (0.170) (0.214) (0.214)

USSLNet 0.694 12.563 0.545 0.763 0.682

(Jiang and Chang, 2022) (0.130) (13.113) (0.142) (0.195) (0.151)

TransBTS 0.661 19.782 0.517 0.752 0.662

(Wang et al., 2021a) (0.173) (25.254) (0.175) (0.254) (0.150)

UNETR 0.630 23.083 0.476 0.725 0.608

(Hatamizadeh et al., 2022) (0.148) (22.046) (0.152) (0.767) (0.176)

CLCI-Net 0.599 20.802 0.469 0.741 0.536

(Yang et al., 2019) (0.257) (22.644) (0.232) (0.258) (0.276)

X-Net 0.627 17.143 0.489 0.722 0.598

(Qi et al., 2019) (0.216) (15.897) (0.204) (0.208) (0.264)

KiUnet 0.524 19.255 0.387 0.703 0.459

(Valanarasu et al., 2020) (0.226) (16.290) (0.206) (0.237) (0.241)

SPiN 0.703 17.427 0.556 0.806 0.654

(Wong et al., 2022) (0.129) (19.469) (0.142) (0.123) (0.182)

nnUnet 0.713 14.294 0.568 0.767 0.707

(Isensee et al., 2021) (0.145) (16.133) (0.156) (0.218) (0.134)

HUT (ours) 0.737 10.335 0.598 0.825 0.706

(0.127) (10.074) (0.144) (0.172) (0.153)

Bold values highlight the best performing values.

consisting of two classes, namely, background and lesion, was

manually annotated and curated by expert radiologists.

Data augmentation routines such as random affine of (0.75,

1.25) and rotation of 15◦ with a probability of 30% were conducted

during training experiments. We ensured the same testing data

were used consistently for all the experiments compared to existing

techniques. The training and testing sets were randomly sampled

about 90% of the total 94 subjects and 10% for testing. Furthermore,

we ran and averaged five different runs for each method since

the selected number of testing samples was small compared to

the ATLAS dataset. Nevertheless, the variability of the dataset is

large, and overfitting could be an issue in the experiments. We

implemented a dropout of 25% and data augmentation to prevent

overfitting. We used a learning rate of 3e-4 and a decay rate of 1e-

7 on an Adam optimizer for all the experiments. The number of

epochs for all the experiments was 1000.

Since the CT perfusion dataset has a limited amount of slices,

i.e., 2, 4, or 8 for each subject, we attempt to use a chunk of slices

to predict one slice of the segmentation map or alternatively use

one slice of input to predict the output. There are four modality

images for each slice. In the later section of the ablation study, we

show the difference in performance for both approaches. Therefore,

we modify the 3D model of HUT to adapt to the application in

CT perfusion. We adopt the slice-by-slice 2D approach for the

experiment, which yields a better performance for this dataset.

We compared with various methods like CNN-based

UNet3D (Ronneberger et al., 2015), ERFNet (Romera et al.,

2017), UShape (Clerigues et al., 2019), and USSLNet (Jiang

and Chang, 2022), hybrid Transformer-based like TransBTS

(Wang et al., 2021a), and UNETR (Hatamizadeh et al.,

2022) networks. We also did an additional comparison with

methods used on MRI datasets such as the ATLAR12 dataset.

These methods’ input channels are modified to take in the 4

modalities images.

Table 3 compares Dice scores and Hausdorff distance between

the various methods on the ISLES2018 dataset. The USSLNet

is currently the state-of-the-art network for CT perfusion. Our

method improves the mean Dice score performance over the

state-of-the-art method, USSLNet, by 3.3%. It improves the HD95

score performance over USSLNet by 12.5%, as depicted in Table 3.

nnUNet performs reasonably well, outperforms SPiN and is

comparable to the performance of the USSLNet in terms of

Dice score. However, it has the worst HD95 score compared to

SPiN and USSLNet. HUT also surpasses the performance of the
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TABLE 2 Comparison between performance metrics of the ischemic stroke small lesion segmentation by HUT against state-of-the-art methods with

ATLASR12 dataset.

