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Transcription factors in
microcephaly

Youngshin Lim1,2*
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United States, 2Department of Biomedical Science Education, Charles R. Drew University of Medicine
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Higher cognition in humans, compared to other primates, is often attributed

to an increased brain size, especially forebrain cortical surface area. Brain

size is determined through highly orchestrated developmental processes,

including neural stem cell proliferation, di�erentiation, migration, lamination,

arborization, and apoptosis. Disruption in these processes often results in

either a small (microcephaly) or large (megalencephaly) brain. One of the

key mechanisms controlling these developmental processes is the spatial and

temporal transcriptional regulation of critical genes. In humans, microcephaly is

defined as a condition with a significantly smaller head circumference compared

to the average head size of a given age and sex group. A growing number

of genes are identified as associated with microcephaly, and among them are

those involved in transcriptional regulation. In this review, a subset of genes

encoding transcription factors (e.g., homeobox-, basic helix-loop-helix-, forkhead

box-, high mobility group box-, and zinc finger domain-containing transcription

factors), whose functions are important for cortical development and implicated

in microcephaly, are discussed.

KEYWORDS
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1 Introduction

Microcephaly is a clinical condition where the occipito-frontal head circumference
(OCF) of an individual is significantly smaller than the average head size of the population
for a given sex and age (Lim and Golden, 2020). Typically, a cutoff of more than 2
standard deviations (SDs) below the mean or less than the 3rd percentile is used for
microcephaly diagnosis; however, other cutoff values such as more than 3 SD and less
than the 5th or 10th percentile can be used as well (Opitz and Holt, 1990; Raymond
and Holmes, 1994; Ashwal et al., 2009). The prevalence of microcephaly is between 1.5
and 8.7 per 10,000 births in Europe and the US, respectively (Cragan et al., 2016; Morris
et al., 2016), and ∼15–20% of children with developmental delay are reported to have
microcephaly (Sassaman and Zartler, 1982; Watemberg et al., 2002; Aggarwal et al., 2013).
Microcephaly can manifest as the only phenotype without other obvious morphologic or
functional abnormalities (e.g., cortical- or extra-cortical malformations, and intellectual
disability), as in the case of “isolatedmicrocephaly”; or it can be accompanied by neurological
or psychiatric conditions, but without cortical or extra-cortical malformations, as in
the case of “non-syndromic microcephaly”. In contrast, “syndromic microcephaly” often
presents together with other cortical malformations (e.g., polymicrogyria, lissencephaly,
periventricular nodular heterotopia, and agenesis of corpus callosum) or can be part of a
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broader syndrome involving other organ systems (more than 700
genetic syndromes are reported to have microcephaly) (Pirozzi
et al., 2018).

Depending on the time of presentation, microcephaly can
be classified as primary (congenital) or secondary (postnatal)
microcephaly. Congenital microcephaly is usually caused by
deficiencies in the number of neurons (either reduced production
or increased loss), while postnatal microcephaly is more often
attributed to defective brain growth and/or neurodegeneration
causing brain atrophy (Gilmore and Walsh, 2013). However, this
classification is by no means strict. For example, a defect in
neuronal generation can still result in postnatal microcephaly
if the proliferation defect is not severe enough to manifest
at birth.

The recent explosion in the use of next-generation sequencing
has enabled the discovery of many novel disease-causing genetic
variants in microcephaly. For example, 32 primary microcephaly
(MCPH, microcephaly primary hereditary) genes have been
identified (Asif et al., 2023), and the list is rapidly growing. Most
of these genes encode centrosome-specific proteins, spindle-
associated proteins, microtubule-associated proteins, and cell
cycle checkpoint proteins (e.g., ASPM, CDK6, CDK5RAP2,
CENPJ, CEP63/135/152, NIN, PLK4, STIL, TUBGCP6, and
WDR62, among others) that cause cell cycle-related defects
when mutated (Lim and Golden, 2020). Another group of
the prominent MCPH genes encode proteins in various DNA
damage responses and repair pathways (e.g., PNKP, ERCC6,
ERCC8, CHEK2, NHEJ1, XRCC4, XRCC5, and XRCC6, among
others) (Lim and Golden, 2020). In addition, the list also
includes genes encoding proteins involved in transcriptional
regulation (e.g., transcription factors and chromatin remodeling
proteins), although only a small number of them are identified
in MCPH (Jayaraman et al., 2018). If syndromic microcephalies
are also considered, many additional transcription-related
proteins associated with microcephaly can be included
(see below).

In this review, transcription factors associated with
microcephaly will be discussed, focusing on their reported
functions and pathogenic mechanisms in model systems, which
can be linked to clinical features in humans. Selected members
of five different transcription factor families will be highlighted,
including (1) homeobox genes such as ARX, LHX2, MEIS,
NKX2-1, OTX1, OTX2, and PAX6; (2) bHLH (basic helix-loop-
helix) genes such as MYCN and TCF4; (3) FOX (forkhead box)
genes, FOXG1 and FOXR1; (4) SOX (sex-determining regions
Y-related HMG box) genes belonging to SOXB1 (SOX2 and
SOX3) and SOXC (SOX4 and SOX11) subfamily; and finally
(5) zinc finger genes, ZNF238 and ZNF355 (Table 1). While
not covered in this review, chromatin remodeling proteins are
also critical factors in transcriptional regulation that can result
in microcephaly when mutated. For instance, the SMARCB1,
SMARCA4, SMARCE1, ARID1A, and ARID1B genes encode
subunits of the BAF complex (also known as the SWI/SNF
complex in yeast), and they are responsible for 55–70% of
Coffin–Siris syndrome cases, where microcephaly can manifest
as one of the phenotypes (Kosho et al., 2014; Vergano et al.,
2021).

2 Transcription factors associated with
microcephaly

2.1 Homeobox genes: ARX, LHX2, Meis,

NKX2-1, OTX1, OTX2, and PAX6

The homeobox gene family members are characterized by 180-
bpDNA sequences known as the “homeobox” encoding a 60-amino
acid protein domain called the “homeodomain” (Figure 1). Most
homeodomains contain a helix-loop-helix-turn-helix structure
responsible for DNA binding (Gehring et al., 1994; Bürglin and
Affolter, 2016). The DNA-binding motif is typically located at the
second or third helix and recognizes and binds to the major groove
of DNA at specific consensus sites (Kappen, 2000). The proteins
encoded by homeobox genes are called homeodomain proteins,
or simply homeoproteins. In addition to the homeodomain,
homeoproteins often contain other domains or motifs (e.g., paired
domain and “PRD”) that can contribute to DNA and/or co-
factor binding (Leung et al., 2022). Often, these additional DNA-
binding domains and co-factor binding sites confer additional
DNA specificity to these proteins, apart from the consensus binding
sequence (Holland et al., 2007). Homeoproteins can be divided
into various different classes, such as the Antennapedia (ANTP),
Paired (PRD), and LIM classes (Holland et al., 2007), based on the
variations in the homeodomain and additional domains or motifs.
Well-known examples of homeoproteins belonging to these three
classes include HOX (ANTP class), PAX (PRD class), and LHX
(LIM class) (Holland et al., 2007).

Mutations in homeobox genes were first described in
Drosophila, which resulted in homeotic transformation (normal
structure developing at an abnormal body position, e.g., leg
growing from the location expected to be antennae) (Gehring
et al., 1994). It is now known that homeoproteins control many
cellular processes crucial for embryonic development, including
proliferation, differentiation, apoptosis, cell shape, cell adhesion,
and migration (Pearson et al., 2005). Furthermore, homeobox
genes are known to be associated with many developmental
brain disorders and cancers in humans (Leung et al., 2022). In
this study, I focus on several homeobox genes (ARX, LHX2,
MEIS2, NKX2-1, OTX1, OTX2, and PAX6) implicated in the
pathogenesis of microcephaly (Table 1). The expression patterns of
these homeobox genes in the embryonic mouse brains (Figure 2),
their functional roles during brain development, and their human
genetic variants and clinical features associated with microcephaly
will be highlighted.

2.1.1 ARX (Aristaless-related homeobox)
Aristaless-related homeobox gene (ARX) belongs to the PRD

class, one of the three largest classes of homeobox genes. It is
the vertebrate homolog of Drosophila aristaless (al), essential for
the formation of the head segment and the axis specification of
appendages (Miura et al., 1997). It is located on the X chromosome
(Xp22.13 in humans), and mutations in ARX are associated
with a spectrum of neurodevelopmental conditions that can be
classified into two groups—those with and those without structural
abnormalities. The malformation group can include lissencephaly,
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TABLE 1 Transcription factors associated with microcephaly.

