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Objective: As the frontoparietal network underlies recovery from coma, a limited 
frontoparietal montage was used, and the prognostic values of EEG features for 
comatose patients were assessed.

Methods: Collected with a limited frontoparietal EEG montage, continuous EEG 
recordings of 81 comatose patients in ICU were used retrospectively. By the 60-
day Glasgow outcome scale (GOS), the patients were dichotomized into favorable 
and unfavorable outcome groups. Temporal-, frequency-, and spatial-domain 
features were automatically extracted for comparison. Partial correlation analysis 
was applied to eliminate redundant factors, and multiple correspondence analysis 
was used to explore discrimination between groups. Prognostic characteristics 
were calculated to assess the performance of EEG feature-based predictors 
established by logistic regression. Analyses were performed on all-patients group, 
strokes subgroup, and traumatic brain injury (TBI) subgroup.

Results: By analysis of all patients, raised burst suppression ratio (BSR), suppressed 
root mean square (RMS), raised power ratio of β to α rhythm (β/α), and suppressed 
phase-lag index between F3 and P4 (PLI [F3, P4]) were associated with unfavorable 
outcome, and yielded AUC of 0.790, 0.811, 0.722, and 0.844, respectively. For the 
strokes subgroup, the significant variables were BSR, RMS, θ/total, θ/δ, and PLI (F3, 
P4), while for the TBI subgroup, only PLI (F3, P4) was significant. BSR combined 
with PLI (F3, P4) gave the best predictor by cross-validation analysis in the all-
patients group (AUC  =  0.889, 95% CI: 0.819–0.960).

Conclusion: Features extracted from limited frontoparietal montage EEG served 
as valuable coma prognostic tools, where PLI (F3, P4) was always significant. 
Combining PLI (F3, P4) with features in other domains may achieve better 
performance.

Significance: A limited-montage EEG coupled with an automated algorithm is 
valuable for coma prognosis.
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Highlights

 − A limited frontoparietal EEG montage was employed for EEG monitoring.
 − A combination of EEG features was used to build predictors for coma outcome in ICU.
 − Significant variables were found in temporal, frequency, and spatial domains.
 − Burst suppression ratio combined with PLI between F3 and P4 formed the best predictor.
 − EEG monitoring for frontoparietal network can contribute to coma prognosis.

1 Introduction

Patients with acquired brain injuries (ABIs) often suffer from 
severe disorders of consciousness (DoC), whose preceding state is 
coma, an acute state lasting up to 2–4 weeks or even longer (Owen, 
2015). The Glasgow Coma Scale (GCS) is a conventional assessment 
tool for comatose patients, including three sub-scales: eye-opening 
(E), verbal response (V), and motor response (M). A patient is 
considered in coma only when E = 1, V ≤ 2, and M ≤ 4 are satisfied 
simultaneously (Zubler et al., 2015), and in the meantime, the overall 
GCS = E + V + M ≤ 7 is given. Otherwise, the patient is no longer in a 
coma state but has turned to a post-coma DoC state, including 
unresponsive wakefulness syndrome (UWS), minimally conscious 
state (MCS), or EMCS (emerged from minimally conscious state), as 
assessed by the Coma Recovery Scale–Revised (CRS-R; Giacino et al., 
2004) instead. Early prognosis of comatose patients in intensive care 
unit (ICU) has the potential to assist clinical decision-making for 
further treatment. Though the frequently used GCS is based on 
standardized objective examination findings, it needs expert 
interpretation, and it does not consider the underlying 
pathophysiology, the trajectory of neuro-recovery, or the presence of 
various confounding factors. Hence, developing a new coma outcome 
predictor based on continuous neurophysiological monitoring 
coupled with an automated algorithm has drawn much attention in 
recent years.

Electroencephalography (EEG) is known for its advantage in 
monitoring the overall functionality of the cerebral cortex and the 
neural response to external stimuli. When applied in neuro-
prognostication for comatose patients, continuous bedside EEG 
monitoring offers the possibility of objective assessments of the 
trajectory of neuro-recovery with high temporal resolution (Young, 
2000). EEG signals include evoked potentials and resting-state 
EEG. Evoked potentials used in coma prognosis include brainstem 
auditory evoked potential (BAEP; Rothstein, 2000), mid-latency 
auditory evoked potential (MLAEP; Tsurukiri et  al., 2013), 
somatosensory evoked potential (SEP; Zhang et  al., 2015), and 
auditory steady-state response (ASSR; Chen et al., 2020). Compared 
with evoked potentials depending on additional stimulation and 
synchronization devices, resting-state EEG corresponds to recording 
the patients’ spontaneous EEG only, which is more suitable for long-
term monitoring.

The American Clinical Neurophysiology Society (ACNS) 
recommended some standardized EEG descriptors (terminologies) 
to assess the patients in ICU (Hirsch et  al., 2021), including 
continuity, voltage, frequency, symmetry, organization of an 
anterior/posterior gradient of the background activity, presence of 
reactivity, spontaneous variability of the background activity, and 

occurrence of epileptic discharges. Most of the ACNS EEG 
descriptors can be  obtained from resting-state EEG recordings 
reviewed visually by experts or processed automatically by 
algorithms. In Hofmeijer et al. (2016), EEG of consecutive comatose 
patients after cardiac arrest was reviewed to be  classified as 
isoelectric, low-voltage, epileptiform, burst suppression, diffusely 
slowed, or normal, and the classified states were applied in coma 
outcome prediction. ACNS EEG descriptors were used in Benarous 
et al. (2019) to predict outcome of postanoxic coma and showed the 
necessity of standardized methods of evaluating EEG parameters. 
In Scarpino et al. (2020), ACNS EEG descriptors combined with 
SEPs recorded at 12 and 72 h from resuscitation were used for 
predicting 6-month neurological outcome in comatose patients 
after cardiac arrest. Background activity, the presence of rhythmic 
or periodic patterns, and the reactivity of ACNS EEG descriptors 
were used in Guedes et  al. (2020) to illustrate that they can 
be  reliable predictors for poor neurological outcome as well as 
death. ACNS EEG descriptors in a reduced EEG montage study in 
Backman et al. (2020) also showed significant value in assessing 
comatose cardiac arrest patients. As a weighted sum of resting-state 
EEG parameters at temporal and frequency domains, ranging from 
0 to 100, the bispectral index (BIS) has also been used in prediction 
of coma outcome (Schnakers et al., 2008).

