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Introduction: Post-stroke dysphagia is common and associated with significant

morbidity and mortality, rendering bedside screening of significant clinical

importance. Using voice as a biomarker coupled with deep learning has the

potential to improve patient access to screening and mitigate the subjectivity

associated with detecting voice change, a component of several validated

screening protocols.

Methods: In this single-center study, we developed a proof-of-concept model

for automated dysphagia screening and evaluated the performance of this model

on training and testing cohorts. Patients were admitted to a comprehensive

stroke center, where primary English speakers could follow commands without

significant aphasia and participated on a rolling basis. The primary outcome was

classification either as a pass or fail equivalent using a dysphagia screening test

as a label. Voice data was recorded from patients who spoke a standardized set

of vowels, words, and sentences from the National Institute of Health Stroke

Scale. Seventy patients were recruited and 68 were included in the analysis, with

40 in training and 28 in testing cohorts, respectively. Speech from patients was

segmented into 1,579 audio clips, from which 6,655 Mel-spectrogram images

were computed and used as inputs for deep-learning models (DenseNet and

ConvNext, separately and together). Clip-level and participant-level swallowing

status predictions were obtained through a voting method.

Results: The models demonstrated clip-level dysphagia screening sensitivity of

71% and specificity of 77% (F1 = 0.73, AUC = 0.80 [95% CI: 0.78–0.82]). At the

participant level, the sensitivity and specificity were 89 and 79%, respectively

(F1 = 0.81, AUC = 0.91 [95% CI: 0.77–1.05]).
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Discussion: This study is the first to demonstrate the feasibility of applying

deep learning to classify vocalizations to detect post-stroke dysphagia. Our

findings suggest potential for enhancing dysphagia screening in clinical settings.

https://github.com/UofTNeurology/masa-open-source.
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Introduction

Stroke is among the top three leading causes of mortality
worldwide (Feigin et al., 2021). Acute stroke resulting in
hospitalization is a serious health event with often life-long
alteration of functional status (Singh and Hamdy, 2006). One of
the most common serious complications of stroke is dysphagia,
or swallowing dysfunction, which occurs in approximately 55% of
acute stroke patients (Singh and Hamdy, 2006). Dysphagia places
patients at increased risk of aspiration pneumonia which can be
fatal, thus screening of swallowing status and/or a formal speech
language pathologist assessment are commonplace as part of the
admission process to stroke centers. It is important to note the
distinction between screening tests and formal assessments, which
are deployed either in succession or independently depending
on a local stroke center protocol (Singh and Hamdy, 2006;
Cohen et al., 2016). Screening tests such as the Toronto Bedside
Swallowing Screening Test (TOR-BSST©) (Martino et al., 2009) can
be performed by course-trained operators of varying backgrounds,
whereas formal assessment of dysphagia is performed by a speech
language pathologist (SLP). Screening test certification requires
training time, coverage and/or resources including the cost of
training and licensure. Furthermore, permission to use a particular
screening tool may have its own associated resource burden.
Clinical availability of SLPs may also be limited due to high case
volumes and off-hours availability, often leading to reliance on
screening tests. In some hospitals, lack of immediate access to
an SLP to provide a swallowing assessment can result in patients
receiving NG tubes as a precautionary measure even in those who
would not otherwise receive such interventions for nutrition or
hydration purposes. An increased risk of infection and aspiration,
as well as increase in cost for patient care can manifest in
these scenarios; these in addition to patient intrinsic factors such
as overall health, oropharyngeal secretions, and feeding status.
Inability to easily access dysphagia screening also impacts patient
comfort, tolerance, and facilitation of early physiologic recovery.