Gene
family

Gene
name

Chromosomal
location

Microcephaly Other major clinical
conditions

Associated
disease/syndrome

Homeobox ARX Xp22.13 Congenital and postnatal (Kato
et al., 2004; Kwong et al., 2019)

Lissencephaly, agenesis of corpus
callosum, epilepsy, intellectual disability,
autism spectrum disorder symptoms

XLAG, HYD-AG, Proud
syndrome, Ohtahara syndrome,
IEDE, XMESID, Partington
syndrome, etc.

LHX2 9q33.3 Postnatal (Schmid et al., 2023) Intellectual disability, autism spectrum
disorder, dysgenesis of corpus callosum,
ophthalmologic abnormalities

MEIS2 15q14 Congenital and postnatal
(Verheije et al., 2019)

Palatal and heart defects, dysmorphic
facial features, intellectual disabilities

NKX2.1 14q13 Postnatal (Carré et al., 2009) Benign hereditary chorea, respiratory
symptoms, congenital hypothyroidism

Brain–lung–thyroid syndrome

OTX1 2p15 Congenital (Liang et al., 2009) Growth retardation, congenital
hypopituitarism, optic atrophy

OTX2 14q22.3 Congenital (Gregory et al.,
2021)

Congenital hypopituitarism, eye defects

PAX6 11p13 Congenital (Glaser et al., 1994;
Schmidt-Sidor et al., 2009;
Solomon et al., 2009)

Severe brain malformation, intellectual
disability, autism, impaired audition, and
eye defects

bHLH MYCN 2p24.3 Congenital (Courtens et al.,
1997; Bokhoven et al., 2005;
Marcelis et al., 2008)

Gastrointestinal atresia, learning
disability, facial dysmorphism, syndactyly,
and cardiac defect

Feingold syndrome

TCF4 18q21.2 Postnatal (Zweier et al., 2008;
Winter et al., 2016; Goodspeed
et al., 2017)

Developmental delays, intellectual
disability, characteristic facial features,
speech delay, sleep disturbance, autism
spectrum disorder symptoms, seizures,
and severe myopia.

Pitt–Hopkins syndrome

Forkhead
box

FOXG1 14q12 Congenital (Hou et al., 2020) Agenesis of the corpus callosum, delayed
myelination, intellectual disability, autism
spectrum disorder symptoms, epilepsy

FOXG1 syndrome (used to be
considered as a congenital
variant of Rett syndrome)

FOXR1 11q23.3 Postnatal (Mota et al., 2021) Progressive brain atrophy, global
developmental delay, variety of
carcinomas

SRY-related
HMG box

SOX2 3q26.33 Postnatal (Fantes et al., 2003;
Schneider et al., 2009;
Blackburn et al., 2018)

Severe eye defects, hippocampal
abnormalities, epilepsy, motor problems,
dysmorphic facial features, and genital
anomalies

SOX3 Xq27.1 Postnatal (Jelsig et al., 2018; Li
et al., 2022)

Hypopituitarism (from isolated growth
hormone deficiency to
panhypopituitarism), intellectual
disability, neural tube defects, and
craniofacial abnormalities

SOX4 6p22.3 Postnatal (Zawerton et al., 2019;
Angelozzi et al., 2022)

Intellectual disability, facial dysmorphism,
5th finger and/or toe anomalies

Coffin–Siris syndrome

SOX11 2p25.2 Congenital (Tsurusaki et al.,
2014; Hempel et al., 2016;
Wakim et al., 2020)

Growth deficiency, intellectual disability,
characteristic facial features, and
hypoplastic nails of the fifth fingers and/or
toes

Coffin–Siris syndrome

Zinc finger ZNF238
∗ 1q44 Congenital and postnatal

(Boland et al., 2007; Hill et al.,
2007; Bon et al., 2008; Orellana
et al., 2010; Khadija et al., 2022)

Severe intellectual disability, profound
growth defects, short stature, agenesis of
corpus callosum, dysmorphic facial
features

1qter deletion syndrome

ZNF335 20q13 Congenital (Yang et al., 2012) Simplified gyrification, thinned cerebral
cortex, abnormal lamination, death by 1
year of age

∗ZNF238 is one of the several genes deleted in 1qter deletion syndrome.

XLAG, X-linked lissencephaly with abnormal genitalia; HYD-AG, hydranencephaly and abnormal genitalia; IEDE, idiopathic infantile epileptic-dyskinetic encephalopathy; XMESID, X-linked

myoclonic epilepsy with spasticity and intellectual disability.
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FIGURE 1

Transcription factors associated with microcephaly. Schematics of the domain structure of the homeobox, bHLH, forkhead box, HMG box, and zinc

finger transcription factors. Numbers over the DNA-binding domain of each selected transcription factor indicate amino acid residues, while

numbers below the gray domains in the zinc finger genes indicate each C2H2 zinc finger domain. A, aristaless domain; BTB, BTB domain

[Broad-Complex, Tram track, and Bric-a-brac, also known as POZ (poxvirus zinc finger) domain; bHLH, basic helix-loop-helix domain; C2H2,

cysteine–cysteine–histidine–histidine; forkhead, forkhead box domain; HD, homeobox domain; HMG, high mobility group; LIM, LIM domain (Lin-11,

Isl1, and Mec-3); LZip, leucine zipper domain; PA1-3, poly alanine track 1–3; PBX1 intxn, PBX1 interaction domain; PRD, paired domain; ZF, zinc

finger domain.
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FIGURE 2

Expression patterns of the selected homeobox transcription factors in embryonic mouse brain. The mid-sagittal sections of E11.5 or E13.5

embryonic brains showing RNA in situ hybridization results of Arx, Lhx2, Meis2, Nkx2.1, Otx1, Otx2, and Pax6, adapted from Allen Brain Atlas (https://

developingmouse.brain-map.org).

microcephaly, and/or agenesis of corpus callosum and is associated
with several syndromes: X-linked lissencephaly with abnormal
genitalia (XLAG), hydranencephaly and abnormal genitalia (HYD-
AG), and Proud syndrome (agenesis of corpus callosum with
abnormal genitalia) (Dobyns et al., 1999; Ogata et al., 2000;
Kitamura et al., 2002; Kato et al., 2004). The second group of ARX-
associated conditions, typically without severe malformations,
frequently includes a variety of infantile and childhood seizure
phenotypes and non-syndromic X-linked intellectual disability
(Bienvenu et al., 2002; Strømme et al., 2002; Kato et al., 2003).
In rare cases, these relatively less severe conditions can also
present with brain malformations (e.g., microcephaly in a case with
Ohtahara syndrome) (Absoud et al., 2010). More severe phenotypes

harboring brain malformations seem to arise from premature
termination mutations (large deletions, frameshifts, and nonsense
mutations) or missense mutations in the homeodomain or nuclear
localization sequences, while missense mutations outside of the
homeodomain or mutations in polyalanine tracts (expansion or
deletion) are associated with less severe phenotypes (Friocourt and
Parnavelas, 2010).

Interestingly, individuals with ARX variants can have either
congenital or postnatal microcephaly (Friocourt and Parnavelas,
2010). For example, XLAG patients with nonsense mutation
(c.1117C<T (Q373X)) or with missense mutation (c.1561G<A
(A521T)) in the aristaless domain tend to have congenital
microcephaly (Kato et al., 2004), while XLAG patients with
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missense mutation (c.989G > A; p.Arg330) located in the nuclear
localization sequence (NLS2) or with a deletionmutation (790delC)
predicted to cause premature truncation were reported to have
postnatal (progressive) microcephaly (Kwong et al., 2019). Of
note, in some cases of postnatal microcephaly, the underlying
pathogenic mechanism is distinct from that of the congenital
microcephaly—proliferation defects in congenital vs. growth
defects or neurodegeneration in postnatal microcephaly (Absoud
et al., 2010). However, in other cases, it is possible that the
embryonic proliferation defects, which are not severe enough to be
detected at birth, can manifest as postnatal microcephaly.

