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Background: There are currently five different kinds of transcranial magnetic 
stimulation (TMS) motor mapping algorithms available, from ordinary point-based 
algorithms to advanced field-based algorithms. However, there have been only a 
limited number of comparison studies conducted, and they have not yet examined 
all of the currently available algorithms. This deficiency impedes the judicious 
selection of algorithms for application in both clinical and basic neuroscience, and 
hinders the potential promotion of a potential superior algorithm. Considering the 
influence of algorithm complexity, further investigation is needed to examine the 
differences between fMRI peaks and TMS cortical hotspots that were identified 
previously.

Methods: Twelve healthy participants underwent TMS motor mapping and a 
finger-tapping task during fMRI. The motor cortex TMS mapping results were 
estimated by five algorithms, and fMRI activation results were obtained. For 
each algorithm, the prediction error was defined as the distance between the 
measured scalp hotspot and optimized coil position, which was determined by 
the maximum electric field strength in the estimated motor cortex. Additionally, 
the study identified the minimum number of stimuli required for stable mapping. 
Finally, the location difference between the TMS mapping cortical hotspot and 
the fMRI activation peak was analyzed.

Results: The projection yielded the lowest prediction error (5.27  ±  4.24  mm) 
among the point-based algorithms and the association algorithm yielded the 
lowest (6.66  ±  3.48  mm) among field-based estimation algorithms. The projection 
algorithm required fewer stimuli, possibly resulting from its suitability for the 
grid-based mapping data collection method. The TMS cortical hotspots from all 
algorithms consistently deviated from the fMRI activation peak (20.52  ±  8.46  mm 
for five algorithms).

Conclusion: The association algorithm might be  a superior choice for clinical 
applications and basic neuroscience research, due to its lower prediction error 
and higher estimation sensitivity in the deep cortical structure, especially for the 
sulcus. It also has potential applicability in various other TMS domains, including 
language area mapping and more. Otherwise, our results provide further evidence 
that TMS motor mapping intrinsically differs from fMRI motor mapping.
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1 Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive focal 
brain stimulation technique widely used in brain mapping studies 
(Ilmoniemi et al., 1999; Siebner et al., 2009; Lefaucheur, 2019). When 
a single supra-threshold TMS pulse is applied to the motor cortex, a 
motor-evoked potential (MEP) may be recorded from the targeted 
muscle, such as the first dorsal interosseous muscle (FDI). TMS motor 
mapping, in which multiple MEPs typically recorded from 
predetermined stimulation sites on a grid are used to non-invasively 
probe motor cortex representation, is one of the most important 
applications of TMS (Wilson et al., 1993; Sondergaard et al., 2021). 
TMS has several advantages over other noninvasive approaches to 
motor cortex mapping such as functional magnetic resonance imaging 
(fMRI). Compared to fMRI, TMS motor mapping is in closer 
agreement with direct cortical stimulation (DCS) mapping, which is 
regarded as the current gold standard for delineating the motor cortex 
(Krieg et al., 2012; Coburger et al., 2013; Mangraviti et al., 2013). 
Moreover, TMS requires less patient cooperation such as performing 
motor tasks, which is difficult for patients with paresis or plegia or 
children with autism or developmental delay (Narayana et al., 2015, 
2021; Braden et al., 2022). Such advantages have made TMS motor 
cortex mapping promising in clinical applications, such as pre-surgical 
planning (Takahashi et al., 2013; Lefaucheur and Picht, 2016), risk 
stratification (Rosenstock et  al., 2017), motor rehabilitation 
(Lüdemann-Podubecká and Nowak, 2016) and basic research such as 
developmental plasticity (Narayana et  al., 2015; Grab et  al., 2018; 
Babwani et al., 2021).

Given a set of recorded MEPs as well as the corresponding 
stimulating sites on the scalp, there are various algorithms, with 
increasing complexity, for the prediction of the location and spread of 
the motor cortex. The most traditional and simplest one is called the 
projection algorithm, which assumes that the effect of a TMS pulse at 
a scalp site can be reduced to a single point projected onto the cortex 
(Ruohonen and Karhu, 2010; Julkunen, 2014; Kraus and Gharabaghi, 
2015). Simple geometric models cannot characterize the effect of TMS 
on the cortex well. Therefore, several approaches have been introduced 
that numerically simulate the electric field induced by TMS, taking 
into account the coil orientation and the complex geometry of the 
individual brain (Thielscher et al., 2011; Laakso et al., 2014; Reijonen 
et al., 2020). Analogous to the projection algorithm, the projection 
point was substituted by the peak point of the induced electric field on 
the cortex (called max-EF algorithm here) (Ruohonen and Karhu, 
2010; Sollmann et al., 2016; Novikov et al., 2018). But it’s still geared 
to point-based algorithms, rather than field-based algorithms that 
utilize complete information from the electric field distribution. Opitz 
et al. hypothesized that when a recorded MEP was large, the induced 
electric field should be concentrated near the target region and vice 
versa. Based on this assumption, they used each MEP to weight the 
corresponding electric field and used the weighted average electric 
field to estimate the motor cortex (called EF-COG algorithm here) 

(Opitz et al., 2013). Other studies pointed out that, in the targeted 
motor cortex, there should be a strong association between the MEP 
and the corresponding electric field strength. Thus, they evaluated the 
degree of association in each cortical patch to estimate the motor 
cortex (called the association algorithm here) (Thielscher and 
Kammer, 2002; Matthäus et al., 2008; Laakso et al., 2018; Weise et al., 
2020; Kataja et al., 2021; Numssen et al., 2021; Weise et al., 2023). 
Moreover, some algorithms borrowed from the idea of 
electroencephalography source localization and performed a 
minimum norm estimation (called MNE algorithm here) to estimate 
the extent of the motor cortex (Bohning et al., 2001; Pitkänen et al., 
2017; Reijonen et al., 2022).