In general, centers that use a screening test trigger an
SLP assessment when the screening result is a failure. Despite
these care pathways, many centers lack routine integration of
validated screening tests or quick access to SLPs, and thus robust
dysphagia screening has significant barriers. SLPs can diagnose
and prescribe various diet consistencies and textures and can
also, if indicated, perform a modified barium swallow and video
fluoroscopic swallowing study (VFSS). This is considered a gold-
standard of swallowing assessment, but it is not routinely deployed
as a screening test. VFSS requires access to trained personnel,

radioactive material (barium) and x-ray equipment. Validated
screening tests such as the TOR-BSST© have been compared to
the VFSS and have favorable characteristics from a screening test
perspective (Martino et al., 2009). Moreover, even VFSS by SLP
has an element of subjectivity and poor inter-rater reliability. This
same issue of subjectivity permeates screening tests that rely on
voice change. Furthermore, some screening tests that do not rely
on voice alone, require repeated trials of oral fluid intake. These also
often have a subjective component when it comes to voice change
with successive intake trials and pose execution challenges. This was
experienced during the COVID-19 pandemic in relation to both
staffing availability but also risk of aerosol generation (Fritz et al.,
2021). Voice change detected by audio alone could be used as an
assistive tool for screening tools that rely on voice quality change.

Use of voice change, including those associated with sustained
vowel sounds, have been used to screen for non-stroke dysphagia
(Ryu et al., 2004). Further studies have demonstrated differences
in extracted audio features between patients at risk of aspiration
versus those not at risk even prior to swallowing (Kang et al., 2018).
Additionally, the use of vocal recordings to detect pathologies
has gained increasing research interest in recent years as various
applications have been developed to automatically detect or
monitor pathologies such as Parkinson’s disease, and cognitive
impairment (Milling et al., 2022). This has opened the possibility
of voice as an adjunct biomarker in dysphagia screening. Taken
together, there is a quality gap, and hence a quality improvement
opportunity where machine learning algorithms, can be deployed
to reduce subjectivity and perform classification as part of
dysphagia screening.

In this study we assessed state-of-the-art deep-learning models
(ConvNext, DenseNet, and an ensemble) to screen for dysphagia
using vocal samples from post-stroke inpatients. An existing
commonly used dysphagia screening tool (TOR-BSST) was used to
label audio clips. Models were used to classify individual audio clips
from post-stroke inpatients, and individual audio clip scores were
aggregated to predict participant dysphagia screening status. This
deep learning approach aims to reduce subjectivity and improve
access to rapid dysphagia screening.

Methods

Participants

A total of 70 patients were recruited from the inpatient
neurovascular unit at Sunnybrook Health Sciences Center
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(comprehensive stroke center, Toronto, Canada). Patients were
enrolled from 13 June 2022 to 19 January 2023 (epoch 1) and 24
January to 4 March 2023 (epoch 2) for training and testing datasets,
respectively. Two patients, early in the study (study patients 7 and
9), had technical difficulties with their audio recordings resulting in
poor audio quality during the first data collection epoch and were
rejected, allowing for a total of 68 patient’s audio recordings to be
used (AB, HM, 94% inter-rater agreement of good audio quality,
see Supplementary Methods). All patients, as part of their routine
clinical care, were assessed using the Toronto Bedside Swallowing
Screening Test (TOR-BSST©), which involves baseline assessment
of voice change, as well as repetitive swallows and assessment
for dysphonia by a trained assessor (Martino et al., 2009). Our
center uses TOR-BSST©, and among 36 other screening tests in
a Cochrane review, TOR-BSST© is among the three identified
best performing tests, allowing this screening tool to be used for
our supervised learning model and pass or fail status to be the
training label (Kiekens and Tognonato, 2022). Overall, 27 patients
were designated as fails and 41 patients passed screening. Our
study included 40 patients (58.9% of total) in a training cohort
and 28 patients (41.1% of total) in the testing cohort. Note that
enrollment was on a rolling basis, across several sampling days,
and on those random days, enrollments occurred by sampling
successive admissions to the stroke unit that were within 72 h
of admission. All patients provided informed consent for data
collection and the study was approved by the research ethics
board at Sunnybrook Health Sciences Centre. Patients with recent
stroke admitted to the stroke unit who could speak English,
follow commands and whom did not have significant aphasia
precluding participation were included. Patients who did not
speak English, had a significant speech impairment (from other
medical/neurologic conditions), or were medically unstable were
excluded.