Most of the EEG features used for coma prognosis, including 
ACNS EEG descriptors, were derived from temporal domain or 
frequency domain (Hoedemaekers et al., 2023), and the current 
trend is to involve deep neural networks with larger datasets (Zheng 
et al., 2022). In recent years, spatial EEG features have also been 
explored in this field. Coupling between EEG signals on the left–
right axis and on the anterior–posterior axis was measured with 
four synchronization measures in Zubler et al. (2015) and used in 
coma prognosis. Based on the similarity of instantaneous 
frequencies in EEG epochs, link rates (LRs) and link durations 
(LDs) in the α, δ, and θ bands were calculated for outcome 
prediction of comatose patients after cardiac arrest (Keijzer et al., 
2021). Three functional connectivity metrics, coherence (COH), 
phase locking value (PLV), and mutual information (MI), were 
calculated in 19-channel EEGs at 12, 24, and 48 h after cardiac arrest 
(Carrasco-Gómez et al., 2021), and machine learning techniques 
were used to combine them in a model to predict outcome of 
postanoxic coma. An intrinsic network reactivity index (INRI; 
Khanmohammadi et al., 2018) based on whole-brain multi-channel 
resting-state EEG was formed to study its correlation with the 
consciousness level of coma patients. Despite the above preliminary 
studies, the combination of the temporal-, frequency-, and spatial-
domain features of resting-state EEG has seldom been used in 
prognostic research for comatose patients.
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Relative to the neurologic examination-based neuro-
prognostication scales, EEG is time-intensive, much more 
expensive, and not available in much of the resource-limited world. 
Therefore, conventional full-montage-based EEG monitoring 
combined with expert visual interpretation or supervised 
quantification techniques needs to be  improved for coma 
prognosis. In this context, it is meaningful to assess the prognostic 
value of a limited-montage EEG coupled with an automated 
algorithm. In Backman et al. (2020), with a reduced EEG montage 
including six channels (F3, T3, P3, F4, T4, and P4), visually 
interpreted ACNS EEG descriptors yielded high prognostic 
performance for postcardiac arrest comatose patients. In recent 
years, the anterior forebrain mesocircuit (Fridman et al., 2014) and 
the frontoparietal network (Wu et al., 2015) have been consistently 
implicated in circuit mechanisms underlying recovery from coma 
(Edlow et  al., 2021). Inspired by these circuit mechanisms 
underlying the restoration of cerebral activity during recovery 
from coma, we only reserve frontal and parietal electrodes in the 
reduced EEG montage used in Backman et  al. (2020). The 
quantitative EEG features in temporal domain, frequency domain, 
and spatial domain can be  extracted automatically from this 
limited-montage EEG. The prognostic value of a combination of 
quantitative EEG features in various domains would then 
be assessed in predicting outcomes of comatose patients with ABIs 
in ICU. At last, ancillary neuro-prognostication methods would 
be  developed for all comatose population or patients in 
specific subgroups.

2 Materials and methods

2.1 Study design

This study was a retrospective one. Comatose patients with 
ABIs admitted to the ICU of the First People’s Hospital of Kunshan 
from 29 October 2019 to 7 April 2021, who underwent multi-
channel EEG monitoring, were considered. Inclusion criteria were: 
(1) The patients were in coma, i.e., GCS ≤ 7 with E = 1, V ≤ 2, and 
M ≤ 4; (2) EEG monitoring was conducted within 4 weeks after 
admission, including at least four frontoparietal channels: F3, F4, 
P3, P4, and the EEG recording lasted for at least 30 min; (3) EEG 
monitoring was initiated at or later than 24 h after sedating 
medications (André-Obadia et al., 2018); (4) The 60-day Glasgow 
outcome scale (GOS; Jennett and Bond, 1975) of the patient could 
be obtained by follow-up; (5) The patient was not diagnosed as 
brain dead before or during EEG monitoring, which would also 
show isoelectric (<2 μV) EEG waveform; (6) The patient did not 
regain consciousness during EEG monitoring. Qualified patients 
of both sexes were eligible for the study. According to the above 
criteria, a total of 81 comatose patients were included in the study 
cohort, and their 60-day GOS scores were obtained in follow-up. 
Ranked from 1 to 5, the GOS provides a measurement of post-
coma outcome: 1 = death; 2 = vegetative state or severe disability; 
3 = moderate disability, able to follow commands but unable to live 
independently; 4 = able to live independently but unable to return 
to work or school; 5 = fully recovered. Among the 81 patients who 
participated, we had GOS = 1 (n = 39), GOS = 2 (n = 20), GOS = 3 
(n = 10), GOS = 4 (n = 7), and GOS = 5 (n = 5). According to the 

GOS, the patients were dichotomized into favorable (GOS ≥ 3) and 
unfavorable (GOS ≤ 2) outcome groups. Finally, there were 22 
patients in the favorable outcome group and 59 patients in the 
unfavorable outcome group.

In this study, the determination of conducting quantitative 
EEG monitoring was given by each patient’s physician, instead of 
our study purpose. Our study did not influence the treatment or 
decision to withdraw life-sustaining therapy. Since EEG monitoring 
is part of standard care in our ICU, the need for informed consent 
for EEG measurements and follow-up by telephone interview was 
waived. The study protocol was reviewed and approved by the 
Medical Ethics Committee of the First People’s Hospital of 
Kunshan (Approval No. 00012098), which ensured that our study 
was conducted in accordance with the ethical guidelines of the 
Declaration of Helsinki.