With the emergence of new estimation algorithms for motor 
mapping, the comparison of different approaches is becoming a 
growing concern. For example, Seynaeve et al. compared the motor 
map from the projection, max-EF, and EF-COG algorithm with the 
DCS mapping result as a standard (Seynaeve et al., 2019). However, it 
is difficult in practice to obtain DCS data, and the mapping accuracy 
of DCS mapping is limited by finite discrete sampling (Seynaeve et al., 
2019). Fortunately, it has been found that the electric field modeled 
numerically in the target brain area is a great predictor of the 
neurophysiological or behavioral response induced by transcranial 
brain stimulation (Argyelan et al., 2019; Jamil et al., 2020; Fridgeirsson 
et al., 2021; Mosayebi-Samani et al., 2021). Several studies have been 
concerned with the potential of optimizing coil position according to 
the electric field simulation (Weise et al., 2020; Gomez et al., 2021), 
and Reijonen et al. took the difference between electric-field-based 
optimized coil position and measured scalp hotspot coil position as 
the performance index for the MNE algorithm based on realistic and 
spherical head models (Reijonen et al., 2022). This suggests that the 
distance between the optimized coil position and measured scalp 
hotspot coil positions could serve as a viable and practical performance 
metric for comparing different estimation algorithms.

The number of data points (stimuli) fed into an estimating 
algorithm is closely related to the stability of the motor map and the 
acquisition time of mapping data. There is a trade-off between motor 
map stability and acquisition time. The more stimuli, the greater the 
stability, but the longer the acquisition time, which leads to practical 
difficulties (Sinitsyn et al., 2019; Sollmann et al., 2021; Sondergaard 
et al., 2021). Thus, the minimum number of stimuli required to deliver 
a stable mapping result is another valuable performance index in the 
comparison of various estimation algorithms. Pitkänen et al. inferred 
that the MNE algorithm might need fewer stimuli because of the 
higher resolution capacity of its mapping, compared with the 
projection algorithm (Pitkänen et al., 2017). However, no study has 
investigated the number of stimuli required for currently available 
algorithms simultaneously, and thus there is no evidence showing 
which algorithm requires the least number of stimuli.

The results of previous studies have suggested that the cortical 
hotspot location from TMS mapping based on the projection 
algorithm was inconsistent with the peak location of fMRI motor task 
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activation, and the TMS cortical hotspot was always located more 
anterior (Herwig et al., 2002; Lotze et al., 2003; Diekhoff et al., 2011). 
This has been ascribed to neurophysiological differences, i.e., neurons 
activated by TMS and those detected by fMRI differed (Herwig et al., 
2002; Wang et al., 2020). However, advanced field-based estimation 
algorithms have the potential to improve the estimation performance 
of motor mapping (Seynaeve et al., 2019). Thus, it is important to 
revisit the incongruency in cortical hotspot locations estimated by 
TMS and fMRI for advanced algorithms.

Given the above, this study aims to simultaneously compare the 
aforementioned five estimation algorithms on one set of TMS 
mapping data. We mainly conducted two experiments to compare 
them: first, we compared the distance between the measured scalp 
hotspot and optimized coil position according to the mapping results 
from all algorithms; second, we probed the relationship between the 
number of stimuli and estimation stability to determine the minimum 
number of stimuli required to deliver a stable mapping result for each 
algorithm. We also investigated whether inconsistencies between TMS 
and fMRI cortical hotspot locations still exist when considering the 
induced electric-field distribution in the estimation process.

2 Method

2.1 TMS data acquisition

TMS mapping data were obtained from our previous study (Jiang 
et  al., 2020). Twelve healthy right-handed participants (7 males, 
22 ± 2.7 yr) were recruited. None of them had any contraindications to 
TMS or any history of neurological or psychiatric diseases. All 
participants provided written informed consent before the experiment. 
The protocol was approved by the ethics committee of the State Key 
Laboratory of Cognitive Neuroscience and Learning at Beijing 
Normal University. TMS motor mapping was conducted using a 
Magstim rapid2 (Magstim Ltd., Dyfed, United Kingdom) with a D70 
Air Film figure-of-eight coil. We designed a 6 × 7 stimulation grid that 
covered the motor-related area in the left hemisphere, according to the 
motor-related functional transcranial brain atlas (Jiang et al., 2020). 
The grid spacing was 3 continuous proportional coordinate (CPC) 
units, which are normalized scalp coordinates with inter-individual 
comparability (Xiao et al., 2018), and the group average Euclidean 
distance of a unit was around 1 cm (see Supplementary Figure S1A). 
1 cm2 stimulation grid is widely adopted (57/75 studies) (Sondergaard 
et al., 2021), making the comparison results suitable for the majority 
of scenarios of motor mapping. The coil was placed tangentially to the 
scalp with the coil handle pointing backward and laterally at 45° away 
from the midline, which is the optimal orientation to induce MEP 
(Balslev et al., 2007; Reijonen et al., 2020). The resting motor threshold 
(RMT) was defined as the lowest intensity eliciting a minimum peak-
to-peak amplitude of 50 μV in at least 5 of 10 TMS pulses (Rossini 
et al., 2015). The stimulation intensity for mapping was set to 120% 
RMT, resulting in more reliable MEP responses (Ngomo et al., 2012). 
The best coil position for evoking the largest MEPs in the first dorsal 
interosseous (FDI) muscle, the resting motor threshold (RMT) was 
found and recorded.

For reliable measurement of MEP, we delivered 6 TMS pulses per 
site in the grid with interstimulus intervals of over 5 s (Cavaleri et al., 

2017; Nazarova and Asmolova, 2021; Sondergaard et  al., 2021). 
During stimulation, the subjects were asked to maintain complete 
muscle relaxation. Peak-to-peak amplitudes were recorded from the 
subjects’ FDI muscle in the right upper limb with bipolar surface 
electrodes using a Brainsight EMG Isolation Unit and Amplifier Pod 
(Rogue Research Inc., Canada). The measurement of the RMT and 
input–output (I/O) curve demonstrated that the FDI muscle was more 
reliable than the abuctor pollicis brevies muscle (Malcolm et al., 2006), 
both of which are commonly used muscles in TMS 
motor measurement.