The function of ARX in the brain is well reflected by its
expression pattern. In the dorsal telencephalon (developing cortex),
Arx is expressed in the proliferating cells located in the ventricular
zone (VZ) and subventricular zone (SVZ) (Figure 2). However,
its expression is turned off once cells exit the cell cycle and
begin to migrate out of the VZ and SVZ (Lim et al., 2022). In
contrast, in the ventral forebrain, Arx is not expressed in the VZ;
instead, it is strongly expressed in the SVZ and mantle zone of the
lateral ganglionic eminence (LGE) andmedial ganglionic eminence
(MGE) (Figure 2) and remains expressed in non-radially migrating
neurons emanating from theMGE to the cerebral cortex (Lim et al.,
2022). Interestingly, when Arx is genetically ablated in mice from
the dorsal telencephalon, neural progenitor expansion is disrupted,
mainly due to premature cell cycle exit (Colasante et al., 2015).
The brains of these mice are smaller, resembling the microcephaly
observed in humans with an ARX mutation; however, these mice
do not develop seizures (Friocourt and Parnavelas, 2010; Colasante
et al., 2015). In contrast, when Arx is abrogated from the ventral
telencephalon, the brains are of normal size, but all of the male mice
exhibit a range of seizures (Marsh et al., 2009).

What is the pathogenic mechanism for ARXmutations to result
in microcephaly? It appears that ARX regulates the expansion of
cortical progenitors by regulating the level of Cdkn1c expression
(Colasante et al., 2015). CDKN1C (also known as p57/KIP2)
regulates the G1-S transition of cortical progenitors (Sherr
and Roberts, 1999). When overexpressed in mice, it promotes
progenitor cell cycle exit and a transition from proliferation to
differentiation, while its loss leads to increased proliferation and
macrocephaly (Mairet-Coello et al., 2012). Targeted ablation of Arx
in cortical progenitors leads to an abnormal increase in Cdkn1c

expression (ARX normally represses Cdkn1c expression), resulting
in premature cell cycle exit and depleting progenitor pools, leading
to a reduced brain size. Furthermore, the loss of Arx disrupts PAX6
and TBR2 expression in progenitor cells (Lim et al., 2019). PAX6
and TBR2 are also transcription factors expressed in progenitor
cells, where they also play a role in proliferation (PAX6 for
radial glial progenitors; TBR2 for intermediate progenitors). Their
decreased expression in Arx mutant mice appears to be a second
contributing mechanism leading to the microcephaly (Lim et al.,
2019).

2.1.2 LHX2 (LIM homeobox 2)
LHX2 is a member of the LIM (Lin-11, Isl1, and Mec-3) class

of homeobox gene family. The protein contains a homeodomain
(for DNA binding) and two cysteine-rich LIM zinc finger
domains (required for zinc binding and functioning as a modular

protein-binding interface to mediate protein–protein interactions)
(Feuerstein et al., 1994; Schmeichel and Beckerle, 1994). LHX2
can form multimeric complexes with other co-factors such as
LIM-domain-binding-1 (LDB1) via the LIM domains, allowing
homeodomain-mediated DNA binding to activate its target genes
(Schmeichel and Beckerle, 1994; Agulnick et al., 1996; Breen et al.,
1998; Kadrmas and Beckerle, 2004).

LHX2/Lhx2 is a vertebrate ortholog of theDrosophila “selector”
gene apterous (Ap) which is essential for wing development
(Cohen et al., 1992). Selector genes are known to function cell-
autonomously to specify cell identity while suppressing alternative
fates (Lawrence and Struhl, 1996; Irvine and Rauskolb, 2001). Lhx2,
which is expressed in cortical precursor cells but not adjacent cells
(choroid plexus epithelium and cortical hem), has been shown to
act as a selector gene in the developing mouse cerebral cortex,
specifying cortical identity in a cell-autonomous fashion while
suppressing hippocampal organizer fate (Mangale et al., 2008).
Lhx2 homozygous knockout mice are embryonic lethal, likely due
to severe anemia. They also show forebrain hypoplasia along with
defects in eye development (anophthalmia) (Porter et al., 1997).
Furthermore, dorsal forebrain conditional Lhx2 mutant mice have
dramatically smaller cerebral cortices when compared to controls
(Chou et al., 2009), again resembling with human microcephaly
phenotype observed in patients with LHX2 variants (Schmid et al.,
2023).

Until recently, LHX2 defects had not been linked to
neurodevelopmental disorders, with the exception of a few
variants described in a large study on developmental disorders
(Kaplanis et al., 2020) and in an autism cohort (Zhou et al., 2022).
However, LHX2 haploinsufficiency has now been linked to variable
neurodevelopmental disorders (Schmid et al., 2023); the authors
identified de novo deletions (likely gene-disrupting) and missense
variants in LHX2 from 19 individuals (18 families) presenting
with a variable neurodevelopmental phenotype, including
microcephaly, intellectual disability, autism spectrum disorder,
and other behavioral anomalies. Among 10 patients carrying likely
pathogenic variants with occipito-frontal head circumference
(OFC) records available, 7 patients showed microcephaly at the
time of investigation (age ranging from 2 to 8 years; OFC at
birth not available); 4 of them had deletions or nonsense variants
(likely gene-disrupting), and 3 had missense variants in the
LIM domain or homeodomain (Schmid et al., 2023). These data
implicate LHX2 as a causative gene for microcephaly. Functional
analysis of these variants revealed altered subcellular localization
(nucleolar accumulation) for two missense variants located in
the homeodomain, impaired interaction with co-factor LDB1
for another variant located in the LIM domain, and impaired
transcriptional activation for four missense variants. These
data suggest a loss-of-function effect of LHX2. Importantly, the
identification of more genetic cases in future will strengthen the
argument for the role of LHX2 in microcephaly.

2.1.3 MEIS2 (Myeloid ecotropic viral integration
site 2)

MEIS2 belongs to the three-amino acid-loop extension (TALE)
superfamily of the HOX class of homeobox genes, a homolog of the
Drosophila homothorax gene (Leung et al., 2022). MEIS2 appears to
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function as a HOX co-factor, which binds to HOX proteins or pre-B
cell leukemia homeobox (PBX) transcription factor to form dimeric
or trimeric complexes to enhance the specificity and affinity of DNA
binding (Chang et al., 1997). There are three mammalian MEIS
transcription factors, MEIS 1, MEIS2, and MEIS3, and they are
characterized by a three amino acid residue loop insertion between
helix 1 and helix 2 of the homeodomain, which is an important
feature for protein–protein interactions (Bürglin, 1997).

The expression of Meis2 in many embryonic tissues has been
described in mice, including the forebrain, midbrain, hindbrain,
spinal cord, and heart (Machon et al., 2015). In the developing
mouse forebrain, it is expressed in both the dorsal and ventral
telencephalon—dorsally it is mainly expressed in the VZ, while
ventral expression predominates in the SVZ of the LGE and in the
striatum, excluding the MGE and globus pallidus (Figure 2) (Su
et al., 2022). It has been shown that MEIS2 function is important
for proliferation and neuron differentiation in the striatum as well
as in the olfactory bulb (Toresson et al., 2000; Agoston et al.,
2012). In addition, zebrafish studies have demonstrated a role in
the development of the mesencephalon, craniofacial skeleton, and
heart (Glickman and Yelon, 2002).

In humans, MEIS2 is expressed in the proliferative zones of
the fetal forebrain as well as in the adult brain (Larsen et al.,
2010). Interestingly, microcephaly has been observed (not fully
penetrant) in patients with chromosome 15q14 microdeletions,
which encompasses MEIS2 and is a well-known chromosomal
cause of palatal defects co-occurring with congenital heart defects
and intellectual disability. In a recent study, 8 of 17 patients (47%)
with a 15q14 deletion presented with microcephaly compared to 2
of 11 patients (18%) with de novo MEIS2 variants (Verheije et al.,
2019), suggesting MEIS2 as a responsible gene for microcephaly.
Given that microcephaly is more prevalent in 15q14 deletion than
in de novo variants or intragenic deletions inMEIS2 (Verheije et al.,
2019), it is possible that unidentified variants in a nearby region
have a synergistic influence on the phenotype when combined with
MEIS2 loss or variants.

Due to the embryonic lethality of mice with zygotic inactivation
of the Meis2 allele, it is difficult to assess the brain size defect after
birth, although the embryonic brain size (as well as the whole body
size) is smaller in null mice when compared to controls (Machon
et al., 2015). Conditional depletion ofMeis2 in the forebrain would
be a valuable experiment to further elucidate the role of Meis2

in microcephaly.