2.2 EEG recording and feature extraction

Quantitative EEG monitoring was conducted using a multi-lead 
EEG device (Cadwell Industries, Kennewick, WA, United States). A 
limited frontoparietal EEG montage was used, where F3, F4, P3, and 
P4 were used as EEG recording electrodes, and Cz was reference. The 
sampling rate was 250 Hz, and high-quality EEG recording lasted for 
at least 30 min. Considering the particularity of sedation and analgesia 
in the treatment of critically ill patients, and especially analgesic drugs 
being the basis of medication, we used a combination regimen of 
short-acting low-dose remifentanil and low-dose dexmedetomidine 
for all patients. It was known that sedation may lead to alteration of 
some neurophysiological markers (André-Obadia et  al., 2018; 
Benghanem et al., 2022), including decreased voltage, decreased slow 
wave, and raised fast rhythms. In our ICU, all EEG monitoring were 
initiated at or later than 24 h after short-acting low-dose sedating 
medications and ended before next sedating medications. The 
occurrence of epileptic discharges, which was mainly focused on 
non-convulsive status epilepticus, was also visually interpreted and 
recorded by physicians. The physicians were not blinded to the EEG 
as they determined the EEG monitoring and had to treat 
epileptic seizures.

Each patient’s EEG recording was partitioned into 2-min 
non-overlapping epochs. EEG in each epoch underwent baseline 
calibration, bandpass filtering, and trajectory rejection. A 0.1–40 Hz 
forward–backward four-order Butterworth filter was used to eliminate 
noise and interference. For rejection of trajectories such as abnormal 
movements, an epoch would be discarded if there existed a point 
whose density was >200 μV. For each epoch, 8 temporal features, 16 
frequency features, and 24 spatial features were calculated. Temporal 
features or frequency features were calculated for all channels, and the 
median value of each kind of feature across all channels was used. The 
features among all reserved epochs were averaged to give the final 
variables for coma prognosis study. The diagram of EEG recording 
and feature extraction is displayed in Figure 1. EEG preprocessing and 
feature extraction were performed using MATLAB 2022a and the 
EEGLAB toolbox.

The extracted temporal features were: BSR (burst suppression ratio), 
RMS (root mean square), activity, mobility, complexity, kurtosis, 
skewness, and entropy. BSR was defined as the ratio of duration of EEG 
in suppression state (≤5 μV) to the total duration in one epoch (Nagaraj 
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et  al., 2018). If the EEG samples in one epoch are denoted as 
x n Nn , , , ,= …1 2 , where N  is the number of samples in one epoch, 

RMS = var /x x x Nn
n

N
n( ) = −( )

=
∑
1

2

. Activity, mobility, and 

complexity are Hjorth parameters (Hjorth, 1970), given by activity = 

var xn( ), mobility = var / varx xn n
′( ) ( ) , and complexity = 

mobility mobilityx xn n
′( ) ( )/ , respectively. Kurtosis and skewness are 

frequently used higher-order statistics. Entropies were usually known 
as chaos features, but in this study, they were still categorized as 
temporal features, and Shannon entropy was used. The extracted 
frequency features were: the frequency corresponding to the 
maximum frequency component (fm), power of δ rhythm (0.5–4 Hz), 
power of θ rhythm (4–8 Hz), power of α rhythm (8–13 Hz), power of 
β rhythm (13–30 Hz), power ratios (δ/total, θ/total, α/total, β/total, 
θ/δ, α/δ, β/δ, α/θ, β/θ, β/α), and the upper cutoff frequency (fh). 
The spatial features used functional connectivity metrics, 
including Pearson correlation coefficient (PCC), mutual 
information (MI), phase locking value (PLV), and phase-lag index 
(PLI) for each couple of channels. If x and y denote two EEG 

channels,
 
PCC ,x y x x y y N x y

n

N

n n n n( ) ( )( ) ( ) ( )( )= − −
=
∑
1

/ var var ,
 

MI ,x y H H Hx y xy( ) = + − , PLV ,x y ei tx y( ) = ( )ϕ , , and 

PLI ,x y sign tx y( ) = ( )ϕ , , where Hx, Hy , and Hxy denote entropy of 
x channel, entropy of y channel, and cross-entropy of x channel and y 
channel, respectively, ϕx y t, ( ) denotes difference of unwrapped phases 
between x channel and y channel, and ⋅ denotes expectation. In the 
existing EEG-based coma prognosis studies that exploited functional 
connectivity metrics (Zubler et al., 2015; Khanmohammadi et al., 2018; 
Carrasco-Gómez et al., 2021; Keijzer et al., 2021), a common reference 
or global average reference was used. As a limited montage is used in 

this study, we chose a common reference Cz for all four frontoparietal 
channels. It can be proved theoretically that, with a common reference, 
information of interaction between two coupled channels can still 
be derived, though attenuated by some interference terms.

2.3 Statistical analysis

To compare demographical or extracted feature variables in 
two patient groups, Fisher’s exact test or χ2 test was used for 
categorical variables (presented as numbers [percentage]), and 
Student’s t-test or Mann–Whitney U test was performed for 
continuous variables, where the significance level was set at 
p = 0.05. The Benjamini–Hochberg correction of false discovery 
rate was employed for all EEG features. For continuous variables, 
Shapiro–Wilk test and Levene test were performed first to 
determine if the variable met normal distribution and 
homogeneity of variance, respectively. If a variable met normal 
distribution with homogeneous variance (presented as 
mean ± SD), the t-test was used; otherwise (presented as median 
[quartile]), the Mann–Whitney U test was used. Partial correlation 
analysis was further applied to eliminate redundant factors. A 
multiple correspondence analysis (MCA) was used to explore 
discrimination between variables in two groups. Logistic 
regression was used to establish prognosis models for a single EEG 
feature-based predictor or a combination of multiple predictors in 
various domains. Area under the receiver operating characteristic 
curve (AUC-ROC) was calculated to assess the performances of 
the established prognosis models. Prognostic characteristics 
including sensitivity (Sen), specificity (Spec), positive predictive 
value (PPV), negative predictive value (NPV), and false positive 
rate for predicting unfavorable outcome by built predictors were 
also calculated, where the cutoff probability was set as 0.5. All 

FIGURE 1

EEG recording and feature extraction in this study.
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statistical analyses were conducted using SPSS Statistics 27 (IBM 
Corp., Armonk, NY, United States).