Data collection

Two categories of speech were recorded: (a) recordings of
the National Institutes of Health Stroke Scale (NIHSS) portions
involving speech, and (b) sustained vowel sounds (Figure 1A). The
NIHSS is a widely used, validated tool for assessing neurological
deficits in stroke patients, including tests of articulation, naming,
repetition, and comprehension with standardized sounds, words,
and sentences; we used the NIHSS to avoid bias in selecting
speech tests and given its wide use in stroke assessment (Lyden
et al., 1994; Appelros and Terént, 2004). In this study the
NIHSS language test was separated into three distinct categories
based on the type of speech: continuous speech, sentences, and
words (i.e., naming objects and repeating discrete words). During
segmentation these categories of speech were labeled separately for
further analysis. The second category of recordings were collected
by asking participants to vocalize each vowel sound (/a/, /e/, /i/,
/o/, and/u/) for a target duration of 3 s repeated three times each.
Prior work has demonstrated vowel sounds to be discriminative
for differentiating between swallowing abnormalities and closely
mirrors the articulation tasks of existing dysphagia screening
tools (Waito et al., 2011; Gerratt et al., 2016; Kang et al., 2018;
Moore et al., 2020). Sustained vowels were chosen since they

can be more easily administered in patients for whom English
is not their first language and require less vocal effort. Data was
collected on an encrypted iPhone 12 with a sampling rate of
44.1 kHz using the included Voice Recorder application with
a resolution of 16-bits. The phone was placed on the patient’s
bedside table approximately 10 cm from their mouth. Data was
collected on the inpatient stroke ward and background noise
was minimized (Supplementary Methods). If there were over-
head announcements during the recordings those vocalizations
were asked to be repeated from the patient. The recordings were
all done in a real-world setting, using an iPhone, encrypted,
loss-less audio, with no other interventions to alter real-world
recording conditions. This includes single and multi-patient rooms,
in the ED, ward, and neurovascular step-down/observation ICU
beds. Of note, investigators responsible for data collection/audio
segmentation (AB, HM, LP) and the final testing phase of the model
(RS) were blinded to each other’s efforts. Specifically, for most of the
training data (60% of recordings during epoch 1), and for all the
recordings acquired for model testing (epoch 2), the investigator
running the models (RS) was blinded to the label assignment and
raw audio files (see Supplementary Methods). Model training and
testing was done on the spectrogram images from the audio-data
(see below).

Data analysis

Data were first assessed for quality and then analyzed through
a 3-step data processing pipeline involving (1) segmentation,
(2) transformation, and (3) machine learning (Figure 1). Firstly,
prior to data segmentation, clips were independently evaluated
for quality (Supplementary Methods). Data was segmented
manually using Audacity© digital audio workstation software. Each
vocalization of interest (i.e., either a vowel sound, word, sentence,
or continuous speech) was segmented from the onset to the offset,
labeled accordingly, and exported to an audio file. A custom data
processing program was developed in Python (Supplementary
Methods) to load segmented audio files, pre-process the signal, and
convert them into Mel-spectrogram image representations. Given
the variability in a participant’s ability to sustain vocal production
for the full target duration, and large discrepancies in clip lengths
with diverse sound input types (i.e., words, vowels, and continuous
speech), a windowing approach was used to ensure uniform scaling
of resultant Mel-spectrogram images (Zhang et al., 2019; Khurana
et al., 2023). Audio clips were segmented into 0.5 s clips with 50%
overlap (Figure 1B). Clips shorter than 0.5 s were rejected, and
power thresholding was applied to all clip windows to ensure that
periods of silence were not used to train the classifier. A single audio
clip was first processed into windows. The average power contained
in these windows was then calculated and windows greater than
1.5 standard deviations lower than the mean window power were
rejected.

Next, all post-segmentation audio files for each participant were
transformed from time-series to corresponding Mel-spectrogram
images (Figure 1C). Within the realm of audio classification,
the decision to employ Mel-spectrograms as opposed to directly
using raw audio waveforms was both strategic and evidence-
based. Mel-spectrograms are notable for their ability to emulate

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1302132
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1302132 December 7, 2023 Time: 11:19 # 4

Saab et al. 10.3389/fnins.2023.1302132

FIGURE 1

Training and testing deep learning classifiers to distinguish audio recordings based on dysphagia status. (A) Audio clips were recorded from each
patient using a standardized assessment of vowels as well as words and sentences from the NIHSS language assessment, (B) and then segmented
into 0.5 s windows. (C) Each clip from a given patient was then converted to Mel-spectrogram images using either the RGB (shown here) or
three-channel approaches. Each Mel-spectrogram image was used as an input into the CNN (either DenseNet, ConvNext-Tiny or fusion networks)
which generated an output class along with an output probability for each clip. (D) The average of all clip level output probabilities per patient were
used to generate a final participant-level output class prediction.