2.1.4 NKX2-1 (NK2 homeobox 1)
NKX2-1, also known as thyroid transcription factor 1 (TTF1) or

thyroid-specific enhancer binding protein (T/EBP), belongs to the
ANTP class of homeobox genes and is the mammalian homolog
of the Drosophila scarecrow (scro) (Guazzi et al., 1990; Mizuno
et al., 1991). The protein contains a homeodomain and an NK2
box domain of 18 amino acid sequences at the C-terminus of the
NK2-type proteins, which is an important region for the regulation
of transcriptional activity (Uhler et al., 2007). NKX2-1 was first
identified as a nuclear protein that binds to the thyroglobulin gene
promoter (Civitareale et al., 1989; Carré et al., 2009) and is known
to play a role in telencephalon and diencephalon development as

well as in thyroid, lung, and pituitary development (Guazzi et al.,
1990; Mizuno et al., 1991; Kimura et al., 1996; Sussel et al., 1999).

In the embryonic mouse forebrain, Nkx2.1 is expressed in the
progenitor and post-mitotic cells of the MGE and preoptic area
(Figure 2). NKX2-1-positive progenitors give rise to GABAergic
neurons that migrate tangentially from the MGE to the neocortex,
as well as cholinergic neurons located in the striatum (Anderson
et al., 2001; Magno et al., 2017). Nkx2.1 homozygous mutant mice
die at birth with lung and thyroid defects, along with complex
malformations of the ventral telencephalon structures, including
the basal ganglia, hypothalamus, and pituitary (Kimura et al.,
1996; Takuma et al., 1998; Sussel et al., 1999). In these mutant
mice, the MGE is respecified into LGE (thus devoid of the mainly
MGE-derived globus pallidus, but with the expansion of the LGE-
derived striatum) and they have a reduced number of GABAergic
neurons in the neocortex and cholinergic neurons in the striatum
(Sussel et al., 1999). Studies with conditional knockout mice further
demonstrated a role for Nkx2.1 in interneuron specification and
migration (Butt et al., 2008; Nóbrega-Pereira et al., 2008).

In humans, the NKX2-1 gene is localized on chromosome
14q13. During early development, it is expressed in the
prosencephalon (which gives rise to the telencephalon and
diencephalon) and thyroid bud, and later in the lung epithelium
(Carré et al., 2009). NKX2-1 mutations have been associated with
brain–thyroid–lung syndrome, characterized by benign hereditary
chorea (movement disorder), congenital hypothyroidism, and
infant respiratory distress symptoms (Willemsen et al., 2005).
Chromosome 14q13 deletions (that include NKX2-1) as well
as nonsense mutations in NKX2-1 have also been linked to
microcephaly that occasionally co-occurs with brain–thyroid–lung
syndrome (Carré et al., 2009). For example, three of the six families
with 14q13 deletion (0.9–17.9Mb) presented with microcephaly,
as well as one of the two cases with a nonsense mutation in
NKX2-1 (c.338G>A, p.Trp113∗) (Carré et al., 2009). In another
report on two siblings with hypothyroidism and respiratory
failure due to the 14q12-13.3 deletion, both were reported to have
postnatal microcephaly (Iwatani et al., 2000), further implicating
the potential role of NKX2-1 in microcephaly accompanying
brain–thyroid–lung syndrome. Microcephaly manifested in
individuals with NKX2-1 variants suggests two possibilities: either
a direct contribution of the loss of NKX2-1 function in the brain or
an indirect result from its loss in other places such as the thyroid,
hypothalamus, and pituitary, manifesting as an overall systematic
growth defect.

2.1.5 OTX1 (Orthodenticle homeobox 1) and
OTX2

OTX1 and OTX2 belong to the PRD class of homeobox genes
and are the human orthologs of the Drosophila orthodenticle

(otd) gene, which regulates anterior patterning as well as brain
and eye development (Leung et al., 2022). Studies in mice have
shown that Otx2 is essential for the early specification of the
rostral neuroectoderm, Otx1 for corticogenesis, and both for
sensory organ development (Simeone, 1998). During early mouse
embryogenesis (gastrulation), Otx2 is expressed in the anterior
visceral endoderm and prechordal mesendoderm, which emit
signals for early specification and patterning of the neural plate,
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as well as in the epiblast and anterior neuroectoderm, which
respond to these instructing signals (Simeone, 1998; Acampora
et al., 1999). Otx2-/- null mutant mice are early embryonic lethal
and display major abnormalities in their body plan and the absence
of the rostral neuroectoderm that normally gives rise to forebrain,
midbrain, and rostral hindbrain (Acampora et al., 1995; Matsuo
et al., 1995; Ang et al., 1996; Simeone, 1998). On the other
hand, Otx1 expression is first detected at the 1–3 somite stage
in the forebrain and midbrain neuroepithelium (Simeone, 1998;
Acampora et al., 1999). Its expression in the dorsal telencephalon
is restricted to the VZ (where the proliferative, self-renewing, and
multipotent neuroepithelial precursors reside) in the earlier stage
(Figure 3) but at the end of gestation, it becomes prominent in
the cortical plate consisting of layer 5 and 6 neurons, while the
VZ expression becomes weaker. Otx1-/- null mutant mice mostly
die at birth, although 30% survive to weaning age and even into
adulthood when on specific genetic backgrounds (Acampora et al.,
1996; Suda et al., 1996). The adult null mice that survive have severe
morphological anomalies in the eyes, inner ears, pituitary gland,
and brain. The weight and size of the brain are reduced; the dorsal
telencephalic cortex shows a significant reduction in thickness and
cell number, particularly in the temporal and perirhinal cortex, and
the cortical lamination is disorganized. These mice also develop
spontaneous seizures (Acampora et al., 1996).

These phenotypes in murine models are consistent with
those in human patients carrying OTX1 or OTX2 variants. In
humans, OTX1 is localized on chromosome 2p15 and OTX2 on
14q22.3. Mutations in OTX1, including chromosomal deletions
encompassing OTX1, cause developmental delay, short stature,
autistic behavior, dysmorphic features, and microcephaly (Liang
et al., 2009). For example, one female with the 2p15-16.1 deletion
was reported to have all the above-mentioned features, including
microcephaly (Liang et al., 2009). In another study, six out of
seven patients with variable chromosomal deletion (OTX1 being
the only gene deleted in every case) showed genitourinary defects,
and two of these six had microcephaly (Jorgez et al., 2014).
Similarly, mutations in OTX2 have been described in patients
with eye defects, variable congenital hypopituitarism, and one
individual with microcephaly (Gregory et al., 2021). Despite the
low prevalence of microcephaly in patients with OTX1 or OTX2
variants, it is worth focusing on theseOTX genes as potential causal
genes for microcephaly, given the severity of the brain phenotypes
observed in mice (Acampora et al., 1995; Matsuo et al., 1995; Ang
et al., 1996; Simeone, 1998).

2.1.6 PAX6 (Paired box 6)
PAX6 is a member of the PRD class of the homeobox gene

family and encodes one of the nine PAX transcription factors
identified in mammals (Leung et al., 2022). Its Drosophila homolog
eyeless is essential for segmentation, eye and brain development
(Noveen et al., 2000; Callaerts et al., 2001; Clements et al., 2009),
and in mammals, PAX6 is well known for its important role
in the development of the brain, spinal cord, eye, pancreas,
and pituitary (Walther and Gruss, 1991; Gehring, 1996). During
mouse embryonic development, Pax6 is expressed in the forebrain,
hindbrain, cerebellum, and spinal cord, as well as in the developing
eye, pituitary gland, and nasal epithelium (Walther and Gruss,

1991). In the forebrain, Pax6 is expressed in the proliferating
cells in the VZ of the dorsal telencephalon, as well as in the
pallial-subpallial boundary, but it is not present in the ventral
telencephalon (Figure 2) (Bishop et al., 2000; Hirata et al., 2002).

Pax6–/– null mice die at birth with the malformation in the
cerebral cortex, and Pax6+/– mice have thinner cortices with
small/reduced eyes (Hill et al., 1991; Tyas et al., 2003; Haubst
et al., 2004; Quinn et al., 2007; Mi et al., 2013). Conditional
Pax6 knockout mice with a specific deletion in cortical cells
(with Emx1-Cre) have reduced cortical size (Piñon et al., 2008).
Explaining these abnormal cortical phenotypes, PAX6 is thought
to control the cell cycle length, the transition from symmetrical
division to asymmetrical division, and the onset of expression
of neural-specific markers, thus regulating the balance between
neural progenitor cell proliferation and differentiation. During
early neurogenesis, the length of the cell cycle becomes shorter,
and the number of S-phase cells (undergoing proliferation) is
increased in Pax6 mutant mice than in the wild type (Estivill-
Torrus et al., 2002). Furthermore, the transition from symmetrical
(expanding progenitor pool) to asymmetrical (generating post-
mitotic cells) division is more rapid in the mutant. As cortical
development progresses (E15.5), the cell cycle length becomes
longer in the mutant mice. Therefore, the loss of Pax6 in mice
seems to cause depletion of progenitor cell populations in early
cortical development as a result of shortened cell length and a faster
transition to asymmetrical divisions. However, it should be noted
that the cell cycle length change was not detected in another Pax6
mutant mouse study, although this study found that cell cycle re-
entry was reduced (cell cycle exit increased) and the proportion of
differentiating neurons was increased (Quinn et al., 2007).