3 Results

Results in comparison of baseline characteristics between groups 
are displayed in Table 1. The baseline characteristics consist of sex, age, 
GCS evaluated during EEG recording, etiology, timing of EEG 
recording after brain injury, and occurrence of epileptic discharges. 
Among all patients in this study, the etiology included hemorrhagic 
stroke, ischemic stroke, traumatic brain injury (TBI), postcardiac 
arrest, and others (intoxication, tumor, pulmonary encephalopathy, 
etc.). From Table  1, it was found that none of the baseline 
characteristics showed significance.

3.1 Analysis of all patients

Comparison of EEG feature variables between the two groups is 
given in Table 2. It was found that BSR, RMS, activity, powers of δ, θ, 
α, and β rhythms, β/α, and PLI (F3, P4) showed significant differences 
between the two groups. RMS, similar to the “Voltage” in ACNS EEG 
descriptors, showed significance along with other eight EEG 
features. The EEG voltage amplitude is associated with many EEG 
features, e.g., rhythm densities extracted by Fourier transform 
X f x t e tj ft( ) = ∫ ( ) − 2π

d  are in direct proportion to RMS. Partial 
correlation analysis is a useful tool to identify the true relationship 
between two variables while controlling for the effects of another 
variable. As the dichotomized outcomes are actually obtained from 
60-day GOS, we performed partial correlation analysis between all 
significant EEG features (except RMS) and 60-day GOS, where RMS 
was used as controlled variable. Table 3 lists the partial correlation 
analysis results. It was found that activity and powers of δ, θ, α, and β 
rhythms were no longer significant, implying that their significance 
may be due to RMS, and hence these five variables would be pruned 
in the coma prognosis study. Spearman’s correlations between the 
remaining significant variables (BSR, RMS, β/α, and PLI [F3, P4]) and 
60-day GOS are presented in Table 4. High correlations between all 
these four variables and 60-day GOS can be found, and the trend of 
these variables along with the variation of GOS is also displayed in 
Figure 2 in the form of error bars. Henceforth, in this study, EEG 
features in temporal domain (BSR and RMS), frequency domain 

(β/α), and spatial domain (PLI [F3, P4]) would be  considered in 
coma prognosis.

The task of establishing a prognosis model lies in discriminating 
between variables in two groups. Multiple correspondence analysis is 
a useful tool to map data from high-dimensional space to 
low-dimensional space, where visualization of discrimination among 
different groups can be achieved. The elements of row and column 
data in a contingency table are represented as category points in a 2-D 
space by MCA. In the output of MCA, the joint plot of category points 
shows separability of the corresponding variables belonging to 
different categories. If category points are close along some dimension 
or have close distances in the 2-D space, they are deemed to have close 
interactions. Discrimination measures give dimensional scores of 
category point separation, where a higher score implies that category 
points of a variable can be separated more easily along that dimension. 
The MCA results of the EEG features and the corresponding outcomes 
are presented in Figure 3. It can be found that, after being mapped to 
a 2-dimensional space, the four EEG features showed two 
discriminative clusters around the two coma outcomes along 
dimension 1. Note that the category points of BSR are perfectly 
overlapping with those of other features. Discrimination measures 
show that outcome can be separated along dimension 1, rather than 
dimension 2, and BSR, RMS, β/α, and PLI (F3, P4) all had high 
discrimination scores along dimension 1. This result implies that a 
combination of EEG features in various domains is promising to build 
a coma outcome predictor. The same discrimination score achieved 
by BSR, RMS, and β/α implies that these features may play similar 
roles in building a coma outcome predictor with combined features.

Logistic regression was performed to build coma outcome 
predictors using a single EEG feature or a combination of EEG features 
in various domains. Table 5 lists the results of single EEG feature-
based unfavorable outcome predictors. It was found that BSR and β/α 
were risk factors, while RMS and PLI (F3, P4) were protective factors 
for predicting unfavorable outcome. All four features showed 
significance, i.e., AUC = 0.5 was rejected by Wilcoxon test of ranks. 
Multiple logistic regression for all four features was also performed, 
where likelihood ratio test was used to include or exclude variables. 
BSR and PLI (F3, P4) were reserved in the final prediction model, and 
the result is presented in Table 6. Partial correlation on EEG features 
with RMS was performed to adjust for interactions between frequency 
band powers and RMS, and hence powers of δ, θ, α, and β rhythms 
were excluded from building coma outcome predictors. Here we also 
performed multiple logistic regression with likelihood ratio test for all 

TABLE 1 Baseline characteristics of the study population.

Variable Favorable outcome (GOS  ≥  3) Unfavorable outcome (GOS  ≤  2) Statistical 
value

Value 
of p

n  =  22 n  =  59

Sex (female) 6 (27.3%) 14 (23.7%) 0.002 (Fisher) 0.776

Age 49.32 ± 17.844 49.20 ± 17.966 0.026 (t) 0.980

GCS 3.5 (3) 3 (1) 0.201 (U) 0.841

Etiology 6/0/11/1/4 19/4/22/9/5 5.101 (χ2) 0.292

Time of EEG recording after brain 

injury (days)

6 (15) 3 (5) 1.626 (U) 0.104

Occurrence of epileptic discharges 2 (9.1%) 2 (3.5%) 0.227 (Fisher) 0.297

The order of five etiology items in the table: hemorrhagic stroke, ischemic stroke, traumatic brain injury (TBI), postcardiac arrest, and others.
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TABLE 2 EEG features in various domains between favorable and unfavorable outcome groups.