2.2 Estimation algorithms for motor 
mapping

Head modeling and electric field simulation were realized in the 
SimNIBS v3.2 open-source pipeline (Thielscher et  al., 2015) 
(supplement). The recorded MEPs and stimulation positions (or 
electric fields) were used to estimate the motor cortex via each 
algorithm. Since the entire cortical surface consisted of over two 
hundred thousand triangles leading to a large amount of useless 
computation, before estimation, an estimation scope was determined 
by projecting the stimulation grid onto the cortical surface and 
expanding it by 0.5 cm (see Supplementary Figure S1B).

Figure 1 shows the estimating schemes of five algorithms. Two 
point-based algorithms initially identify the cortical sites most 
likely to be influenced at each point within the stimulation grid. 
Then they undertake the interpolation on the cortical surface 
using MEP values corresponding to each cortical site, thereby 
generating a continuous estimated motor map. In the projection 
algorithm (Figure 1A), the cortical site most likely to be influenced 
is determined using the Möller–Trumbore intersection algorithm, 
which identifies the cortical site nearest to the normal of the TMS 
coil surface (Möller and Trumbore, 1997). In the max-EF 
algorithm, the cortical site is identified as the location with the 
highest electric field strength at the 99.9th percentile. The 
selection of the 99.9th rather than 100th is intended to mitigate 
the boundary effects of the electric field (Saturnino et al., 2019). 
To enable interpolation on the 3D cortical surface (Julkunen, 
2014), we  initiated the process by mapping the pre-identified 
cortical sites onto the 2D plane parallel to the gyrus (van de Ruit 
et  al., 2015; Jonker et  al., 2019). Subsequently, we  conducted 
interpolation of the MEP values through the implementation of a 
cubic spline algorithm. The interpolated values were then 
projected from the 2D plane to the 3D cortical surface using the 
Nearest-neighbor interpolation algorithm.

Opitz et al. referenced the TMS COG position from traditional 
TMS motor mapping, which calculates a MEP “Center of Gravity,” 
signifying a scalp position where a large MEP is reliably produced 
(Sondergaard et al., 2021). They introduced the concept of the 
electric field “Center of Gravity” (Opitz et al., 2013), portrayed as 
a probability map of the motor cortex. In the EF-COG algorithm 
(Figure 1B), this concept is realized by conducting a weighted sum 
of the electric field strength associated with MEPs. The 
fundamental concept underlying the association algorithm is 
predicated on the identification of the motor area as the cortical 
region characterized by a robust correlation between the 
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surrounding electric field strength and the corresponding MEP 
values. We calculated the Kendall’s rank coefficient between the 
electric field strength and MEPs referred to as Matthäus et  al. 
(2008). The resultant coefficient serves as a representation of the 
estimated motor map (Figure 1C). The MNE algorithm is rooted 
in source localization methodologies commonly employed in 
electroencephalography (Bohning et  al., 2001; Pitkänen et  al., 
2017; Reijonen et al., 2022). It established a computational model 
to delineate how MEPs are determined by the distributions of 
electric field strength under each stimulation. In this model, the 
distribution of electric field strength is the independent variable, 
the MEP value is the dependent variable, and the unknowns 
represent the probability of a cortical patch belonging to the 
motor area. This model is undetermined due to having fewer 
dependent variables than unknowns. To address this, Wiener 
regularization is applied to resolve the problem, resulting in an 
estimated motor map (Pitkänen et al., 2017).

2.3 Similarity of estimation results

The similarities and differences among mapping results from all 
five estimation algorithms were investigated in several spatial scales: 
the entire estimated motor map, map maxima (cortical hotspot), and 
center-of-gravity (COG). The Pearson correlation coefficient (r) was 
computed as the map level similarity between each pair of algorithms’ 
maps. The Euclidean distance between each pair of cortical hotspots 
was computed as the cortical hotspot similarity index. The Euclidean 
distance between each pair of COGs was computed as the COG 
similarity index. The non-parametric Wilcoxon signed-rank test was 
used to check that there exists a statistically significant difference 
between pairs of cortical hotspots or COGs. Account for the folded 
structure of the cortex, we  also adopted the geodesic distance to 
measure the difference of cortical hotspot location estimated by five 
algorithms. The geodesic distance of two cortical hotspots was 
calculated with tvb-gdist 2.1.0.

FIGURE 1

TMS motor cortex estimation scheme of five algorithms. It shows each algorithm’s logic and mathematical description of part algorithms. 
(A) Projection algorithm and max-EF algorithm. (B) EF-COG algorithm. (C) Association algorithm. (D) MNE algorithm. In the mathematical description, 
Xj represents the probability that the jth cortical patch belongs to the motor cortex; Eij represents the electric field strength of the jth cortical patch in 
the ith stimulation; MEPj represents the MEP value recorded in the ith stimulation; MEPtotal represents the sum of all recorded MEP.
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2.4 Distance between measured scalp 
hotspot and optimized coil position

The scalp hotspot is the scalp position where TMS induces 
maximum MEP response during the motor mapping experiment. The 
optimized coil position within a mapping algorithm is delineated as 
the theoretical scalp position capable of inducing the maximum MEP 
response corresponding to the motor cortex, as estimated by the 
algorithm. To assess the estimation accuracy of each algorithm, 
we need to calculate the distance between the optimized coil position 

and the scalp hotspot position. The shorter distance might mean a 
more accurate estimation algorithm. The distance is regarded as the 
prediction error here. Before optimization, we densified the predefined 
grid to shorten the grid spacing (Figure 2). We fixed the stimulation 
orientation in the experiment, so we did not consider the influence of 
orientation when optimization. Then we  did an electric field 
simulation on each densified grid point, and determined the optimized 
coil position by the maximum electric field strength in the estimated 
motor cortex. The prediction error data was non-parametric (Shapiro–
Wilk normality test), thus differences between algorithms were tested 