In humans, PAX6 is located on chromosome 11p13, and
its mutations can result in neurological disorders including
intellectual disability, autism, impaired audition, and eye defects,
as mostly seen in individuals with heterozygous mutations
(Malandrini et al., 2001; Davis et al., 2008). Cases with mutations
in both alleles of PAX6 (compound heterozygosity) showed severe
brain malformations with obvious microcephaly (Glaser et al.,
1994; Schmidt-Sidor et al., 2009; Solomon et al., 2009). In these
patients, increased germinal proliferation has been described,
which is consistent with Pax6 mutant mouse phenotype that
shows increased proliferation in early corticogenesis, which causes
depletion of the progenitor pools (Piñon et al., 2008), and
other cortical malformations such as polymicrogyria, heterotopia,
agenesis of the corpus callosum, holoprosencephaly, etc., as well
as defects in eye development (e.g., microphthalmia and aniridia)
(Schmidt-Sidor et al., 2009), In addition, 11p13 chromosomal
deletions, as well as duplications, encompassing PAX6 also lead
to microcephaly, suggesting that the right level of PAX6, not just
the presence of PAX6, is important for proper brain development,
although the potential contribution by other genes in the affected
chromosome cannot be ruled out.

2.2 Basic helix-loop-helix genes:MYCN and
TCF4

Basic helix-loop-helix (bHLH) superfamily genes contain two
highly conserved and functionally distinct domains: the “basic
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FIGURE 3

Expression patterns of the selected transcription factors in embryonic mouse brain. The mid-sagittal sections of E11.5 or E13.5 embryonic brains

showing RNA in situ hybridization results of N-Myc, Tcf4, Foxg1, Sox2, Sox3, Sox4, and Sox11, adapted from Allen Brain Atlas (https://

developingmouse.brain-map.org).

domain” at the N-terminus and the “HLH domain” at the C-
terminus (Jones, 2004; Murre, 2019). The basic domain binds
to DNA at a six-nucleotide consensus sequence (CANNTG)
called an E-box; different families of bHLH proteins recognize
different E-box consensus sequences (Murre et al., 1989). The HLH
domain facilitates protein–protein interactions, forming homo-
and hetero-dimeric complexes; many different combinations of
dimeric structures are possible with different binding affinities
(Fairman et al., 1993). These features of bHLH transcription
factors make it possible for them to regulate diverse developmental
functions through transcriptional regulation (Murre et al., 1989;
Fairman et al., 1993; Jones, 2004), including lineage specification,
commitment, self-renewal, proliferation, differentiation, and so

on (Murre, 2019). bHLH transcription factors can be grouped
into several classes based on expression patterns, DNA-binding
specificities, and dimerization selectivity (Murre, 2019). Among
them, two members,MYCN and TCF4, will be highlighted here for
their association with microcephaly.

2.2.1 MYCN (myelocytomatosis oncogene
neuroblastoma derived)

MYCN is a member of the MYC family of proto-oncogenes
and encodes one of the basic helix-loop-helix-zipper (bHLHZ)
classes of transcription factors, MYC-N (or N-MYC). The protein
forms sequence-specific DNA-binding heterodimers with the
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bHLHZ protein MAX (Facchini and Penn, 1998; Grandori
et al., 2000). The MYC family of proteins is known to be
involved in fundamental cellular processes, including proliferation,
differentiation, apoptosis, cell growth, and metabolism through
regulating target gene transcription. They regulate cell cycle
progression-related genes (e.g., CDK4, Cdc25A, cyclin D2, id2,
gas1, gadd45, p15Ink4b, and p21Cip1) (Galaktionov et al., 1996; Lee
et al., 1997; Marhin et al., 1997; Bouchard et al., 1999; Perez-Roger
et al., 1999; Hermeking et al., 2000; Lasorella et al., 2000; Gartel
et al., 2001; Staller et al., 2001), as well as genes controlling cell size
and growth, including ribosomal proteins, translation factors, and
metabolic enzymes (Rosenwald et al., 1993; Coller et al., 2000; Guo
et al., 2000; Boon et al., 2001; Schuhmacher et al., 2001).

N-Myc knockout mice are embryonically lethal at mid-
gestation (Charron et al., 1992; Stanton et al., 1992; Sawai et al.,
1993), and hypomorphic mutations show delayed lethality
(Moens et al., 1992, 1993). Conditional knockout mice targeting
neuronal progenitor cells display profound microcephaly with
small eyes (brain mass reduced 2-folds while body mass reduced
25%) (Knoepfler et al., 2002). In the cKO mouse brains, the
VZ thickness and the BrdU incorporation rate were notably
decreased, while the proportion of βTubulin III-positive cells (a
marker of differentiating and differentiated neurons) increased,
suggesting decreased proliferation and increased differentiation
(precocious) as the underlying cause of microcephaly
(Knoepfler et al., 2002).

In humans, MYCN is located on chromosome 2p24.3, and its
mutations (loss-of-function) are known to cause type I Feingold
syndrome (FS1), which is characterized by variable combinations of
microcephaly, limbmalformation/digit anomalies, intestinal atresia
(blockage/obstruction), and mild to moderate intellectual disability
(Courtens et al., 1997; Celli et al., 2003; Bokhoven et al., 2005).
Pathogenic variants of MYCN are found in ∼70% of the patients
with FS1; 60% are point mutations, and 10% are chromosomal
deletions encompassing the entire MYCN locus (Celli et al., 2000;
Blaumeiser et al., 2008; Chen et al., 2012; Atik et al., 2016; Tedesco
et al., 2021). Microcephaly has been reported in almost 90% of the
cases (Bokhoven et al., 2005; Marcelis et al., 2008), which is in line
with the small brain phenotype observed in N-Myc mutant mice
(Knoepfler et al., 2002).

2.2.2 TCF4 (transcription factor 4)
Another bHLH transcription factor gene, TCF4, is highly

expressed during brain development (Figure 3) (Jung et al., 2018).
This gene (TCF4, Gene ID: 6925) is often confused with the
transcription factor 7-like 2 gene (Gene ID: 6934, official gene
symbol: TCF7L2), which is downstream of the WNT pathway and
referred to as T-cell factor 4 and often mistakenly abbreviated
as TCF4. Haploinsufficiency of TCF4 is known to cause Pitt–
Hopkins syndrome, which is characterized by developmental
delays with severe intellectual disability, dysmorphic facial features,
and episodic hyperventilation and/or breath-holding while awake,
among other features. Microcephaly has been reported in up to
60% of Pitt–Hopkins syndrome (Zweier et al., 2008; Goodspeed
et al., 2017) and postnatal head growth defect in 26% (Winter
et al., 2016). TCF4 mutations in patients with Pitt–Hopkins

syndrome may be deletions, translocations, frameshift, nonsense,
or missense mutations (Sepp et al., 2012; Forrest et al.,
2014).

Some Tcf4 mouse models show Pitt–Hopkins syndrome-like
phenotypes, including deficits in social interaction and memory
as well as abnormal cortical development, neuronal migration,
and oligodendrocyte differentiation (Flora et al., 2007; Chen et al.,
2016; Kennedy et al., 2016; Thaxton et al., 2018; Li et al., 2019;
Wang et al., 2019; Mesman et al., 2020; Wedel et al., 2020).
However, mouse lines carrying heterozygous Tcf4 mutations,
which is a clinically more relevant state than homozygous
mutations, exhibit mild phenotypes only, without the severe
symptoms observed in patients (Papes et al., 2022). A recent
study using brain organoids derived from individuals with Pitt–
Hopkins syndrome carrying TCF4 mutations (Papes et al., 2022)
demonstrated that neural progenitors bearing these mutations
have reduced proliferation and impaired capacity to differentiate
into neurons (Papes et al., 2022), providing clear evidence for
the role of TCF4 in neural proliferation and differentiation and
ultimately microcephaly.