Variable Favorable outcome (GOS  ≥  3) Unfavorable outcome (GOS  ≤  2) Statistical 
value

Value of p (after 
correction)

n  =  22 n  =  59

BSR 0.187 (0.120) 0.358 (0.563) −3.992 (U) <0.001*

RMS 22.73 (20.873) 12.58 (15.077) 4.290 (U) <0.001*

Activity 781.67 (1799.21) 145.94 (406.64) 3.961 (U) <0.001*

Mobility 12.69 (7.63) 16.62 (13.54) −1.688 (U) 0.338

Complexity 4.58 (2.69) 4.24 (2.81) 1.487 (U) 0.445

Kurtosis 3.49 (0.52) 3.45 (1.21) 0.680 (U) 0.738

Skewness −0.075 (0.282) −0.016 (0.211) −1.179 (U) 0.654

Entropy 4.077 (0.193) 4.076 (0.356) 0.074 (U) 0.959

fm 0.549 (0.294) 0.479 (0.446) 0.812 (U) 0.699

δ 91.30 (254.51) 24.46 (64.33) 4.141 (U) <0.001*

θ 2.834 (2.817) 0.745 (2.045) 3.589 (U) <0.001*

α 1.283 (1.227) 0.273 (0.624) 3.780 (U) <0.001*

β 0.438 (0.754) 0.140 (0.363) 3.292 (U) <0.001*

δ/total 0.923 (0.075) 0.878 (0.192) 1.593 (U) 0.385

θ/total 0.042 (0.022) 0.048 (0.052) −0.892 (U) 0.667

α/total 0.016 (0.019) 0.023 (0.050) −1.210 (U) 0.653

β/total 0.007 (0.014) 0.017 (0.079) −1.858 (U) 0.328

θ/δ 0.054 (0.045) 0.054 (0.101) −1.157 (U) 0.642

α/δ 0.018 (0.025) 0.031 (0.080) −1.295 (U) 0.596

β/δ 0.008 (0.019) 0.022 (0.129) −1.848 (U) 0.307

α/θ 0.438 (0.313) 0.537 (0.605) −0.924 (U) 0.740

β/θ 0.197 (0.241) 0.512 (1.234) −1.752 (U) 0.346

β/α 0.474 (0.582) 0.991 (1.275) −3.058 (U) 0.012*

fh 0.887 (0.342) 0.814 (0.474) 0.892 (U) 0.691

PCC (F3, F4) 0.252 ± 0.333 0.335 ± 0.289 −1.113 (t) 0.666

MI (F3, F4) 0.184 (0.163) 0.186 (0.304) 0.276 (U) 0.904

PLV (F3, F4) 0.241 (0.220) 0.247 (0.273) 0.457 (U) 0.864

PLI (F3, F4) 0.851 (0.266) 0.796 (0.228) 0.849 (U) 0.686

PCC (P3, P4) 0.415 ± 0.242 0.404 ± 0.267 0.158 (t) 0.948

MI (P3, P4) 0.269 (0.361) 0.228 (0.287) 0.913 (U) 0.722

PLV (P3, P4) 0.397 (0.355) 0.321 (0.290) 0.807 (U) 0.683

PLI (P3, P4) 0.803 (0.209) 0.842 (0.208) −0.924 (U) 0.771

PCC (F3, P3) 0.435 ± 0.296 0.457 ± 0.242 −0.355 (t) 0.918

MI (F3, P3) 0.313 (0.409) 0.286 (0.348) 0.786 (U) 0.681

PLV (F3, P3) 0.442 ± 0.209 0.412 ± 0.203 0.583 (t) 0.790

PLI (F3, P3) 0.854 (0.416) 0.755 (0.257) 0.903 (U) 0.707

PCC (F4, P4) 0.412 ± 0.231 0.468 ± 0.226 −0.997 (t) 0.728

MI (F4, P4) 0.284 (0.315) 0.287 (0.346) −0.181 (U) 0.948

PLV (F4, P4) 0.402 ± 0.185 0.422 ± 0.203 −0.404 (t) 0.894

PLI (F4, P4) 0.776 (0.181) 0.840 (0.178) −0.319 (U) 0.929

PCC (F3, P4) 0.139 ± 0.334 0.272 ± 0.302 −1.718 (t) 0.360

MI (F3, P4) 0.174 (0.228) 0.187 (0.151) 0.149 (U) 0.936

PLV (F3, P4) 0.230 (0.252) 0.254 (0.222) −0.117 (U) 0.943

PLI (F3, P4) 0.886 ± 0. 095 0.713 ± 0.135 5.537 (t) <0.001*

PCC (F4, P3) 0.206 ± 0.268 0.248 ± 0.318 −0.546 (t) 0.803

MI (F4, P3) 0.171 (0.166) 0.192 (0.228) −0.595 (U) 0.797

PLV (F4, P3) 0.209 (0.238) 0.270 (0.220) −0.701 (U) 0.739

PLI (F4, P3) 0.882 (0.348) 0.826 (0.204) 0.287 (U) 0.936

The symbol * indicates significance after correction. For EEG rhythms, powers or power ratios were calculated as frequency-domain features.
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nine significant univariate features, and the result is identical to that 
in Table 6. Compared with the four significant features reserved after 
partial correlation, RMS and β/α were excluded from the final 
prediction model, which is also consistent with the MCA result where 
BSR, RMS, and β/α have identical discrimination scores along 
two dimensions.

The training and testing datasets were merged above in 
building coma outcome predictors, and hence the ROC curves 
reflecting prognostic performances were not considered in this 
combined cohort. To further illustrate the generalizability of the 
proposed method, K-fold cross-validation was performed. The 
involved 81 comatose patients were uniformly partitioned into 
K = 3 folds, and the distribution of outcome and etiology among 3 
folds was as uniform as possible. In the ith round of cross-
validation, the data in the ith fold formed the testing set, while the 
data in the rest folds were used for training the parameters of 
logistic regression. The prognostic characteristics of the coma 
outcome predictors built by EEG features in each round of 3-fold 
cross-validation are summarized in Table 7. It was found that in all 
rounds of cross-validation, all predictors achieved sensitivity ≥ 
0.80 along with different levels of false positives. Among predictors 
using single EEG features, PLI (F3, P4) achieved the lowest false 
positives in all rounds of cross-validation. As expected, these single 
EEG feature-based predictors all suffered from medium to high 
false positives, indicating that cutoff probabilities can be  set as 
larger than 0.5 for practical usage of these predictors, with 
degradation of sensitivity to some extent. It is noticed that the 
coma outcome predictor built by combining BSR and PLI (F3, P4) 
performed much better than those with single features in terms of 
low false positives. The cross-validated results on three testing 
datasets were merged, and then the comprehensive ROC curves of 
all predictors are plotted in Figure  4. Among all single 

variable-based predictors, PLI (F3, P4) achieved the largest 
AUC = 0.820 (95% CI: 0.716–0.925). Compared with these single 
variable-based predictors, the predictor with combined features, 
i.e., BSR + PLI (F3, P4), gave a larger AUC = 0.889 (95% CI: 
0.819–0.960).