FIGURE 2

The comparison of the prediction error of five algorithms. (A) It shows a densified grid exampled on subject 2. The black dot represents the stimulation 
grid predefined before the experiment, and the orange dot represents the added grid points in the simulation. A zoom-in sub-graph in the left-bottom 
shows the block distance between any two grid points represented by the gradient color; (B) Exampled as subject 4, it shows the distribution of hand 
area estimated by five algorithms, and the dark red area represents the remaining hand location at the threshold of 0.8; (C) Violin plots show the 
prediction error of five algorithms at the threshold of 0.8. For each algorithm, the prediction error of each subject is represented by the blue dot. The 
white dot represents the group-average prediction error. Asterisks indicate a significant difference between the prediction error of the algorithm 
plotted and that of another algorithm (represented by different colors). *p  <  0.05, **p  <  0.01, ***p  <  0.001.
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using Kruskal–Wallis’s test for independent data. All data met the 
sphericity assumption, assessed with Mauchly’s test. A false-discovery-
rate correction was used for multiple comparisons. For all statistical 
analyses, a p-value of <0.05 was considered significant.

The threshold for outlining the motor cortex is crucial when 
optimization. However, it is unclear and there is no consensus on how 
to select the outlining threshold, and whether a uniform threshold 
should be  selected for all algorithms. Thus, we  normalized the 
estimation value to reasonably set the same outlining threshold, and 
explore the difference in estimation accuracy under various thresholds 
(0.5–0.9). We selected 0.8 as the recommended threshold because the 
group average area of the motor cortex estimated by the projection 
algorithm is close to 270 mm2 proposed by previous studies (Pitkänen 
et al., 2017; Nazarova et al., 2021) (see Supplementary Figure S3).

2.5 Relationship between the number of 
stimuli and estimation stability

To identify the minimum number of stimuli (Nmin) needed for 
stable mapping results, we investigated the relationship between a 
number of stimuli (MEP from 1 stimulus = average MEPs from 6 
pulses) and stability for each algorithm. We subsampled the original 
stimulation data (mean MEPs >50 μV, as standard in TMS) to estimate 
the motor map for a smaller number of stimuli. For each given 
number of stimuli, the subsampling process was randomly conducted 
1,000 times (Efron, 1979). Stability was defined as the average Pearson 
correlation coefficient between the 1,000 maps obtained from 
subsampling (sub-sample map) and the map obtained from the 
original data (original map).

The Nmin for each algorithm was defined as the minimum number 
of stimuli needed to reach a highly stable level when the Person 
correlation coefficient between maps from sub-sample data and the 
original data reached 0.9. We conducted statistical analysis in the same 
method as the comparison of prediction error. In addition, considering 
correlation analysis might be biased in favor of algorithms that yield 
a more diffuse map (e.g., the EF-COG algorithm), we also calculated 
the Nmin at which the distance between the peak region (top 5% within 
the search scope) in the sub-sample maps and the original map is 
reduced to less than 3 mm.

2.6 Comparing the motor mapping of TMS 
and fMRI

Each subject’s fMRI data, based on gradient-echo echo planar 
imaging (EPI) sequences were also acquired on 332 Siemens Trio 3 T 
MRI Scanner (32 axial slices; repetition time (TR) = 2000; echo time 
(TE) = 28 ms; flip angle (FA) = 90°; field of view (FOV) = 102 × 102 mm; 
51 × 51 matrix size with a resolution of 2 × 2 mm2) during a finger 
tapping task. To mitigate the differences between TMS and fMRI 
mapping arising from the movement of different muscles, volunteers 
performed right index finger tapping to activate the FDI muscle at a 
fixed frequency. In studies comparing the fMRI and TMS, a hand 
movement task lasting 20–40 s, alternating with rest, was commonly 
employed, with the majority using 6 blocks (3/5 studies, see 
Supplementary Table S1). In our study, the task consisted of seven rest 
blocks of 24 s each, featuring a fixation point, alternating with six task 

blocks of 24 s each. To ensure the stability of the volunteers, we added 
a rest block at the beginning of the task.

To acquire images with a higher spatial and temporal resolution, 
the above fMRI scanning only covered the upper part of the cerebrum 
containing the motor cortex, from the anterior and posterior 
commissure to the vertex, so an additional whole EPI volume was 
acquired for co-registration (96 axial slices; TR/TE/
FA = 6000/28 ms/90°; FOV = 102 × 102 mm; 51 × 51 matrix size with a 
resolution of 2 × 2 mm2). The analysis of fMRI data is described in 
the supplement.

The identification of the TMS cortical hotspot has traditionally 
been defined based on the projection algorithm and can be generalized 
to other algorithms to find the cortical location with the map maxima. 
The fMRI activation peak was determined as the point with the 
highest z-statistic in the estimation scope. The cortical sites were 
transformed into the Montreal Neurological Institute (MNI) space 
using the non-linear deformation field, which was obtained by 
segmenting and spatially normalizing the T1 image using Statistical 
Parametric Mapping 12. Then, we calculated the Euclidean distance 
between each algorithm cortical hotspot and the fMRI peak for each 
subject. We  further calculated the divergence in X, Y, and Z 
coordinates (in the MNI coordinate system) to investigate the 
directional bias of the TMS cortical hotspot. Similarly, we  also 
investigated the COGs to examine the spatial mismatch between TMS 
mapping and fMRI activation. The non-parametric Wilcoxon signed-
rank test was used to check if there exists a statistically significant 
difference between each algorithm’s results and fMRI activation results.