Methods Dice HD95 (mm) IOU Precision Recall

UNet3D 0.144 39.045 0.083 0.606 0.091

(Ronneberger et al., 2015) (0.122) (22.287) (0.082) (0.315) (0.085)

DUNet 0.265 26.730 0.180 0.377 0.264

(Jin et al., 2019) (0.250) (23.336) (0.188) (0.332) (0.269)

ERFNet 0.401 17.268 0.262 0.574 0.406

(Romera et al., 2017) (0.152) (16.006) (0.125) (0.306) (0.179)

UShape 0.321 15.472 0.205 0.545 0.270

(Clerigues et al., 2019) (0.174) (13.473) (0.127) (0.319) (0.187)

USSLNet 0.408 15.496 0.274 0.553 0.460

(Jiang and Chang, 2022) (0.185) (13.379) (0.155) (0.306) (0.225)

TransBTS 0.147 46.694 0.095 0.264 0.159

(Wang et al., 2021a) (0.206) (34.048) (0.147) (0.318) (0.231)

UNETR 0.385 19.710 0.258 0.580 0.375

(Hatamizadeh et al., 2022) (0.196) (20.774) (0.159) (0.327) (0.209)

CLCI-Net 0.246 22.884 0.178 0.417 0.215

(Yang et al., 2019) (0.290) (25.531) (0.232) (0.384) (0.279)

X-Net 0.335 22.885 0.237 0.491 0.309

(Qi et al., 2019) (0.274) (22.294) (0.221) (0.340) (0.292)

KiUnet 0.246 15.979 0.173 0.466 0.206

(Valanarasu et al., 2020) (0.270) (16.255) (0.211) (0.402) (0.253)

SPiN 0.398 23.063 0.287 0.575 0.350

(Wong et al., 2022) (0.274) (20.764) (0.229) (0.332) (0.272)

nnUnet 0.465 16.054 0.322 0.579 0.515

(Isensee et al., 2021) (0.190) (12.081) (0.168) (0.291) (0.219)

HUTn (ours) 0.472 12.630 0.327 0.634 0.487

(0.178) (11.658) (0.159) (0.290) (0.208)

Bold values highlight the best performing values.

other methods used on CT Perfusion, such as the ERFNet and

UShape network. It has a gain of 12.1% of dice score over both

methods. The hybrid Transformer-based network TransBTS and

UNETR are not working well on this dataset, mainly because the

amount used to train the network is limited. Even though they

are hybrid systems, the networks do not train as efficiently as

their CNN counterparts. CLCI-Net and X-Net are not working

well with the CT perfusion dataset, yielding only 0.310 and

0.336 dice scores, respectively. SPiN, on the contrary, performs

quite well even when used in this dataset, scoring 0.561 for the

dice score. HUT gains about 7.1% of dice score over the SPiN

network.

We have also included the execution time per subject sample

and memory usage during inference. nnUNet has the fastest

execution time. SPiN has the lowest memory usage, but the

execution time is slower than HUT. CLCI-Net and X-Net do not

produce any numbers formemory usage due to the implementation

in the older version of Tensorflow, which allocates full GPU

memory during the inference.

Figures 6–8 illustrate the visual representations of the lesion

segmentation using various methods. The first image is the

measured CT scan. The second is the ground truth. Figures 6C–F,

7C–F, 8C–F are the CT perfusion images taken 8 h after the contrast

agent is injected into the patient’s bloodstream.

In Figure 6, we observe that the exact detection of the

lesion is difficult, even through the perfusion map. The lesion

is not visible on the CT scan. The perfusion maps of MTT

and Tmax provide subtle information about the lesion. The

methods, namely, UNet3D, Ushape, TransBTS, and CLCI-Net,

cannot determine the lesion’s location. UNETR and X-Net detect

the same but the wrong location of the lesion. SPiN also highlights

a false segmentation. ERFNet is close but not exact. USSLNet

and nnUNet have one true positive and one false positive

detection. It is unlikely that a lesion occurs in the ventricle.

HUT is the only method which correctly detects the location of

the lesion.