the human ear’s non-linear perception of pitch and frequency,
making them especially powerful for tasks involving human speech
(Zhang et al., 2019; Khurana et al., 2023). This is particularly salient
in our study, as our ground truth anchors in evaluations by speech-
language therapists. The direct mapping of these Mel-spectrograms
to human auditory perception ensures that the patterns discerned
by our model are grounded in clinically significant features.

Mel-spectrogram images were generated using the Librosa
library resulting in images with the vertical axis representing Mel
frequency bands, horizontal axis representing time, and the color
intensity at each point indicating the magnitude of the spectral
content of that frequency and time (Schmoldt et al., 1975; Figure 2).
Mel-spectrograms were computed on each clip individually with
a hop length of 2,048 samples (hamming window), 512 Mels and
a minimum frequency of 20 Hz. Mel-spectrograms were then
converted into the power-domain (decibels) and outputted into an
image file (224 × 224).

Two types of Mel-spectrogram images were generated (detailed
in Supplementary Methods) to be used to train machine learning
classifiers separately. The first approach (“RGB Mel-spectrogram”)
used red-blue-green (RGB) images of Mel-spectrograms directly
as inputs to the machine learning classifiers. The choice to
use RGB Mel-spectrograms was influenced by the compatibility
with transfer learning models originally trained on RGB images
and the optimization of standard CNN architectures for RGB
data. The second approach (“Three-channel Mel-spectrogram”)
involved the depth-wise concatenations of three-monochrome
Mel-spectrograms with differing Fast Fourier Transform (FFT)
lengths (1,024, 2,048 and 4,096) to generate a composite image.
This approach has previously demonstrated superior performance
compared to RGB images in some applications (Palanisamy et al.,
2020).

Machine learning classifiers

The proposed approach relies on a type of Deep Neural
Network called a convolutional neural network (CNN) which
defines specialized spatial filters which allow more efficient
extraction of features in images during learning (Lecun and Bengio,
1995). Extensive prior work has demonstrated the effectiveness
of CNNs on other temporal and spatial data beyond images,
including audio classification (Hershey et al., 2017; Zhang et al.,
2019; Palanisamy et al., 2020; Dave and Srivastava, 2023; Khurana
et al., 2023). CNNs were trained using transfer learning to classify
Mel-spectrogram images based on TOR-BSST© screen status
(Figure 1C). Transfer learning is a ML technique wherein a model
is first trained on one task and then fine-tuned to solve a different
task (Schmoldt et al., 1975; Hershey et al., 2017; Zhang et al., 2019;
Ganaie et al., 2022; Dave and Srivastava, 2023). Large pre-trained
CNN models which have been computed on large image datasets
(e.g., ImageNet) have been shown to perform well in transfer
learning applications when applied to images generated from audio
files, even performing better than CNNs trained from scratch (i.e.,
with random weight initialization) (Palanisamy et al., 2020).

In this study, an ensemble method was implemented,
integrating multiple classifiers trained via transfer learning, each
utilizing different base models. This ensemble approach mitigates
model variance stemming from random parameter initialization,
thereby enhancing model robustness (Ganaie et al., 2022).
Specifically, unweighted averaging was adopted for aggregating
classifier outputs, a decision driven by the need for transparency
and interpretability in clinical AI applications (Shortliffe and
Sepúlveda, 2018). While alternative ensemble strategies, such
as weighted majority voting, might offer marginal accuracy
improvements by adjusting for the confidence level of individual
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FIGURE 2

Mel-spectrogram processing methods, comparing data processing pipelines between the standard RGB Mel-spectrogram approach (top) and
three-channel Mel-spectrogram (bottom) involving depth-wise concatenation of three separate Mel-spectrograms with different FFT lengths to
produce a single composite image.