2.3 Forkhead box genes: FOXG1 and FOXR1

The forkhead box (FOX) family of transcription factors is
named after the ectopic head structures of the Drosophila mutants
harboring mutations in the forkhead (fkh) gene. Head involution
is blocked in mutant embryos, causing an alteration of the
head exoskeleton (called “forkhead”) (Jürgens and Weigel, 1988;
Weigel et al., 1989). Since the discovery of fkh in Drosophila

(Hannenhalli and Kaestner, 2009), hundreds of forkhead box genes
have been identified from yeasts to humans, and their roles in
cell proliferation and cell fate specification have been extensively
studied (Carlsson and Mahlapuu, 2002; Lehmann et al., 2003).
These transcription factors contain a core forkhead DNA-binding
domain (monomeric), which consists of three α-helices connected
to a pair of loops resembling butterfly wings or a “winged-helix”
(which is why forkhead genes are also called winged helix genes)
(Gajiwala and Burley, 2000). The forkhead domain contains ∼100
amino acids, sharing no similarity with the previously identified
DNA-binding motif (Gajiwala and Burley, 2000). Among several
FOX genes implicated in human brain development (FOXG1,
FOXC2, FOXL2, FOXP1, and FOXP2) (Lehmann et al., 2003;
Golson and Kaestner, 2016), FOXG1 and FOXR1will be highlighted
here for their roles in the pathogenesis of microcephaly.

2.3.1 FOXG1 (Forkhead box G1)
FOXG1 was originally named brain factor 1 (BF-1) when

it was identified as the Hepatocyte Nuclear Factor 3 (HNF-3)
homolog expressed in the developing rat forebrain (Tao and
Lai, 1992). Its alterations are known to significantly affect the
formation and function of the cerebral cortex (Hannenhalli and
Kaestner, 2009; Golson and Kaestner, 2016). In addition to its
highly conserved forkheadDNA-binding domain, FOXG1 contains
a mammalian-unique N-terminal domain (truncated in non-
mammalian vertebrate) and a C-terminal domain responsible for
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antagonizing the transforming growth factor β (TGF-β) pathway
(Hou et al., 2020).

It has been well established that FOXG1 is a master regulator
of brain development, controlling cell proliferation (Hanashima
et al., 2002), regional patterning (Hanashima et al., 2007; Miyoshi
and Fishell, 2012), cell migration (Miyoshi and Fishell, 2012), and
circuit assembly (Hanashima et al., 2002; Cargnin et al., 2018).
It is strongly expressed in the embryonic forebrain (Figure 3). Its
dysfunction leads to multiple congenital brain disorders, including
variants of Rett syndrome (FOXG1 syndrome), microcephaly,
infantile spasms, autism spectrum disorder, and schizophrenia, and
it is associated with various types of cancer (Wang et al., 2018; Hou
et al., 2020).

FOXG1’s role in brain size control has been revealed through
a Foxg1 knockout mouse model. Constitutive Foxg1 knockout
mice die at birth and present with a severe reduction in the
size of the cerebral hemispheres (agenesis of ventral and dorsal
telencephalon) (Xuan et al., 1995). Loss of FOXG1 function
leads to lengthening of the cell cycle (i.e., reduction in the rate
of proliferation) and an increase in cell cycle exit events (i.e.,
reduction in the fraction of cells that can continue to divide) (Xuan
et al., 1995; Hanashima et al., 2002). Premature onset of neuronal
differentiation, shown with MAP2 staining, was also detected in
Foxg1 KO mice (Xuan et al., 1995). These results indicate that
during normal development, FOXG1 promotes neural stem cell
proliferation and suppresses premature neuronal differentiation
(Xuan et al., 1995; Martynoga et al., 2005). Studies in cancer
models have demonstrated that overexpression of FOXG1 i)
inhibited the FOXO/SMAD pathway (which facilitates cortical
neuron differentiation), resulting in a reduction in both CDKN1A
(cyclin-dependent kinase inhibitor 1A) and cyclin B1 expression,
and ii) decreased the proportion of cells in the G2 phase (Wang
et al., 2018). Consequently, FOXG1 prevents the cell cycle exit
of neural stem cells and promotes stem cell pool expansion. In
contrast, FOXG1 knockdown has the opposite effect (Wang et al.,
2018).

In humans, haploinsufficiency of FOXG1 is associated with
microcephaly, complete agenesis of the corpus callosum, and
cognitive disability (Hou et al., 2020). Patients with FOXG1
mutations also exhibit features of Rett syndrome—a genetic
disorder primarily caused by MECP2 mutations—including
microcephaly, epilepsy, hyperkinetic movement, impaired
sleep patterns, and intellectual disability. However, due to
the significant differences in neurological phenotypes of the
underlying FOXG1 mutations (e.g., agenesis of the corpus
callosum, blunted gyrification, and reduction in white matter
volume in some cases) compared to MECP2-mediated Rett
syndrome, “FOXG1 syndrome” is now considered a distinct
disorder (Kortüm et al., 2011). Microcephaly is one of the three
core features of FOXG1 syndrome, along with agenesis of the
corpus callosum and delayed myelination. Patients presenting
with these core features have heterozygous variants of FOXG1

ranging from truncation, frameshift, missense, and nonsense
mutations to duplications in the 14q12 FOXG1 locus (Yeung et al.,
2009; Brunetti-Pierri et al., 2011; Seltzer et al., 2014), suggesting
the homozygous mutation state is likely lethal, as observed
in mice.

2.3.2 FOXR1 (Forkhead box R1)
FOXR1, also known as FOXN5 or DLNB13, is a highly

conserved FOX gene containing a forkhead DNA-binding domain.
It is expressed in all brain regions during embryonic and postnatal
development and also in the reproductive organs based on the
human brain transcriptome analysis (Mota et al., 2021). Consistent
with the human expression data, mouse Foxr1 mRNA is also
detected in the brain and other tissues (Mota et al., 2021). Although
little is known about its function, a study in zebrafish showed that
Foxr1 is an essential maternal effect gene required for proper cell
division and survival (Cheung et al., 2018). In agreement with
zebrafish findings, Foxr1 knockout mice showed a severe survival
deficit with embryonic lethality in somemice and progressive death
in surviving ones (∼34% of knockout mice survived to P0 and
23.5% to weaning age). The analysis of newborn mutant mice
found cortical thinning with enlarged ventricles (Mota et al., 2021).
Together, these results suggest that Foxr1 is required for survival
and normal cortical development.

Recently, a single de novomissense variant in FOXR1 (M280L)
in an individual with severe neurological symptoms, including
postnatal microcephaly, progressive brain atrophy, and global
developmental delay, has been reported (Mota et al., 2021). The
phenotypes described in this individual are consistent with those
detected in Foxr1 knockout mice, suggesting that FOXR1 would
be a responsible gene for the observed phenotypes, including
microcephaly; however, validation in additional cases is warranted
before drawing definitive conclusions.

It is well established that the FOX family of transcription factors
induces heat shock protein (HSP, chaperone proteins that prevent
protein misfolding) expression, thus providing cells with protective
machinery against environmental stressors. FOXR1 appears to
play this role as well, given that its most responsive target genes
are two members of the HSP70 family (HSPA1A and HSPA6)
and a mitochondrial reductase enzyme, DHRS2, each of which
plays a role in protective stress response (Mota et al., 2021). The
aforementioned M280L variant compromises FOXR1’s ability to
respond to cellular stressors. Interestingly, some of the upregulated
genes by FOXR1 overexpression are involved in ribosome
biogenesis (e.g., ribosome biogenesis regulator 1 and RRS1),
an essential driver in neurodevelopment, whose dysregulation
is associated with microcephaly and other neurodevelopmental
syndromes (Hetman and Slomnicki, 2019). It is possible that
during normal development, FOXR1 plays a role in protecting
against proteotoxic stress during ribosome assembly—an energy-
demanding process that, if disrupted, can lead to proteotoxic
stress in cells (Albert et al., 2019), but further investigations
are warranted to unravel the mechanisms underlying FOXR1-
associated microcephaly.

2.4 SRY-related high mobility group box
genes: SOX2, SOX3, SOX4, and SOX11

The SOX (sex-determining region Y-related high mobility
group box) gene family members encode SOX transcription
factors, which belong to the HMG (high mobility group) box
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superfamily of DNA-binding proteins (Stevanovic et al., 2021).
They were first identified based on their high acidic and basic
amino acid content and high mobility during polyacrylamide gel
electrophoresis (Goodwin et al., 1973). HMG box is a conserved
domain in HMG proteins and is responsible for DNA-binding
activity. While all HMG family members share a similar HMG
box that recognizes DNA structure without apparent sequence
specificity, only SOX (and TCF) proteins carry HMG boxes with
sequence-specific DNA-binding ability, and they are considered
non-canonical HMG proteins (Bustin, 2001).