In Figure 7, the perfusion maps indicate that the lesion

will likely appear on the left side. From the experiments,

the methods that successfully detect the right location

of the lesion are ERFNet, USSLNet, X-Net, and HUT.

However, ERFNet produces fewer overlapping areas of

segmentation with the ground truth. USSLNet and X-Net

are smaller but accurate, whereas HUT covers a larger but

accurate area.
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FIGURE 3

Illustration of small lesion segmentation of a representative subject 02 based on various methods. (A) T1w MRI scan, (B) ground truth, (C) UNet3D, (D)

DUnet, (E) ERFNet, (F) UShape, (G) USSLNet, (H) TransBTS, (I) UNETR, (J) CLCI-Net, (K) X-Net, (L) KiU-Net, (M) SPiN, (N) nnUnet, (O) HUT.

In Figure 8, we illustrate the visual outlining produced by the

methods when the lesion is large. The dice scores for most methods

are high. However, some methods produce a better outline of

the lesion than others. For instance, X-Net produces one of the

better outlines, while UNet3D produces an over-enlarged area and

a false positive at the bottom. nnUNet and USSLNet are more

conservative in the detection of the lesion. HUT produces a most

compelling outline closer to the ground truth.

3.3 Ablation study

3.3.1 With MRI (T1-w) dataset
The results of the ablation study are shown in Table 4, in

which we compare the performance of the baseline method by

adding various components. The baseline method uses cross-

entropy loss as the training objective. It excludes the self-supervised

CLS training (SS) at the output of the cross-transformer’s projection
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FIGURE 4

Illustration of small lesion segmentation of a representative subject 24 based on various methods. (A) T1w MRI scan, (B) ground truth, (C) UNet3D, (D)

DUnet, (E) ERFNet, (F) UShape, (G) USSLNet, (H) TransBTS, (I) UNETR, (J) CLCI-Net, (K) X-Net, (L) KiU-Net, (M) SPiN, (N) nnUnet, (O) HUT.

header of the CLS tokens by default. As for the ablation study on the

ATLASR12 dataset, the proposed baseline model performs with a

dice score of 0.720 and an HD95 of 13.64 mm, which still performs

better than SPiN. The baseline model gains a dice score of 0.98%

over the architecture without the VTS.

Adding soft dice loss and self-supervised (SS) CLS training

to the baseline causes a decline in performance. Soft dice loss

(Milletari et al., 2016) is a loss function that alleviates the

class imbalance issue by appropriately computing the difference

between unity and the dice score. With focal loss and SS,

the dice score improves to 0.732. A focal loss (Lin et al.,

2017) is another loss function that tries to address the class

imbalance in segmentation. The focal loss function down-weight

the loss contributed by the easy examples by a modulating

factor. Therefore, the loss for the harder examples will be

relatively higher.
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FIGURE 5

Illustration of large lesion segmentation of a representative subject 11 based on various methods. (A) T1w MRI scan, (B) ground truth, (C) UNet3D, (D)

DUnet, (E) ERFNet, (F) UShape, (G) USSLNet, (H) TransBTS, (I) UNETR, (J) CLCI-Net, (K) X-Net, (L) KiU-Net, (M) SPiN, (N) nnUnet, (O) HUT.

On the contrary, the model performs optimally using cross-

entropy loss with a weighting of 0.15 for the background and

0.85 for the foreground. The model performs slightly worse

than optimal without this weighting or balancing component.

Weighting (Ronneberger et al., 2015) also mainly addresses the

imbalance issue of the datasets as, in most cases, the portion

of the background dominates the amount of the class label

(lesion). It exerts more emphasis on the class label rather

than the background. Therefore, the proposed architecture of

HUT is best trained using the weighted cross-entropy loss

function in all of these examples to address the class imbalance

problem. We note that the class imbalance issue is closely

related to the ability to detect a very small lesion in these

ablation studies.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1298514
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Soh and Rajapakse 10.3389/fnins.2023.1298514

TABLE 3 Comparison between mean and standard deviation (in parentheses) of dice score, HD95 score, IoU, precision, and recall of the ischemic stroke

lesion segmentation with CT perfusion multimodal dataset against state-of-the-art methods.