3 Results

3.1 Estimated motor maps

The results from the five algorithms were normalized and shown 
for each subject (N = 12) in Figure 3. The projection and max-EF 
algorithms yielded more concentrated motor maps than the others. 
Interestingly, the estimation sensitivity varies among the five 
algorithms in the sulcus. Interpolating solely on a 2D plane, the 
point-based algorithms are incapable of estimating values in the 
sulcus. Of the field-based algorithms, the association algorithm 
identified half of the subjects’ estimated cortical hotspots in deep 
structures, while the others were located on the gyrus. In the bottom 
panel of Figure 3, the estimation results around the omega region 
(e.g., subject 4) are presented, which serves as the anatomical 
landmark for the hand area (Yousry et  al., 1997). To facilitate a 
comparison of the estimation results from the five algorithms, 
we filled in the 0 values in the sulcus of the point-based algorithm’s 
estimation results (Figure  3, top panel). We  quantitatively 
investigated the pattern similarity between the estimated maps and 
the distance between cortical hotspots or COGs (Figure 4) from the 
five algorithms. Two pairs of algorithms yielded maps with a strong 
similarity: EF-COG and MNE (r = 0.98 ± 0.02, mean ± SD); 
projection and max-EF (r = 0.75 ± 0.09). The grid spacing of the 
predefined grid is 1CPC (3.36 ± 0.14 mm, Figure 4A). The pairwise 
correlation was statistically significant in 12 subjects (p < 0.001). The 
cortical hotspot did not significantly differ between EF-COG and 
MNE algorithms (p = 0.125), and the distance was 2.74 ± 6.65 mm 
(Figure  4B). It showed homogenous results when substituting 

https://doi.org/10.3389/fnins.2023.1301075
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1301075

Frontiers in Neuroscience 07 frontiersin.org

cortical hotspots’ geodesic distance (see Supplementary Figure S2). 
The remaining pairwise cortical hotspots differed significantly 
(p < 0.001) with the mean distance all over 12 mm. The shortest 
distance of COGs was between EF-COG and MNE (0.94 ± 0.74 mm, 
p < 0.001) (Figure 4C).

3.2 Comparison of prediction error

Prediction error was significantly different among the five 
algorithms (df = 4, F = 7.269, p < 0.001), and Figure 2C shows pair-
wise comparison results. At the threshold of 0.8, projection and 
association algorithms have significantly lower prediction errors than 
the other three algorithms (projection = 5.27 ± 4.24 mm, 
association = 6.66 ± 3.48 mm, max-EF = 11.28 ± 5.09 mm, EF-COG =  
13.66 ± 6.98 mm, MNE = 11.73 ± 6.75 mm), and the two of them have 

no significant difference (p = 0.386). Supplementary Figure S4 shows 
the monotonously decreasing prediction error for the projection and 
association algorithms, but monotonously increasing for the other 
three algorithms with the increasing of the cutting threshold. In the 
range of 0.75 to 0.9, the projection and association algorithms keep a 
significantly lower prediction error than others.

3.3 Comparison of the minimum number 
of required stimuli

To determine the Nmin required to produce a stable map, 
we probed the relationship between the number of stimuli and the 
estimation stability of each algorithm. Figure  5A shows example 
curves from one typical subject (subject 4). With the increase in the 
number of stimuli, the stability of all five algorithms increased 

FIGURE 3

Estimated motor maps from five algorithms. The left panel shows motor maps of subjects 1–6, and the right panel shows subjects 7–12. The bottom 
panel displays the estimation results of five algorithms around the omega region, as illustrated by subject 4. White circles mark the cortical hotspots, 
and white dotted lines mark the central sulcus. The color bar represents the normalized estimation value, with red indicating a higher probability of 
inclusion in the motor cortex and blue indicating a lower probability.
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monotonously. The ranking of Nmin of the five algorithms was: 
EF-COG < MNE < projection < max-EF = association. EF-COG 
algorithm required only 3 stimuli to estimate stably 
(stability = 0.969 ± 0.327), and max-EF and association required 15 
stimuli (max-EF stability = 0.901 ± 0.055, association 
stability = 0.903 ± 0.061). Nmin was significantly different among the 
five algorithms (df = 4, F = 187.362, p < 0.001), and Figure 5B shows 
pair-wise comparison results. Group-level analysis revealed that the 
EF-COG algorithm required the least Nmin (3 ± 0), which was 
significantly less than each of the other four algorithms (p < 0.001). 
Max-EF and association algorithm required the most Nmin (max-EF 
14.75 ± 1.76; association 14.00 ± 1.81), and no significant difference 
was found between them (p = 0.685). The group average and SD of 
Nmin were 6.17 ± 1.11 for MNE, and 11.67 ± 1.50 for projection, which 
both were significantly different from the other four algorithms. In the 
investigation of the Nmin for stable peak region, the EF-COG algorithm 
still had the smallest Nmin (see Supplementary Figure S5).

3.4 Comparison of TMS and fMRI motor 
mapping

Subjects 2 and 12 were not included because they had no significant 
fMRI activation. The remaining subjects’ activation peaks were all 
located in the central sulcus, but most of the TMS cortical hotspots were 
located in the precentral gyrus (Figure  6A). The fMRI peak site 
significantly differed from all cortical hotspot sites estimated by the five 
algorithms (distanceprojection  = 16.07 ± 8.41 mm, distancemax-EF  =  
21.13 ± 7.70 mm, distanceEF-COG  = 23.59 ± 9.17 mm, distanceassociation  =  
20.28 ± 7.77 mm, distanceMNE = 21.52 ± 9.00 mm, p = 0.002) (Figure 6B). 
In the Y-axis direction, TMS cortical hotspots were located significantly 
more anterior to the fMRI peak for projection, max-EF, EF-COG, and 
MNE algorithms (projection p = 0.02; max-EF p = 0.002; EF-COG 
p = 0.004; MNE p = 0.004), but not significantly for association algorithm 
(p = 0.492) (Figure 6C). In the Z-axis direction, TMS cortical hotspots 
were located significantly more superior to the fMRI peak for projection, 
EF-COG, and MNE algorithms (p = 0.027). In the X-axis direction, no 
statistically significant differences between the TMS cortical hotspot and 
fMRI peak were found. Similar results were found for COG (see 
Supplementary Figure S6).