FIGURE 3

Training and validation accuracy and loss curves for ConvNext-Tiny (left) and DenseNet-121 (right).

predictions, they introduce complexities that could obscure the
decision rationale (Kuncheva, 2014). In contrast, the chosen
method, though simpler, maintains clarity in the decision-making
process, a critical factor in healthcare settings. Importantly, a study
by Ju et al. (2018) affirms the robustness of unweighted averaging,
particularly when the base models exhibit similar performance
levels (Ganaie et al., 2022). An ensemble network using DenseNet-
121 and ConvNext-Tiny was developed. The architecture of each
of these networks provides unique advantages when used as an
ensemble. DenseNet uses a feed-forward connections between each
layer and each subsequent layer such that a given layer N has

N-1 inputs (Huang et al., 2016). This architecture allows for a
lower number of parameters, and results in improved feature
propagation. In applications that use computer vision for audio
signals, DenseNet has demonstrated state-of-the-art (SOTA) CNN
performance superior to Inception and ResNet (Palanisamy et al.,
2020). Based on prior work (Palanisamy et al., 2020), all pre-trained
layers were frozen until the last DenseNet block and the remaining
layers in the network were fine-tuned.

ConvNext is a CNN that aims to provide some of the
advantages of vision transformers. Though vision transformers
have achieved SOTA performance on the ImageNet dataset in
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recent years they present many challenges including significant
computational complexity, global rather than local attention,
and reliance on large datasets (with high risk of overfitting
when transfer learning is applied to smaller datasets) (Liu et al.,
2022). The ConvNext includes architecture improvements that are
inspired by vision transformers (ViTs) including larger kernel sizes,
a processing layer (“patchify stem”) akin to a ViT patchify layer,
and improved training techniques (Liu et al., 2022), resulting in
classification performance similar to ViTs but with much fewer
parameters. Based on training data results, all layers up to stage 3
were frozen and the remaining layers fine-tuned.

The configuration of the network architecture for both
DenseNet and ConvNext is detailed in the Supplementary
Methods. The last layer of each pre-trained network was removed
and replaced by a global average and dense layer with a single
sigmoid output. A dropout rate of 80% was used to prevent
overfitting. This was settled on through empiric testing on the
validation set to mitigate overfitting which is especially problematic
when utilizing transfer learning of large models to smaller datasets
(Srivastava et al., 2014). The ensemble classifier outputs a label
for each individual image, corresponding to a 0.5-s window of
the original audio clip. The output probabilities of all images
corresponding to a given audio clip were summed cumulatively
and averaged to give a resultant aggregate participant classification
(Figure 1D). A fixed decision boundary of 0.5 was used to classify
participants as either a fail (< 0.5) or a pass (≥ 0.5).

Model training and testing

The first 40 participants’ vocal samples were selected for the
training set (58.9% of total data) and the final 28 participants’ data
(41.1% of the total data) for the test set. A testing split of 20%
was used during the training phase. There was no overlap between
training and testing sets. The decision to segregate data based on the
order of participation rather than random sampling was deliberate.
This choice aims to simulate a real-world scenario where the model
is trained on existing data and is then required to generalize to new,
unseen participants. Thirty and forty-five epochs were used to train
ConvNext and DenseNet, respectively, with a learning rate of 1e-5
and a batch size of 32. A learning rate scheduler and early stopping
were used to mitigate overfitting (Figure 3). Given differences in
the number of parameters in each model, we used 55 and 30 target
epochs with patience of 7 and 10 for DenseNet and ConvNext-Tiny,
respectively, with validation loss as the early stopping parameter.

Results

The mean age of the patients was 69 years. Most patients
had ischemic stroke (76%), with 46% involving middle cerebral
artery, 18% brainstem, and 1.5% thalamic infarcts. Others had
approximately 9% multifocal infarcts, 3% cerebellar and 16%
intracerebral hemorrhage (ICH). Within the training and testing
cohort, demographics between TOR-BSST© pass and fails were
compared (two-sample t-test for continuous data, Chi-squared test
for frequency data). There were no differences between pass and
fail patients in both cohorts except for higher NIHSS in patients

who failed (Table 1); lower NIHSS was associated with a pass status
as expected. Comparing training and testing cohorts there was no
difference in baseline demographics (Supplementary Table 1) in a
similar manner.