Methods Dice HD95 IOU Precision Recall Memory Infer

(mm) usage (Mb) time (ms)

UNet3D 0.451 23.102 0.334 0.676 0.375 3,178 627

(Ronneberger et al., 2015) (0.206) (10.705) (0.173) (0.294) (0.173)

ERFNet 0.537 16.180 0.415 0.776 0.470 1,442 1360

(Romera et al., 2017) (0.225) (6.604) (0.205) (0.242) (0.218)

UShape 0.476 22.066 0.366 0.574 0.459 3,712 685

(Clerigues et al., 2019) (0.253) (15.751) (0.216) (0.270) (0.291)

USSLNet 0.582 16.987 0.451 0.689 0.597 1,680 153

(Jiang and Chang, 2022) (0.205) (15.675) (0.192) (0.107) (0.271)

TransBTS 0.439 23.564 0.308 0.677 0.367 3,502 582

(Wang et al., 2021a) (0.207) (14.298) (0.202) (0.162) (0.239)

UNETR 0.469 20.648 0.337 0.503 0.496 7,054 635

(Hatamizadeh et al., 2022) (0.229) (13.146) (0.208) (0.258) (0.252)

CLCI-Net 0.310 24.127 0.221 0.546 0.253 – 353

(Yang et al., 2019) (0.282) (13.992) (0.229) (0.382) (0.251)

X-Net 0.336 21.246 0.239 0.506 0.286 – 317

(Qi et al., 2019) (0.270) (13.730) (0.230) (0.361) (0.264)

SPiN 0.561 19.119 0.423 0.563 0.646 646 377

(Wong et al., 2022) (0.232) (13.981) (0.208) (0.266) (0.284)

nnUnet 0.577 19.689 0.455 0.729 0.532 1470 141

(Isensee et al., 2021) (0.222) (13.439) (0.210) (0.232) (0.237)

HUT (ours) 0.601 14.861 0.476 0.767 0.551 1836 235

(0.192) (8.516) (0.191) (0.204) (0.202)

Inference memory usage and execution time per subject are included. Bold values highlight the best performing values.

3.3.2 With CT perfusion (CTP) dataset
For the CT perfusion (CTP) experiment, we adapted the

ISLES2018 dataset, which contains only a few slices per subject.

Therefore, we attempted to utilize the 2D slices or a chunk of

scans for the training and testing instead. We compared the

differences with and without the vision transformer, the advantage

of self-supervision of the CLS token during the training and the

differences between using slices and a chunk of slices for the

training and inference.

As observed from Table 5, the baseline without the self-

supervised training gains 4% of the dice score when the vision

transformer is not incorporated into the system. The amount of

self-supervised training also plays a part in the performance of

the HUT system. The system’s performance degrades when the λSS

factor is set to 1.We observe that the training convergesmuch faster

if the value is higher at the expense of the peak performance. An

empirical value of 1e-5 for λSS leads to the best performance.

We also compare the use of chunks of slices to train and predict.

However, due to the nature of the dataset, the best performance is

still obtained from the training using the slice-by-slice approach.

4 Discussion and conclusion

In segmenting ischemic strokes from T1-weightedMRI and CT

perfusion scans, we used a hybrid U-Net and a cross-resolution

transformer called the Hybrid UNet Transformer (HUT). The

HUT network combines the UNet and the transformer to

improve the task of the ischemic stroke segmentation from

MRI and CT perfusion images. The network consists of parallel

UNet and Transformer stages, leveraging the advantage of the

inductive bias of image identification of the CNN layers and

the pros of capturing global dependencies of image patches in

the transformer. The cross-resolution transformer generates two

different resolutions, which are then combined with U-Net’s skip

connections. We found that using two transformers, one for

small patches and another for larger patches, followed by the

cross transformer, helps improve performance with additional self-

supervised learning. We employed CLS tokens for self-supervised

learning and generated attention maps for the lower layers of

the decoder.