3.2 Subgroup analysis

Subgroup analyses were performed on patients with strokes as 
well as patients with TBI. The stroke subgroup included 29 patients, 
of whom 6 had favorable outcomes and 23 had unfavorable outcomes. 
By comparison of EEG features between favorable and unfavorable 
outcome groups and then partial correlation analysis with RMS 
controlled, BSR, RMS, θ/total, θ/δ, and PLI (F3, P4) were preserved as 
significant parameters. The results are summarized in Table 8, and it 
was found that raised BSR, suppressed RMS, raised θ/total, raised θ/δ, 
or suppressed PLI (F3, P4) may be associated with unfavorable coma 
outcome for stroke patients. Due to the limited number of patients in 
the strokes subgroup, cross-validation was not carried out in this 
group, and the prognostic characteristics of the significant variables 
or combined model were not evaluated by logistic regression.

The TBI subgroup included 33 patients, of whom 11 had favorable 
outcomes and 22 had unfavorable outcomes. By comparison between 
favorable and unfavorable outcome groups, only PLI (F3, P4) was 
found significant (corrected value of p = 0.048) in the TBI subgroup, 
and the comparative details are summarized in Table 9. Due to the 
limited number of patients in the TBI subgroup, cross-validation 
logistic regression was also not performed, and the corresponding 
prognostic characteristics were not displayed here.

4 Discussion

A retrospective study on coma prognosis in ICU using EEG 
feature-based predictors was conducted, with a limited frontoparietal 
EEG montage. This study was motivated by a common real-world 
requirement of a limited-montage EEG coupled with an automated 
algorithm and an important role played by frontoparietal network in 
underlying recovery from coma (Wu et al., 2015). Continuous EEG is 
recommended for the monitoring of critically ill patients (André-
Obadia et al., 2015), and ACNS EEG descriptors have been studied in 
prognosis of coma or DoC in the past decade. ACNS EEG descriptors 
not only include some continuous variables but also concern the 
occurrence of some pathological patterns. The persistence of electrical 
status epilepticus was usually used as one ACNS EEG descriptor 
(Hirsch et al., 2021) and has been associated with a greater mortality 
rate (Rossetti et  al., 2005), while in this study low occurrences of 
epileptiform discharges coincided in both groups. Hence, in this study, 
detection of epileptiform pattern was not considered, which usually 
depends on visual inspection or artificial intelligence (AI)-assisted 
methods trained on a large dataset. Standard interpretation of some 
ACNS EEG patterns still remains difficult in visual inspection 
(Westhall et al., 2015). Instead, in this study, features were extracted 
by quantitative analysis, and the EEG features in temporal domain 
(BSR and RMS), frequency domain (β/α), and spatial domain (PLI 
[F3, P4]) all showed their prognostic values by analysis of all patients, 
with a limited frontoparietal EEG montage.

TABLE 3 Partial correlations between EEG feature variables and 60-day 
GOS, where RMS was used as a controlled variable.

Variable Rho Value of p

BSR −0.331 0.003*

Activity 0.077 0.496

δ −0.118 0.299

θ −0.111 0.328

α −0.075 0.508

β −0.077 0.498

β/α −0.321 0.004*

PLI (F3, P4) 0.224 0.046*

*Significant results ≤ 0.05.

TABLE 4 Spearman’s correlations between EEG feature variables and 
60-day GOS.

Variable Rho Value of p

BSR −0.547 <0.001*

RMS 0.578 <0.001*

β/α −0.422 <0.001*

PLI (F3, P4) 0.264 0.017*

*Significant results ≤ 0.05.
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Timing of EEG recording after brain injury was considered 
important in the existing studies. In a prospective observational 
cohort study (Bauerschmidt et al., 2021), predictors established with 
quantitative EEG features at postanoxic days 4–6 achieved highest 
prediction accuracy. In our retrospective study, it was hard to control 
the EEG recording of all patients on the same days after brain injury. 
In spite of this, a comparison of timing of EEG recording between 

favorable and unfavorable outcome groups showed no significant 
difference, and the median EEG recording times are all within 1 week 
after brain injury.

In ACNS EEG descriptors, burst suppression and suppressed 
background EEG voltage (<10 μV) were usually considered as highly 
“malignant” patterns (Sandroni et al., 2014; Hofmeijer et al., 2016; 
Benarous et  al., 2019; Backman et  al., 2020; Guedes et  al., 2020; 

FIGURE 2

Relationship between selected EEG feature variables and 60-day GOS. Vertical error bars indicate the 95% confidence intervals, and the central points 
denote mean values.

FIGURE 3

Multiple correspondence analysis results on the EEG features between two coma outcome groups: (A) joint plot of category points; (B) discrimination 
measures of all variables.
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Scarpino et al., 2020; Nolan et al., 2021; Hoedemaekers et al., 2023), 
which were associated with poor neurological outcome. The presence 
of burst suppression was associated with an unfavorable prognosis 
with 100% specificity (Benarous et al., 2019). A suppressed EEG was 
considered as a reliable predictor of poor outcome if it persisted 
beyond 24 h after the arrest (Hoedemaekers et al., 2023). At 72 h, an 
isoelectric, suppression, or burst suppression pattern on EEG 
predicted poor outcome with 100% specificity (Scarpino et al., 2020). 
According to our analytical results on all patients as well as the strokes 
subgroup, among all temporal features, raised BSR and diminished 
RMS (i.e., suppressed voltage or diminished EEG power) were 
predictors of unfavorable outcome. This result is highly consistent 
with the conclusions in the literature. It is also noticed that BSR + PLI 
(F3, P4) formed the ultimate predictor by multiple logistic regression 
on all patients, indicating that diminished EEG power may be  a 
reliable but not the best predictor for unfavorable coma outcome with 
our limited frontoparietal EEG montage.