The training and test performance of the classifiers on both clip
and participant levels are shown in Tables 2, 3. The performance
metrics shown are sensitivity (recall), specificity, precision, F1
score, and area under the receiver operator curve (AUC). At the
audio clip-level, DenseNet-121 demonstrated a sensitivity of 0.77,
a specificity of 0.69, a precision of 0.56, an F1 score of 0.70, and
an AUC of 0.79 [95% CI: 0.77, 0.81]. The ConvNext-Tiny model
produced a sensitivity of 0.63, a specificity of 0.77, a precision of
0.58, an F1 score of 0.63, and an AUC of 0.78 [95% CI: 0.76, 0.80].
The ensemble fusion model, amalgamating DenseNet-121 and
ConvNext-Tiny models, achieved a sensitivity of 0.71, a specificity
of 0.77, a precision of 0.62, an F1 score of 0.73, and an AUC of 0.80
[95% CI: 0.78, 0.82] (see Supplementary Table 1 and Figure 4).

TABLE 1 Demographic characteristics of pass and fail patients within
training and testing patient cohorts.

Training cohort

Screening
FAIL

Screening
PASS

p-value

N 18 22

Mean age, years (SD) 69 (17) 67 (16) 0.72

Female, n (%) 6 (38%) 12 (55%) 0.21

Mean NIHSS (SD) 9 (6) 4 (6) 0.010

Stroke type (%) 0.11

Ischemic MCA 44% 59%

Ischemic lacunar 22% 14%

Ischemic multifocal 6% 23%

ICH 22% 0

CVST 0 0

Other 6% 4%

Testing cohort

N 10 18

Mean age, years (SD) 73 (18) 65 (16) 0.28

Female, n (%) 3 (30%) 12 (67%) 0.19

Mean NIHSS (SD) 6 (6) 2 (1) 0.001

Stroke type (%) 0.65

Ischemic MCA 40% 44%

Ischemic lacunar 40% 22%

Ischemic multifocal 0 6%

ICH 20% 22%

CVST 0 6%

Other 0 0

Comparing within training and testing cohorts (two-sample t-test for continuous data, Chi-
squared test for frequency data), there was no differences between pass and fail patients
in both cohorts except for higher NIHSS in patients who failed. P-values for subtypes
individually not computed as small subtype n-values. NIHSS, National Institute of Health
Stroke Scale; CVST, cerebral venous sinus thrombosis; ICH, intracranial hemorrhage; MCA,
middle cerebral artery.
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Participants were classified based on the cumulative sum of
output scores of each individual clip. At the participant level
(Table 3), DenseNet-121 achieved a sensitivity of 0.89, a specificity
of 0.79, a precision of 0.67, an F1 score of 0.81, and an AUC of
0.89 [95% CI: 0.74–1.04]. In contrast, the ConvNext-Tiny model
delivered a sensitivity of 0.78, a specificity of 0.89, a precision of
0.78, an F1 score of 0.84, and an AUC of 0.911 [95% CI: 0.77–
1.05]. Again, the fusion model showed a sensitivity of 0.89, a
specificity of 0.79, a precision of 0.67, an F1 score of 0.81, and
achieved the highest AUC of 0.912 [95% CI: 0.77–1.05] (Hanley
and McNeil, 1982). We have included the third decimal place to
show marginal difference between the two approaches. Confidence
interval calculations are detailed in the Supplementary Methods
section.

Using three-channel Mel-spectrograms instead produced
slightly worse performance than RGB Mel-spectrograms, as
detailed in Table 2 (clip-level performance) and Table 3 (patient-
level performance). While the RGB representation offered certain
benefits due to compatibility with transfer learning and standard
CNN architectures, the overall advantage over the three-channel
representation was observed to be marginal. Nonetheless, both
methods produced comparable performance, indicating that either
representation could be employed based on specific application
needs.

Finally, the contribution of vowels to classification performance
was also studied by comparing the results of vowels alone to vowels
plus the speech components of the NIH. At the participant level, the
additional information provided by the NIH speech components
provided a significant increase in performance (Table 4).