4 Discussion

4.1 The estimated motor maps of five 
algorithms

Based on our results (Figure  3), the distribution was more 
centralized for the projection and max-EF algorithms, which is 
consistent with previous studies (Pitkänen et al., 2017; Seynaeve et al., 
2019). One possible explanation for this is that the projection and 
max-EF algorithms work based on points and do not consider the 
spread of neuronal activity induced by TMS, while the other three 
field-based algorithms work based on the electric field distributions. 
Notably, approximately half of the subjects’ cortical hotspots estimated 
from the association algorithm were located in the deeper cortex. It is 
possibly attributed to the association algorithm’s higher sensitivity to 
electric field strength compared to the MNE and EF-COG algorithms. 
The point-based algorithm is unable to depict the probability 
distribution of the motor cortex in the sulcus due to the lack of a 
reliable and physiologically valid interpolation method for the 3D 
cortex. We  adopted a common and demonstrated repeatable  2-D 
spline interpolation method (Wilson et al., 1993; Borghetti et al., 2008; 
Julkunen, 2014; Jonker et al., 2019). Although the MNE algorithm had 
a much higher computational complexity, its results were highly 
similar to those of the EF-COG algorithm (Figure 4). The reason for 
this is not clear, but it may be  due to the application of Wiener 
regularization to reduce the effect of MEP variability (Numminen 
et al., 1995; Pitkänen et al., 2017). Therefore, besides improving the 
accuracy of the hypothesized forward model, the performance of the 
MNE algorithm may also be enhanced by selecting an appropriate 
regularization method.

4.2 Comparison of estimation effectiveness 
and efficiency among five algorithms

We compared the effectiveness and efficiency of five different 
estimation algorithms mainly through two experiments. In the first 
experiment, we evaluated the prediction error of scalp hotspots for 
each algorithm as a measure of its estimation effectiveness. The 
projection and association algorithms produced the lowest prediction 

FIGURE 4

Similarity of motor maps from different algorithms. The similarity in terms of (A) pattern similarity of the motor map in terms of correlation coefficient r, 
(B) the Euclidean distance between cortical hotspots, and (C) the Euclidean distance between COGs. White numbers and shading color indicate the 
group’s average value.
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(5.27 mm, 6.66 mm) in the point-based and field-based estimation 
algorithms, respectively. Under the lower outlining threshold, such 
as 0.5, the prediction error might depend on the search scope range 
restricted before estimation. It could lead to similar evaluations for 
all algorithms because the remaining hand area occupies over half of 
the search scope. With an increasing threshold, the prediction error 
becomes more dependent on the estimation accuracy rather than the 
search scope range. Our results indicate that the projection and 
association algorithms consistently performed better than other 
algorithms in terms of lower prediction errors over the threshold 
range of 0.6 to 0.9, with a statistically significant difference observed 
in the range of 0.75 to 0.9 (see Supplementary Figure S4). The area in 
the chosen range was regarded as the hotspot extent, which outlines 

the area where the highest MEPs occur (Reijonen et  al., 2020). 
Considering that prediction error is influenced by errors in scalp 
hotspot measurement and the selection of the electric field 
component (Bungert et al., 2017), we have provided two supplements. 
Firstly, we have interpolated measured MEPs on the densified grid 
and determined the maximum site to replace the measured scalp 
hotspot position. This resulted in the projection and association 
algorithms still performing the best (p < 0.01  in the pair-wise 
comparison). Secondly, when optimizing the coil position, 
we substituted the electric field strength with components of the field 
that are normal and tangent to the local cortex orientation, 
respectively. Both algorithms produced the lowest prediction error 
when using the tangent component (p < 0.01) and produced a 

FIGURE 5

The comparison of a minimum number of required stimuli. (A) It shows the relationship between the number of stimuli and the stability of five 
algorithms. Examples are given for subject 4. Color numbers show the Nmin of the five algorithms, the number of stimuli required for stability >  =  0.9 
(shade region); and (B) Violin plots show the distribution of the Nmin of the five algorithms. For each algorithm, the Nmin of each subject is represented 
by the blue dot. The white dot represents the group-average Nmin of each algorithm. Asterisks indicate significant differences between the Nmin of the 
algorithm plotted and that of another algorithm (represented by different colors). *p <  0.05, **p <  0.01, ***p <  0.001.
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significantly lower prediction error than the EF-COG algorithm 
when using the normal component (p < 0.05). These results reliably 
suggest that the projection and association algorithms are 
more effective.

Several studies have shown that both the projection and EF-COG 
algorithms perform well in motor mapping when taking DCS 
mapping results as the standard (Coburger et al., 2011, 2013; Opitz 

et al., 2014; Seynaeve et al., 2019). Seynaeve et al. suggested that the 
projection and EF-COG algorithms both estimate the motor cortex 
with high accuracy (85 and 78% respectively) and that the EF-COG 
algorithm is better at capturing the entire motor cortex representation 
than the projection algorithm (Seynaeve et al., 2019). In our study, the 
projection and association algorithms demonstrated lower prediction 
errors than others. The association algorithm can outline the entire 

FIGURE 6

Divergence between TMS cortical hotspots and fMRI peaks. (A) Cortical hotspots were estimated by five algorithms and fMRI peaks (black spheres) in 
individual MRI spaces. (B) Euclidean distance between the cortical hotspots and fMRI activation peaks. (C) The left panel shows group-mean cortical 
hotspots and fMRI peaks. The right panel shows a divergence between TMS cortical hotspots and fMRI peaks separately in three axes (red, Y-axis; blue, 
Z-axis; yellow, X-axis). All box plots show median (black solid line), mean (black dashed line), interquartile range (box top and bottom), and 10th and 
90th percentiles (error bars). *p  <  0.05, **p  <  0.01.
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distribution of the motor cortex without neglecting its deep structures, 
such as the gyrus lip and sulcus (Figure 3).

Although the projection algorithm is unable to estimate in the 
sulcus, it still had a similarly better prediction error compared to 
the association algorithm. This might be  related to modeling 
research suggesting that the primary target of TMS is the crown 
top and lip regions of cortical gyri (Bungert et al., 2017; Siebner 
et al., 2022), which can be estimated by the projection algorithm. 
The part findings of our research are supported by Seynaeve et al., 
who suggested that the projection algorithm exhibited higher 
estimation accuracy than the EF-COG algorithm standardized as 
DCS mapping (Seynaeve et al., 2019). The prediction error of the 
MNE algorithm in our research is 11.73 mm, whereas it was 
7.0 mm in the previous research that used the same method to 
evaluate the effectiveness of the MNE algorithm (Reijonen et al., 
2022). The lower prediction error observed in our research may 
be  attributed to the absence of the I/O curve in the MNE 
algorithm replication.