There are several reasons that HUT has surpassed the

performance of state-of-the-art methods in both MRI and CTP

datasets. It is designed to address the local and long-range

correlations between the patches, and it exceeds the capabilities

of the current methods using transformers, UNet, and CNN for

medical image segmentation by a considerable margin. The output

of the VTS attends to information at various resolutions. The

final output of the CLS tokens in VTS facilitates self-supervised

learning with small and large patch transformers. It improves

performance when datasets are small. The self-supervised training

we incorporated does not require additional data from other
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FIGURE 6

Illustration of lesion segmentation of representative subject 26 based on various methods. (A) CT scan, (B) ground truth, (C) CTP CBF, (D) CTP CBV,

(E) CTP MTT, (F) CTP TMAX, (G) UNet3D, (H) ERFNet, (I) UShape, (J) USSLNet, (K) TransBTS, (L) UNETR, (M) CLCI-Net, (N) X-Net, (O) SPiN, (P) nnUnet,

(Q) HUT.
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FIGURE 7

Illustration of lesion segmentation of representative subject 63 based on various methods. (A) CT scan, (B) ground truth, (C) CTP CBF, (D) CTP CBV,

(E) CTP MTT, (F) CTP TMAX, (G) UNet3D, (H) ERFNet, (I) UShape, (J) USSLNet, (K) TransBTS, (L) UNETR, (M) CLCI-Net, (N) X-Net, (O) SPiN, (P) nnUnet,

(Q) HUT.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1298514
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Soh and Rajapakse 10.3389/fnins.2023.1298514

FIGURE 8

Illustration of lesion segmentation of representative subject 70 based on various methods. (A) CT scan, (B) ground truth, (C) CTP CBF, (D) CTP CBV,

(E) CTP MTT, (F) CTP TMAX, (G) UNet3D, (H) ERFNet, (I) UShape, (J) USSLNet, (K) TransBTS, (L) UNETR, (M) CLCI-Net, (N) X-Net, (O) SPiN, (P) nnUnet,

(Q) HUT.
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TABLE 4 Ablation study performance with mean dice score and HD95

score (in mm) of the ischemic stroke small lesion segmentation (AtlasR12)

for HUT.

Methods Dice HD95 IOU Precision Recall

HUT (Baseline) 0.720 13.639 0.579 0.785 0.700

HUT without

VTS

0.713 14.294 0.568 0.767 0.707

Baseline + SS 0.734 10.465 0.601 0.698 0.801

Baseline + SS +

Focal loss

0.732 11.175 0.601 0.795 0.698

Baseline + SS +

Dice loss

0.699 12.935 0.557 0.782 0.684

Baseline + SS +

Balancing

0.737 10.335 0.598 0.825 0.706

Bold values highlight the best performing values.

TABLE 5 Ablation study performance with mean dice score and HD95

score (in mm) on the ISLES2018 dataset for HUT.

Methods Dice HD95 IOU Precision Recall

HUT (Baseline) 0.589 14.947 0.463 0.715 0.566

HUT without

VTS

0.566 18.827 0.438 0.696 0.534

Baseline + SS

with λSS = 1.0

0.545 19.734 0.421 0.760 0.460

Baseline + SS

with

λSS = 1e− 5

0.601 14.860 0.476 0.767 0.551

Baseline + SS

with

λSS = 1e− 5 and

CHUNK of 3

0.584 19.495 0.469 0.701 0.549

Bold values highlight the best performing values.

datasets. The performance gained from the introduction of the

transformer is helped by the self-supervised training of the CLS

tokens with a faster rate of convergence. We have shown the

advantages of the VTS with self-supervised training in the ablation

studies. As a result, HUT gains a 4.84 and 41% improvement of dice

score and HD95 score, respectively, over the SPiN in the single-

modality MRI segmentation. It improves over USSLNet on multi-

modality segmentation by 3.3% in the Dice score and 12.5% in the

HD95 score.

However, despite a gain in overall performance, HUT has

a higher precision but a lower recall in lesion segmentation. It

shows an under-segmentation of the method on the ATLASR12

and ISLES2018 dataset, which has more small anomalies and

subtle perfusion information to segment. Future work will

investigate the possibility of gaining a higher recall while

maintaining high precision by enhancing the networks and loss

functions.
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