Discussion

The findings of our study support the use of deep learning,
specifically convolutional neural networks employing transfer
learning, as a tool for screening post-stroke dysphagia using
real-world speech audio recordings. By leveraging established
neural network architectures and ensemble methods, our approach
achieved robust performance demonstrating its potential use as a
non-invasive, time-efficient, and scalable screening tool in clinical
settings. We hope that this tool can be used as an assistive
technology (for example deployed on a mobile device), to aid any
provider in performing a bedside swallow screening test. It also
naturally lends itself to telehealth applications or other remote
uses especially considering challenges introduced by the COVID-
19 pandemic. Our proof-of-concept study supports the notion
that this technology can be deployed in an assistive capacity to
screen patients in low-resource settings constrained by person-
power, off-hours access, or other challenges accessing screening
services. Our models leveraged state-of-the-art CNN architectures
(DenseNet-121 and ConvNext-Tiny), as well as a simple ensemble
fusion approach to integrate the results of these architectures and
improve classification performance. The fusion model’s results
are promising, achieving a sensitivity of 0.89, specificity of 0.79,
F1 score of 0.81, and an AUC of 0.91 when evaluated at the
patient level, demonstrating compelling proof-of-concept results.
This gain in performance is marginal relative to single models
at the participant level, however, difference in AUC at the clip
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level suggests that the fusion approach would perform better
when applied to a larger number of participants. Furthermore, the
utilization of audio data, as opposed to other modalities allows
for a less invasive collection method and integration into passive
monitoring systems.

Prior approaches for classifying audio data predominantly
employed classical statistical methods that necessitate the explicit
extraction of signal features. While such methods are effective
in specific scenarios, their application to voice-based dysphagia
detection is constrained by the need for a priori knowledge
of pathology-related acoustic features. These feature-centric
methodologies have been utilized either in isolation or in
conjunction with clinical variables for dysphagia identification
(Roldan-Vasco et al., 2021; Park et al., 2022). Using a deep learning
framework allows for reduced reliance on feature engineering
and thus supports classification based on more complex signal
characteristics using raw or minimally processed data. Some
deep learning approaches have already demonstrated success in
classifying speech into various classes such as identifying speakers
by gender, accent, or other attributes (Khalifa et al., 2020; Wilhelm
et al., 2020). Automatic dysphagia detection has also been studied
using accelerometers or microphones attached directly to a patient’s
neck to record swallowing sounds (Khalifa et al., 2020; O’Brien
et al., 2021). Additionally, CNNs have been used extensively for
audio classification using audio signals converted into images in
fields outside of medicine (Hershey et al., 2017; Zhang et al., 2019;
Palanisamy et al., 2020; Dave and Srivastava, 2023; Khurana et al.,
2023).

Our deep learning approach produced results that are
biologically plausible in that our model’s performance is within
a range of reasonable expected values considering the limits of
the studied population of patients. The underlying physiology
of detecting dysphagia is quite complex, and thus no model or
approach can be perfect for all populations. This is reflected
in the current landscape of screening tests that have subjective
interpretation and varied receiver-operator characteristics (Kiekens
and Tognonato, 2022). With that said, our proof-of-concept
study using deep learning suggests that with larger more diverse
datasets this approach can converge to, or exceed, human operator
performance with reduced subjectivity and variability. Our work,
and indeed all established screening tests, are applicable only to
patients with mild-to-moderate stroke as it requires a minimum
awareness/consciousness and ability to follow some commands. In
our case, the pass group expectantly had lower NIHSS scores.

Our study has several limitations, including a small dataset
size, which can potentially introduce overfitting and limit the
generalizability of our models. We did use real-world audio
data gathered in clinical settings, which does improve certain
aspects of generalizability and adoption by other centers; our
code is also open source to facilitate wider use.1 We additionally
attempted to address generalizability concerns by implementing
robust model evaluation strategies, including early stopping during
model training and using chronologically separated training and
test datasets to mimic real-world multi-cohort testing. In future
work, larger datasets, including non-English speakers, patients

1 https://github.com/UofTNeurology/masa-open-source
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FIGURE 4

Confusion matrices for fusion model applied at the clip-level on training set (left) and test set (right).

TABLE 4 Participant-level performance using RGB Mel-spectrograms and only vowel sounds as inputs yielded reduced performance compared to
using all recorded voice sounds.