Based on the structure, expression profiles, and similarity
between the proteins they encode, SOX gene family members
can be divided into eight groups (A to H), with group B further
divided into B1 and B2 (Stevanovic et al., 2021). Within the same
group, SOX proteins have an overall high degree of homology, both
within and outside the HMG domain, and they have functional
redundancy. In contrast, SOX proteins from different groups show
poor amino acid sequence homology, especially outside of the
HMG domain, and do not show functional redundancy (Wegner,
1999; Bowles et al., 2000). In this study, I will focus on two
members of the SOXB1 group (SOX2 and SOX3) and twomembers
of the SOXC group (SOX4 and SOX11) for their associations
with microcephaly.

2.4.1 SOX2 and SOX3

SOX2 and SOX3 belong to the SOXB1 group (together with
SOX1) and were first identified in the screen for homologous genes
to the sex-determining gene Sry, which contains an HMG box
domain (Gubbay et al., 1990). At the neural induction stage, Sox2
and Sox3 are expressed prominently in the neuroectodermal cells,
and when neurogenesis begins, it becomes restricted to the VZ,
where the proliferative neuroepithelial precursors reside (Figure 3)
(Collignon et al., 1996; Guth and Wegner, 2008). At later stages
of brain development, their expression is restricted to distinct
subsets of mature neurons (e.g., GABAergic neurons in the cortex,
striatum, and thalamus) (Cavallaro et al., 2008). Overlapping
expression patterns between Sox1, Sox2, and Sox3 appear to suggest
a redundant role during CNS development (Uwanogho et al., 1995).

Studies with targeted null mice have demonstrated that Sox2
functions in the maintenance of the early pluripotent stem cells
of the epiblast (Avilion et al., 2003) as well as neural stem
cells and their differentiation into neurons in the brain and
eye (Pevny and Placzek, 2005). It is also well known for its
ability to re-establish pluripotency in terminally differentiated
cells by reprogramming them into induced pluripotent stem cells
(Takahashi and Yamanaka, 2006). For Sox3, when mouse ES cells
targeted with Sox3 null mutations were injected into blastocysts, the
chimeras showed early lethality due to a gastrulation defect (Rizzoti
et al., 2004). Although one-third of the Sox3 conditional knockouts
were normal, some exhibited lethality around weaning age with
craniofacial defects, reduced size, and decreased fertility (Rizzoti
et al., 2004). The analyses of these mice demonstrated that Sox3
is required for normal pituitary function and the formation of the
hypothalamic-pituitary axis. In ovo electroporation of the fusion
protein between Sox3 HMG domain and VP16 (transcription
activation domain of the viral protein VP16) (HMG-VP16) or EnR

(transcription repression domain of the D. melanogaster Engrailed
protein) (HMG-EnR) into chick embryos revealed that SOX3 is
necessary for the formation of neuroectoderm, maintenance of the
neural progenitor state, and suppression of neuronal differentiation
(Bylund et al., 2003; Schneider et al., 2009). Furthermore, it has
been shown that the downregulation of Sox1, Sox2, and Sox3 gene
expression by the proneural gene (Neurogenin 2) is essential for
neuronal differentiation (Bylund et al., 2003).

In humans, individuals carrying heterozygous loss-of-
function mutations in SOX2 mainly have ocular phenotypes
(anophthalmia/microphthalmia), but some patients also present
with microcephaly and other variable phenotypes, including
hippocampal abnormalities, epilepsy, and motor problems,
as well as dysmorphic facial features and genital anomalies
(Fantes et al., 2003; Sisodiya et al., 2006; Schneider et al., 2009;
Blackburn et al., 2018). The variability in phenotypes points to
the complex interactions of SOX2 with other genetic factors,
which affect the outcome of SOX2 deficiency in different ways.
Similarly, SOX3 genetic variants have been reported to result
in microcephaly with variable penetrance (Jelsig et al., 2018),
in addition to hypopituitarism (ranging from isolated growth
hormone deficiency to panhypopituitarism), intellectual disability,
neural tube defects, and craniofacial abnormalities (Rizzoti et al.,
2004; Arya et al., 2020). Notably, the most common mutations
identified are duplications or deletions of the whole or part of
SOX3, with very few examples of point mutations (Jelsig et al.,
2018; Li et al., 2022). The microcephaly in some patients with SOX3
mutations may be the result of growth hormone deficiency due to
hypopituitarism as well as neurogenesis defects.

2.4.2 SOX4 and SOX11

SOX4 and SOX11 belong to the SOXC transcription factor
subfamily of genes that are necessary for the survival of neural
precursor cells (Bhattaram et al., 2010) and the establishment of
their neuronal properties (Bhattaram et al., 2010). In contrast
to SOXB1s (SOX1-3), which are expressed in neural precursor
cells, SOXC transcripts and proteins (SOX4, SOX11, and SOX12)
are mostly expressed in neural cells committed to neuronal
differentiation as well as uncommitted precursors (Figure 3)
(Hargrave et al., 1997; Kuhlbrodt et al., 1998; Dy et al., 2008).
The loss of either Sox4 or Sox11 leads to embryonic or postnatal
lethality and many other developmental disturbances, although
the nervous system defects are not as severe, likely due to their
functional redundancy (Schilham et al., 1996; Cheung et al., 2000;
Sock et al., 2004; Hoser et al., 2008). Sox11 conditional knockout
mice have reduced body size and small brains with reduced cortical
thickness noted as early as E11.5 and persisting to birth (Sock
et al., 2004; Wang et al., 2013). Forced expression of SOX11 results
in premature induction of neuronal markers, while its deficiency
induces apoptosis in the developing nervous system (Bergsland
et al., 2006; Bhattaram et al., 2010; Thein et al., 2010). Mice
engineered to be conditionally mutant for both Sox4 and Sox11

die at birth with microcephaly and an ear phenotype (Gnedeva and
Hudspeth, 2015).

In humans, SOX4 and SOX11 heterozygous variants have
been described in patients with neurodevelopmental syndromes,
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mild dysmorphisms, and other variable anomalies (Tsurusaki
et al., 2014; Hempel et al., 2016; Zawerton et al., 2019; Wakim
et al., 2020). The disease phenotypes caused by these two genes
are similar, which is consistent with findings in animal models,
demonstrating SOX4 and SOX11 are co-expressed in various
progenitor cell types and have additive or redundant roles in
many developing organs including the brain, skeleton, heart,
and eye (Angelozzi et al., 2022). SOX4- and SOX11-related
syndromes often share some common features with Coffin–
Siris syndrome, which is characterized by abnormal head size
(microcephaly or macrocephaly) with characteristic facial features,
digits, and eye abnormalities (Angelozzi et al., 2022). Coffin–
Siris syndrome is also called “BAFopathy” because its causal
genes encode chromatin modeling BAF complex components (e.g.,
ARID1B and SMARCB1) (Vasko et al., 2021). SOX4 and SOX11

are BAF-complex targets (Feng et al., 2013), which accounts for
why SOX4- and SOX11-related syndromes are similar to Coffin–
Siris syndrome (Angelozzi et al., 2022). As in other SOX gene-
associated brain size defects, the microcephaly phenotype observed
in individuals with SOX4 or SOX11 variants has low penetrance,
suggesting a complex interplay between SOX genes and other
unidentified genes that variably affect the consequences of the SOX
gene deficiency.

2.5 Zinc finger genes: ZNF238 and ZNF 335

Zinc finger proteins (ZNFs) contain a zinc finger domain
that can interact with DNA, RNA, PAR (poly-ADP-ribose),
and other proteins and are involved in a wide range of
cellular processes such as transcriptional regulation, ubiquitin-
mediated protein degradation, signal transduction, actin targeting,
DNA repair, and cell migration, among others (Cassandri
et al., 2017). In this review, only those with transcriptional
activity will be focused on, especially the ones associated
with microcephaly.