Among the rhythms (δ, θ, α, and β), dominant δ and θ oscillations 
and attenuated α oscillations were considered as indicators for 
unfavorable outcome (Benarous et al., 2019; Kustermann et al., 2019; 
Scarpino et al., 2020). For analysis on all patients, the powers of δ, θ, 
α, and β all showed significance in comparison between groups, while 
they were then discarded according to the results of partial correlation 
analysis. As attenuation and overall suppression are negative 
prognostic factors, decreased power across frequency bands in the 
unfavorable outcome group can be found. The raised power ratio β/α 
was found associated with unfavorable coma outcome. α oscillations 
were known to appear only during wakefulness, reflecting basal 
forebrain, thalamus, and cortical interactions (Babiloni et al., 2009). β 
oscillations, or higher frequency rhythms, were associated with 
enhanced alertness following the onset of activity in cholinergic 
aggregates of the brainstem and basal forebrain. In the favorable 
outcome group, raised α and β oscillations can all be found, and it 
seems that α oscillations were dominant compared to β oscillations. 
For the analysis of the strokes subgroup, raised θ/total and raised θ/δ 
were found associated with unfavorable coma outcome, which is 
consistent with the existing conclusions. It seems that dominant θ 
oscillations may play a more important role in coma prognosis of the 

strokes subgroup among all frequency-domain features. For the TBI 
subgroup, none of the frequency-domain features were found 
significant. This result may be attributed to that localization and extent 
of the brain damage of various TBI patients were not considered in 
this study. As aforementioned, because sedation may lead to decreased 
voltage, decreased slow wave, or raised fast rhythm, all EEG 
monitoring were initiated at or later than 24 h after short-acting 
low-dose sedating medications in our ICU. Even so, the influence of 
sedation after 24 h cannot be  totally avoided, and the bias may 
still exist.

Functional connectivity metrics were used as spatial features. One 
study showed that postanoxic comatose patients with poor 
neurological outcome had less dynamics of brain functional 
connectivity (Keijzer et al., 2021). In Zubler et al. (2015), patients with 
recovery on day 10 showed higher coherence across various bands. 
The study in Carrasco-Gómez et al. (2021) showed that postanoxic 
comatose patients with raised PLV in θ and α rhythms at 12 and 24 h 
were associated with favorable outcome. In a recent study (Jiang et al., 
2023), the whole-brain connectivity based on coherence, phase 
synchronization, PLI, and cross-correlation was found to 
be significantly enhanced for favorable outcome. Full montage used 
to be  employed in past studies, while in our study, a limited 
frontoparietal montage including four EEG channels was used. It was 
shown that even with a small number of frontoparietal channels, there 
is still a significant functional connectivity metric, PLI (F3, P4), 
achieving best prognosis performance among features in all domains. 
As an indicator of favorable outcome, raised PLI (F3, P4) may reflect 
enhanced connection between bilateral hemispheres, as well as 
increasing connection between cortical/subcortical structures in 
frontal and parietal lobes. It is known that the metabolic activity and 
functional connectivity within the anterior forebrain mesocircuit and 
the frontoparietal network are associated with the restoration of 
cerebral activity (Edlow et  al., 2021). Inspired by this discovery, 
though with a reduced EEG montage including only four channels, 
the calculated functional connectivity metrics can reflect the 
frontoparietal network activities. By analysis of all patients as well as 
the strokes and TBI subgroups, it was found that during recovery from 
coma, restoration of frontoparietal network may be accompanied by 
an enhanced PLI (F3, P4).

There are few studies involving a combination of automatically 
extracted EEG features in temporal, frequency, and spatial 
domains. The temporal- and frequency-domain features were 
combined to give predictive values of the revised cerebral recovery 
index (rCRI) in Nagaraj et  al. (2018), where random forest 
classification was used. Features in frequency domain and spatial 
domain were considered in prognosis of coma in Jiang et  al. 
(2023), but they were not combined to form a better predictor. A 
comprehensive study in Carrasco-Gómez et al. (2021) used COH, 
PLV, and MI as spatial features and combined non-coupling 
features in Nagaraj et  al. (2018) for outcome prediction of 
comatose patients, achieving a sensitivity of 73% at 100% 
specificity. The above studies used full EEG montages, which were 
believed to be essential for functional connectivity analysis in the 
past. However, full-montage monitoring has also been recognized 
as labor-intensive and resource-demanding, making it 
inconvenient for practical applications. Enlightened by Backman 
et  al. (2020), a reduced montage consisting of only four 
frontoparietal EEG channels was used for monitoring. 

TABLE 5 Logistic regression results of single features predicting 
unfavorable outcomes.

Variable OR (95% CI) Value of p

BSR 1041.015 (9.395–115,347.064) <0.001*

RMS 0.942 (0.908–0.978) <0.001*

β/α 5.021 (1.612–15.639) 0.002*

PLI (F3, P4) <0.001 (0.000–0.002) <0.001*

*Significant results ≤ 0.05.

TABLE 6 Multiple logistic regression results of combining EEG features 
for predicting unfavorable outcomes.

Prediction 
model

Variable OR (95% CI) Value of p

BSR + PLI (F3, 

P4)

BSR 470.161 (2.872–76957.79) 0.018*

PLI (F3, P4) <0.001 (0.000–0.008) <0.001*

*Significant results ≤ 0.05.
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Nevertheless, the results showed that features in all domains had 
their own prognostic value. Combination of features in various 
domains was found well suited to coma prognosis with reduced 
frontoparietal EEG montage, where the combination of BSR and 
PLI (F3, P4) brought great promotion of prognostic performance 
by analysis of all patients, compared with the predictors based on 
each feature alone.