RGB Mel-spectrogram (vowels only)

Sensitivity
(recall)

Specificity Precision F1 score rage AUC [95% CI]

DenseNet-121 0.67 0.79 0.6 0.72 0.79 [0.44, 1.14]

ConvNext-Tiny 0.67 0.79 0.6 0.72 0.78 [0.39, 1.17]

Fusion 0.67 0.79 0.6 0.72 0.79 [0.42, 1.16]

CI, confidence interval, please note max. AUC value is 1.0, computed numerically has upper bounds larger than this value and is listed herein to show the calculation result.

with accents, dental prosthesis, and other diverse populations will
further expand generalizability.

Data-augmentation techniques in the audio domain such as
time stretching, pitch shifting, or background noise injection could
also be used to supplement our smaller dataset, however, this
approach was not considered in this application given concerns
about reduced explainability. However, the overlapping windows
used to segment audio into spectrograms can be thought of as
a type of cropping-based augmentation technique that maintains
the integrity of the frequency-domain. Mel-spectrogram domain
augmentation has also demonstrated promise in speech and
acoustic scene classification and could be considered in future
work (Wang et al., 2019). Additionally, input analysis should
be explored in future work to determine the effects of varying
recording conditions on model performance.

In this study we attempted to reduce the subjectivity involved
with recognizing voice changes in dysphagia screening by
developing a screening discriminator using TOR-BSST© “pass”
or “fail” labels for the audio recordings as video fluoroscopy is
not available for most patients. This is a limitation of our study,
however, TOR-BSST© has been characterized as having excellent
receiver operating characteristics that render it a good screening
discriminator in a population assessed by VFSS, and in comparison,
to many other screening tests (Kiekens and Tognonato, 2022).
Our choice of labeling places this feasibility study as an assistive

technology for care-providers and one that does not fully replace
clinical judgment when coupled with bedside assessment (Liu et al.,
2022). Furthermore, even in the setting of video assessment, there
can be discordance between SLP reviewers reflecting the underlying
physiological complexity of dysphagia.

Another consideration pertains to the manual segmentation
of the audio data. Recognizing the potential scalability challenges
associated with manual processing, we acknowledge the utility of
automated segmentation techniques in streamlining the process.
Nevertheless, the primary intent of this study was to establish the
foundational feasibility of discriminating between dysphagia and
non-dysphagia states via audio biomarkers. The manual approach
was adopted considering challenges encountered in our real-
world data collection environment (in hospital) and the occasional
capture of the study data collector’s voice in the recordings.
Moving forward, as this approach is further refined, automated
segmentation with its promise for increased scalability will certainly
be an area of focus and exploration.

Although screening tools generally exhibit good sensitivity and
specificity, stroke patients commonly have a non-linear clinical
course that can result in a fluctuating swallowing status. We utilized
the most up-to-date swallowing screening result as a label for our
data. This property is inherent to stroke physiology (at least in
mild to moderate stroke), as there is a degree of spontaneous
improvement over the course of several days. We attempted to
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mitigate this by assessing patients early in their clinical course.
In the future, rapid ML-based clinical screening tools may allow
fast serial assessments of dysphagia evolution and not simply one-
time snapshots.

A further limitation we recognize are the challenges associated
with applying CNNs, originally trained on image datasets, to
spectrograms. This is due to the fundamental differences between
these two types of data. Unlike images, spectrograms operate
within unique parameter spaces, characterized by axes of frequency,
time, and power. Furthermore, the non-local spectral properties
of sound, and the inherent temporal nature of sound as noted by
Hershey et al. (2017), Zhang et al. (2019), Palanisamy et al. (2020),
Park et al. (2022), Dave and Srivastava (2023), add to this limitation.
Nonetheless, CNNs are extensively used for analysis of audio
signals and our findings and AUC measurements are congruent
with these known limitations. We recognize the inherent variability
and limitations that exist with real-world patient data, CNNs, and
their ability to classify a physiologically complex pathology such as
dysphagia.

Conclusion

Our study demonstrates the feasibility of deep learning as an
effective application for the screening of post-stroke dysphagia
from vocalizations alone. This approach offers an avenue for
the development of future non-invasive, less subjective, and
rapid screening tools for dysphagia. This could contribute to
improved patient management, outcomes, and democratization of
swallowing screening.
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