Zinc finger transcription factors constitute the largest family
of transcription factors in the human genome. The zinc finger
structure is maintained by the zinc ion, which coordinates
cysteine (C) and histidine (H) in different combinations (e.g.,
classical zinc finger has C2H2; non-classical zinc fingers have C2-
HC, C2-CH, and C2-C2) (Cassandri et al., 2017). Furthermore,
zinc finger motifs can be classified into several different types
based on their main-chain conformation and secondary structure
around their zinc-binding sites (Krishna et al., 2003; Jen and
Wang, 2016). In addition to these zinc motifs, zinc finger
transcription factors contain several domains that play different
roles in cellular processes, including BTB (Broad-Complex, Tram
tracks, and Bric-a-brac), also known as the POZ (poxvirus zinc
finger) domain, KRAB (Kruppel-Associated Box) domain, SET
domain and SCAN (SRE-ZBP, CTfin51, AW-1, and Number 18
cDNA) domain (Jen and Wang, 2016). Due to the diversity
of zinc finger motifs and these additional domains, zinc finger
transcription factors can play dynamic roles in gene regulation
under various cellular environments and extracellular stimuli. In
this study, two zinc finger proteins, ZNF238 and ZNF338, will
be highlighted.

2.5.1 ZNF238 (Zinc finger protein, also known as
RP58 or ZBTB18)

ZNF238, also known as RP58 encodes a highly conserved
(95% homology in the amino acid sequences between humans
and mice) transcription factor containing four zinc finger
domains (responsible for DNA binding) and a BTB/POZ domain
(multifaceted protein–protein interaction motif) (Aoki et al.,
1998; Tatard et al., 2010). Deletion of the distal arm of human
chromosome-1q, termed “1qter deletion,” “1q4 deletion,” or
“terminal 1q deletion”, is linked to microcephaly with agenesis of
the corpus callosum (Boland et al., 2007; Hill et al., 2007; Bon
et al., 2008), and the patients carrying this deletion have severe
intellectual disability and short stature with profound growth
defects (Khadija et al., 2022). A critical region contains a handful
of genes, including ZNF238 (Boland et al., 2007; Hill et al., 2007;
Bon et al., 2008; Orellana et al., 2010).

During early mouse cortical development (E12.5), Znf238

expression is detected in a subset of cells in the VZ as well as
in the developing neurons in the preplate. At E16.5, while its
expression persists in some cells in the VZ, it is also detected in
the cortical plate (CP), intermediate zone (IZ), and subventricular
zone (SVZ), but not in the marginal zone (MZ). Double-labeling
studies with PAX6 and TBR2 showed that the onset of ZNF238
expression coincides with the transition from PAX6-positive cells
(radial glial progenitor cells) to TBR2-positive cells (intermediate
progenitor cells), the initial stage of intermediate progenitor cells
(Okado et al., 2009). Constitutive Znf238 knockout mice die at
birth and show dysplasia of the neocortex and hippocampus,
a reduction in the number of cortical neurons, and abnormal
laminar organization (Okado et al., 2009). The increased cell
death in post-mitotic zones and the expansion of VZ/SVZ in the
knockout mice support that ZNF238 is required for the survival
and maturation of neurons (excitatory neurons in particular) in the
cortex (Okado et al., 2009). Conditional knockout mice with CNS-
specific loss exhibit profound postnatal microencephaly, agenesis
of the corpus callosum, and cerebellar hypoplasia, which resembles
the human phenotype of 1qter deletion syndrome (Xiang et al.,
2012), supporting ZNF238 as a critical, responsible gene for 1qter
deletion syndrome whose main features include microcephaly.
However, other genes in the deleted region may also contribute to
the microcephaly phenotype in 1qter deletion syndrome (Boland
et al., 2007; Hill et al., 2007; Bon et al., 2008; Orellana et al., 2010).

2.5.2 ZNF335 (Zinc finger protein 335, also known
as NIF1)

ZNF335 (NIF1) encodes a nuclear zinc finger protein known as
a coregulator of nuclear hormone signaling and part of the H3K4
methyltransferase complex (Garapaty et al., 2009). Autosomal
recessive primary microcephaly 10 (MCPH10) is caused by a
homozygous or compound heterozygous mutation in this gene
on chromosome 20q13 (Jayaraman et al., 2018; Lim and Golden,
2020). It is essential for methylation and expression of brain-
specific genes, and one of the critical downstream genes of ZNF335
is the master progenitor regulator REST/NRSF [repressor element
1 (RE1)-silencing transcription factor (REST)/neuron-restrictive
silencer factor (NRSF)] (Yang et al., 2012). ZNF335 mutations
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were first identified in a large consanguineous Arab Israeli family
where seven individuals presented with one of the most severe
microcephalies reported (9 SD below mean) and death in all except
one (Yang et al., 2012). Extremely small brain size with severely
simplified gyrification was revealed by MRI, and histopathological
analyses demonstrated a thinned cerebral cortex and neuronal
disorganization, with only∼20% of the cortex showing the normal
six cortical layers (Yang et al., 2012).

In agreement with findings in humans, Znf335 null mutant
mice also show embryonic lethality as early as E7.5, and
conditional KO leads to severely reduced cortical size and
abnormal cortical layers (Yang et al., 2012). Knockdown of
ZNF335 disrupts progenitor cell proliferation (premature cell cycle
exit causing precocious depletion of the progenitor pool), cell
fate determination, and neuronal differentiation, indicating that
ZNF335 is essential for these processes (Yang et al., 2012).

3 Discussion/conclusion

In this review, selected transcription factors that are associated
with microcephaly have been discussed and summarized. These
transcription factors contain unique amino acid domains or motifs
responsible for DNA binding (recognizing specific sequences or
structures) and protein–protein interactions. Genetic variants of
these transcription factors cause a spectrum of neurodevelopmental
conditions ranging from mild learning disabilities without obvious
structural abnormalities of the brain to severe brain malformations
(e.g., microcephaly, lissencephaly, and polymicrogyria) resulting in
lethality during early life.

In understanding the pathophysiologicmechanisms underlying
microcephaly, knockout mouse models have been useful.
Accumulating data suggest that transcription factors can control
brain growth and size by directly regulating the expression
of the target genes that act on cycle progression, cell cycle
exit, neurogenesis, or cell survival (e.g., Galaktionov et al.,
1996; Colasante et al., 2015). When target gene expression is
compromised due to mutations in transcription factors (e.g.,
ARX and PAX6), the most common consequences appear to
be either an abnormal increase or decrease in neural precursor
cell proliferation, and premature cell cycle exit (Estivill-Torrus
et al., 2002; Colasante et al., 2015). These defects can lead to
the depletion of the self-renewable stem cell populations or a
reduction in the number of neurons generated, eventually resulting
in microcephaly. In other cases, microcephaly seems to occur as a
secondary consequence of overall growth defects (due to growth
hormone deficiency, etc.), as observed in hypopituitarism or
hypothyroidism caused by mutations in some transcription factors
(e.g., NK2.1, OTX2, and SOX3). Furthermore, some transcription
factors (e.g., MYCN) regulate the genes important for cell size
and growth, such as ribosomal proteins, translation initiation or
elongation factors, and metabolic enzymes (Rosenwald et al., 1993;
Coller et al., 2000; Guo et al., 2000; Boon et al., 2001; Schuhmacher
et al., 2001).

Patients with microcephaly associated with the genetic variants
in these transcription factors often exhibit variable penetrance
in the severity of the phenotype and in other features co-
occurring, which seem to arise from specific types of genetic
variants. For instance, mutations causing premature termination

(e.g., deletions, nonsense mutations, and frameshift mutations) or
missense mutations in critical domains such as homeodomains
tend to give rise to a more severe microcephaly with higher
prevalence. Alternatively, it is also possible that these variabilities
could arise from the involvement of additional genetic interactors
that could affect the severity or prevalence of a transcription factor-
associated microcephaly (i.e., an unidentified mutation in another
gene in addition to the mutation in a given transcription factor).

The knowledge we have built from the studies of individual
transcription factors will further our effort to understand
brain development in a more systematic way, focusing on the
orchestration among all the transcription factors in transcriptional
networks. Given that most transcription factors (∼75%) work
as heterodimers (Walhout, 2006), it will be important to
map out interactions between transcription factors involved
in microcephaly and to delineate the consequences of their
interactions (e.g., changes in DNA-binding preference, changes
in DNA-binding affinity, and changes in activity mode between
transcriptional activation and repression). Furthermore, systematic
analysis and comparison of their target genes using transcriptome
analysis (by RNA-seq) and chromatin immunoprecipitation
followed by sequencing (ChIP-seq) will provide significant tools to
elucidate the role of the transcriptional network in the pathogenesis
of microcephaly.
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