The main limitation is that this study was a retrospective one. 
Whether and when a comatose patient should adopt bedside EEG 
monitoring was decided by the patient’s physician, and a bias risk of 
subject selection may occur. The included critically ill patients had 
mixed etiologies, and the sample size in each subgroup was also 
limited, hindering performance evaluation of the coma outcome 
predictors established by logistic regression in each subgroup. 

TABLE 7 Prognostic performance of predictors built by EEG features in 3-fold cross-validation.

Round of cross-
validation

Predictors Sensitivity (95% 
CI)

Specificity (95% 
CI)

PPV (95% 
CI)

NPV (95% 
CI)

False positives

1

BSR 0.85 (0.64–0.95) 0.14 (0.03–0.51) 0.74 (0.54–0.87) 0.25 (0.05–0.87) 0.86

RMS 1.00 (0.84–1.00) 0.14 (0.03–0.51) 0.77 (0.58–0.89) 1.00 (0.21–1.00) 0.86

β/α 0.80 (0.58–0.92) 0.00 (0.00–0.35) 0.70 (0.49–0.84) 0.00 (0.00–0.49) 1.00

PLI (F3, P4) 1.00 (0.84–1.00) 0.57 (0.25–0.84) 0.87 (0.68–0.95) 1.00 (0.51–1.00) 0.43

BSR + PLI (F3, P4) 0.95 (0.76–0.99) 0.71 (0.36–0.92) 0.90 (0.71–0.97) 0.83 (0.44–0.97) 0.29

2

BSR 0.95 (0.75–0.99) 0.25 (0.07–0.59) 0.75 (0.55–0.88) 0.67 (0.21–0.94) 0.75

RMS 0.95 (0.75–0.99) 0.13 (0.02–0.47) 0.72 (0.52–0.86) 0.50 (0.09–0.91) 0.87

β/α 0.95 (0.75–0.99) 0.13 (0.02–0.47) 0.72 (0.52–0.86) 0.50 (0.09–0.91) 0.87

PLI (F3, P4) 0.79 (0.57–0.91) 0.38 (0.14–0.69) 0.75 (0.53–0.89) 0.43 (0.16–0.75) 0.62

BSR + PLI (F3, P4) 0.89 (0.69–0.97) 0.63 (0.31–0.86) 0.85 (0.64–0.95) 0.71 (0.36–0.92) 0.37

3

BSR 0.85 (0.64–0.95) 0.57 (0.25–0.84) 0.85 (0.64–0.95) 0.57 (0.25–0.84) 0.43

RMS 0.95 (0.76–0.99) 0.43 (0.16–0.75) 0.83 (0.63–0.93) 0.75 (0.30–0.95) 0.57

β/α 0.85 (0.64–0.95) 0.57 (0.25–0.84) 0.85 (0.64–0.95) 0.57 (0.25–0.84) 0.43

PLI (F3, P4) 0.80 (0.58–0.92) 0.71 (0.36–0.92) 0.89 (0.67–0.97) 0.56 (0.27–0.81) 0.29

BSR + PLI (F3, P4) 0.80 (0.58–0.92) 0.86 (0.49–0.97) 0.94 (0.73–0.99) 0.60 (0.31–0.83) 0.14
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FIGURE 4

ROC curves of predictors for unfavorable coma outcomes established by 3-fold cross-validated logistic regression results.
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Additionally, for each patient, EEG recording was not performed at 
an identical time after admission. The future work would be  a 
prospective study, in which EEG recording would be performed at 
specific time nodes, to investigate the best time for EEG monitoring 
for coma prognosis with our limited frontoparietal montage. The 
sample size in each subgroup still needs to be enlarged in future 
research to facilitate the development and performance evaluation of 
separate coma outcome predictors for each subgroup. Furthermore, 
as in cross-validations, most of the models yielded low to moderate 
specificities, i.e., clinically significant false positive rates for predicting 
unfavorable outcomes; further investigation is still needed to translate 
the findings into a clinically applicable model.

5 Conclusion

For purpose of practical applications of quantitative EEG 
monitoring in coma prognosis in ICU, a limited frontoparietal EEG 
montage was used in this study. By using only four frontoparietal 
channels of EEG recording, features in temporal, frequency, and spatial 
domains all found their own prognostic value for critically ill comatose 
patients. By cross-validation analysis on all patients, the combination of 
EEG features in multiple domains outperformed the prediction based 
on the feature in each of the domains alone. The verified prognostic 
value in this study may lead to an easy-to-implement quantitative 
assessment approach in ICU and hold valuable implications for future 
automatic coma prognosis applications if further investigation is 
performed to control the false positive rates at a low level.
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TABLE 8 Significant EEG features by comparison between favorable and unfavorable outcome groups in the stroke subgroup.

Variable Favorable outcome (GOS  ≥  3) Unfavorable outcome (GOS  ≤  2) Statistical 
value

Value of p (after 
correction)

n  =  6 n  =  23

BSR 0.140 (0.061) 0.312 (0.172) −3.284 (U) <0.001*

RMS 38.765 ± 16.93 15.046 ± 8.46 4.902 (t) <0.001*

θ/total 0.026 (0.013) 0.052 (0.071) −3.069 (U) 0.048*

θ/δ 0.028 (0.016) 0.075 (0.118) −2.907 (U) 0.016*

PLI (F3, P4) 0.877 ± 0.103 0.679 ± 0.130 3.455 (t) 0.019*

The symbol * indicates significance after correction. For EEG rhythms, powers or power ratios were calculated as frequency-domain features.

TABLE 9 The significant EEG feature derived by comparison between favorable and unfavorable outcome groups for analysis of the TBI subgroup.

Variable Favorable outcome (GOS  ≥  3) Unfavorable outcome (GOS  ≤  2) Statistical 
value

Value of p (after 
correction)

n =  11 n  =  22

PLI (F3, P4) 0.880 ± 0.083 0.711 ± 0.126 4.022 (t) 0.048*

The symbol * indicates significance after correction.
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