We aimed to explore the minimum number of stimuli required 
for stable mapping with each algorithm in the second experiment 
of the simulation. In addition to providing a complete depiction of 
the distribution of the motor cortex in three-dimensional space, the 
collection of multiple TMS stimuli is utilized to mitigate the effects 
of MEP variability (Cavaleri et al., 2017; Sinitsyn et al., 2019). In 
this study, we employed the classic method of collecting TMS data, 
which involves an even stimulation grid (Sondergaard et al., 2021). 
It means that the number of stimuli refers to the number of 
stimulation grid points that contain six TMS pulses. It mitigates the 
effects of MEP variability by repeatedly sampling MEPs at the same 
site and obtaining a more stable MEP measurement (Cavaleri et al., 
2017; Therrien-Blanchet et  al., 2022). With the development of 
neuronavigation and electric field modeling, several studies have 
proposed that the collection of a single TMS pulse can be directly 
used for motor mapping (van de Ruit et al., 2015; Numssen et al., 
2021; Sondergaard et  al., 2021). It mitigates the effects of MEP 
variability by capturing more spatial information and obtaining a 
more stable distribution of the motor cortex. With the TMS data 
collection method described above, Ruit et  al. found that the 
projection algorithm required at least 80 TMS pulses when using 
the pseudorandom walk method (van de Ruit et  al., 2015), and 
Numssen et al. found that the association algorithm required at 
least 180 TMS pulses (Numssen et al., 2021). In our study, we also 
observed the same phenomenon that the association algorithms 
may require more TMS stimuli than the projection algorithm 
(Figure 5B, see Supplementary Figure S5B). Interestingly, we found 
that the EF-COG algorithm consistently performed best, and the 
MNE algorithm came next, with estimation results mostly showing 
similarities (Figure  5, see Supplementary Figure S5). The lower 
performance of the MNE algorithm might be due to the aggravation 
of the ill-posed problem by decreasing the number of stimuli 
(Kabanikhin, 2008). Despite working based on points rather than 
the distribution of the electric field, the max-EF algorithm required 
a significantly larger Nmin than the projection algorithm (p < 0.001). 
The instability of the max-EF algorithm may be the reason for its 
larger Nmin requirement, as shown in Supplementary Figure S7. The 
figure illustrates that even if two stimuli induce MEP with a large 
discrepancy, their maximum electric field cortical sites are very 
close to each other.

4.3 Towards application of clinical and 
basic neuroscience

TMS motor mapping holds promise in various clinical 
applications, including pre-surgical planning (Takahashi et al., 2013; 
Lefaucheur and Picht, 2016), risk stratification (Rosenstock et  al., 
2017), motor rehabilitation (Lüdemann-Podubecká and Nowak, 
2016), as well as basic research such as developmental plasticity 
(Narayana et al., 2015; Grab et al., 2018; Babwani et al., 2021). The 
fundamental requirement for a superior mapping algorithm is its 
ability to accurately delineate the location of the motor cortex. 
Numerous studies have indicated that the caudal band of the hand 
area resides in the depth of the central sulcus, and the rostral part is 
located in the more superficial sulcal wall (Geyer et al., 1996, 2000; 
Siebner et al., 2022). In this context, the association algorithm stands 
out as it can capture the entire information of the motor cortex, unlike 
the projection algorithm, which may miss certain portions (Julkunen, 
2014). This suggests that the association algorithm could offer more 
accurate estimation results, potentially enhancing the security of 
pre-surgical planning for tumor surgery and providing more detailed 
knowledge of the motor cortex in research. Consequently, we propose 
that the association algorithm might be a preferable choice for clinical 
applications and basic neuroscience research.

TMS serves as a non-invasive technology commonly for causal 
structure–function mapping through its ability to provide supra-
threshold stimulation (Siddiqi et al., 2022). While the objectivity and 
quantifiability of MEP draw more attention to motor mapping, TMS 
can extend to mapping cognitive functions beyond motor domains. 
TMS language mapping is equally significant as a procedure before 
tumor surgery and is typically conducted using the traditional point-
based algorithm (Picht et  al., 2013; Babajani-Feremi et  al., 2016; 
Lehtinen et  al., 2018). In our study, the association algorithm 
demonstrated lower prediction error and higher estimation sensitivity 
in the deep cortical structure. This improvement suggests potential 
enhancement in the accuracy of TMS language mapping and its 
applicability to more complex functional mapping. Notably, the 
association algorithm is utilized in the depression treatment to map 
the efficacy area of TMS, pending further confirmation regarding the 
selection of the electric field component (Zhang et  al., 2022). 
Therefore, the association algorithm also exhibits great potential in 
mapping the efficacy area in the TMS treatment for psychiatry.

4.4 Motor mapping divergence between 
TMS and fMRI

In this study, the group average distance between the location of 
the cortical hotspot estimated by the projection algorithm and the 
fMRI activation peak was 16 mm which approached the mean distance 
reported in previous studies (around 7 to 14 mm) (Herwig et al., 2002; 
Lotze et al., 2003; Diekhoff et al., 2011). To exclude the possibility that 
the divergence was caused by the simple projection algorithm itself, 
we  used four other electric-field-based estimation algorithms to 
re-estimate the cortical hotspot location. The results showed that the 
divergence in cortical hotspot location (20.52 ± 8.46 mm for five 
algorithms), as well as in COG (12.21 ± 2.73 mm), remains regardless 
of the estimation algorithm used (Figure  6, see 
Supplementary Figure S5). All of the results support the hypothesis 
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that TMS motor mapping differs from fMRI motor task 
activation mapping.

To further understand the reasons for this divergence, we analyzed 
the divergence in terms of distance in the 3 axes in MNI space. The 
notable finding from this analysis is that divergence mainly occurs in 
the Y axes. The cortical hotspot estimated by projection, max-EF, 
EF-COG, and MNE algorithms was found to be always significantly 
more anterior than the fMRI peak, which is consistent with previous 
studies (Herwig et al., 2002; Lotze et al., 2003; Diekhoff et al., 2011). 
One possible explanation is that neurons activated by TMS are 
different from those detected by fMRI (Herwig et al., 2002; Wang 
et al., 2020). TMS mapping reveals the causal relationship between 
finger movement and activation of neurons, whereas fMRI mapping 
simply shows a correlation between the two. Thus the TMS mapping 
finds neurons that directly cause finger movement and they are mainly 
in the primary motor cortex (PMC) in the precentral gyrus (Säisänen 
et al., 2010; Holmes et al., 2019). fMRI mapping detects activation of 
neurons that are related to voluntary finger movement not only in 
PMC in the precentral gyrus but also in other regions, such as the 
somatosensory cortex in the postcentral gyrus (Mima et al., 1999; 
Ehrsson et  al., 2003; Akhlaghi et  al., 2012). Another possible 
explanation is that the brain shift might also result in slightly anterior 
TMS cortical hotspots. The brain shift results from different conditions 
during the sMRI when the subject is lying and the TMS session when 
the subject is sitting. However, we cannot confirm the existence of 
divergence along the Y-axis yet, as the cortical hotspots estimated by 
association were not significantly more anterior than the fMRI 
activation peak (p = 0.492). The discrepancy with the association 
algorithm could be  due to its higher estimation accuracy or the 
insufficient number of participants in our study.

In conclusion, both previous and our own suggest that the 
deviation between the TMS mapping cortical hotspot and the fMRI 
activation peak may arise from differences in the neurons activated by 
TMS compared to those detected by fMRI. Wang et al. also noted that 
this deviation was linked to distinct brain circuits in non-voluntary 
and voluntary finger movements (Wang et al., 2020). This deviation 
suggests the necessity of choosing an appropriate mapping technology 
based on research objectives. For instance, in the treatment of 
movement disorder, selecting the fMRI activation peak as the TMS 
target might be preferable. Considering the deviation between TMS 
and fMRI mapping, as well as the similarity between TMS and DCS 
mapping (Coburger et  al., 2013; Mangraviti et  al., 2013), fMRI 
mapping could be significantly supplemented by pre-surgical planning 
to avoid excising the area responsible for voluntary rather than 
non-voluntary movement.

4.5 Limitations and future work

There are several limitations to this study, which will guide our 
future work. Several enhanced association algorithms have been 
proposed (Weise et al., 2020; Kataja et al., 2021; Numssen et al., 2021; 
Weise et al., 2023), with the latest protocol and code for one of them 
publicly available (Weise et  al., 2023). This protocol incorporates 
additional parameters of the mapping procedure, including I/O curves 
and coil orientations. This underscores the superiority of algorithms 
utilizing the electric field modeling, given that the projection 

algorithm cannot capture the influence of orientations, despite 
orientation being a crucial parameter in TMS. In our study, 
we  examined five estimation algorithms using a classical motor 
mapping procedure without regard to the coil orientation. While this 
facilitated the result of comparisons suitable for the majority of motor 
mapping scenarios, further investigations employing new motor 
mapping procedures are needed to demonstrate the superiority of the 
association algorithm. It was observed that the association algorithm 
exhibited lower mapping efficiency than the projection algorithm and 
converged slowly in the second experiment. Further investigation is 
warranted in the new procedure because the association algorithm 
might require a more diverse set of TMS pulses to achieve a more 
reliable mapping.

Although more and more studies strive to demonstrate the 
physiological significance of the numerical electric field (Argyelan 
et al., 2019; Jamil et al., 2020; Fridgeirsson et al., 2021; Mosayebi-
Samani et al., 2021), the prediction error might not be determined 
solely by the estimation accuracy of the mapping algorithm. Therefore, 
in our future work, using the DCS mapping result as the gold standard 
(Coburger et al., 2011, 2013; Opitz et al., 2014; Seynaeve et al., 2019) 
is needed for validating the higher estimation accuracy of the 
association algorithm. Besides the number of stimuli, the reliability of 
each estimation algorithm is also affected by the combination of 
stimulation site and orientation. Therefore, future research should 
explore the optimization of stimulation patterns to enhance the 
performance of the estimation.

5 Conclusion

In this study, we  used the same set of experimental data to 
compare five TMS motor mapping estimation algorithms mainly in 
two experiments. In the first experiment, we found that the projection 
algorithm performed best among the point-based algorithms, while 
the association algorithms performed best among the field algorithms. 
However, the projection algorithm might miss part of the hand area 
because it cannot estimate it accurately in the sulcus, and even might 
not be in the gyrus lip. In the second experiment, we observed that the 
projection algorithm required fewer stimuli compared to the 
association algorithms when collecting TMS mapping data using the 
typical grid-based method. Generally, we suggest that the association 
algorithm may be a preferable choice for clinical applications and 
basic neuroscience research, even across various TMS mapping 
domains, including language area mapping and mapping the areas 
effective in depression treatment, among others. Finally, we found that 
even when using advanced estimation algorithms, the location of all 
cortical hotspots estimated by the five algorithms still deviated from 
the activation peak obtained from fMRI, without showing a consistent 
orientation preference.
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Glossary

TMS Transcranial magnetic stimulation

MEP Motor-evoked potential

FDI First dorsal interosseous muscle

fMRI functional magnetic resonance imaging

DCS Direct cortical stimulation

CPC Continuous proportional coordinate

RMT Resting motor threshold

I/O curve Input–output curve

COG Center-of-gravity

MNE Minimum norm estimation

Nmin the minimum number of stimuli needed for stable mapping results

TR Repetition time

TE Echo time

FA Flip angle

FOV Field of view

EPI Echo planar imaging

MNI Montreal Neurological Institute space
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