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Introduction: Epilepsy is a global chronic disease that brings pain and

inconvenience to patients, and an electroencephalogram (EEG) is the main

analytical tool. For clinical aid that can be applied to any patient, an automatic

cross-patient epilepsy seizure detection algorithm is of great significance.

Spiking neural networks (SNNs) are modeled on biological neurons and are

energy-e�cient on neuromorphic hardware, which can be expected to better

handle brain signals and benefit real-world, low-power applications. However,

automatic epilepsy seizure detection rarely considers SNNs.

Methods: In this article, we have explored SNNs for cross-patient seizure

detection and discovered that SNNs can achieve comparable state-of-the-art

performance or a performance that is even better than artificial neural networks

(ANNs). We propose an EEG-based spiking neural network (EESNN) with a

recurrent spiking convolution structure, which may better take advantage of

temporal and biological characteristics in EEG signals.

Results: We extensively evaluate the performance of di�erent SNN structures,

training methods, and time settings, which builds a solid basis for understanding

and evaluation of SNNs in seizure detection. Moreover, we show that our EESNN

model can achieve energy reduction by several orders of magnitude compared

with ANNs according to the theoretical estimation.

Discussion: These results show the potential for building high-performance,

low-power neuromorphic systems for seizure detection and also broaden real-

world application scenarios of SNNs.

KEYWORDS
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1 Introduction

Epilepsy is caused by the abnormal firing of neurons in certain regions of the brain, and

it has become the second most common disease of the nervous system (Mormann et al.,

2007). It affects almost 50 million people around the world (World Health Organization,

2016). Automatic seizure detection can help with timely diagnosis and treatment, reducing

the harm of epilepsy to patients, which is significant for both patients and doctors.
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The electroencephalogram (EEG) is the most commonly used

analytical tool for clinical diagnosis of epilepsy by doctors (Ahmad

et al., 2016). The hospitals often use the international 10-20 system

placement method for the collection of an EEG (Cobb et al., 1958).

As shown in Figure 1, the pattern of EEG signals is very complex

and requires a lot of time and energy for professional doctors

to make judgments. Thus, automatic epilepsy seizure detection,

i.e., detecting one period of EEG signal whether to be on seizure

automatically, is of great significance.

The mainstream seizure detection methods are based on deep

learning with artificial neural networks (ANNs; Abdelhameed et al.,

2018; Daoud and Bayoumi, 2019; Wei et al., 2019; Abiyev et al.,

2020; Li et al., 2020; O’Shea et al., 2020; Ke et al., 2021, 2022;

He et al., 2022; Shen et al., 2023). To achieve better performance,

existing methods mostly treat EEG signals as image-like input,

and thus they can learn from state-of-the-art computer vision

models and techniques. However, existing ANN models ignore

many of EEG’s unique characteristics such as biological signal

properties, which have much room to improve. Additionally,

most existing seizure detection methods are patient-specific, while

clinical applications need to consider cross-patient settings in

practice. The difference between patient-specific algorithms and

cross-patient algorithms is shown in Figure 2. The cross-patient

seizure detection method can detect EEG signals belonging to any

patient’s brain and can be generalized for future patients. There

are a few cross-patient seizure detection algorithms (Gómez et al.,

2020; Peng et al., 2022; Tang et al., 2022; Zhao et al., 2022).

They mainly improve deep learning with techniques such as data

FIGURE 1

The waveform graph was sampled from the first patient in the CHB-MIT EEG dataset, where the x-axis represents time, and the y-axis represents the

amplitude of each electrode. The seizure period is in red, while the normal period is in blue. It is di�cult to distinguish seizure and non-seizure

periods in manual diagnoses.

augmentation, feature disentanglement, adversarial optimization,

etc. while still relying on common ANN models. Therefore, there

is still much room for improvement considering models. We focus

on improving cross-patient seizure detection with spiking neural

network models.

As one of the existing bio-inspired models, spiking neural

networks (SNNs) are based on modeling the dynamics of

biological neurons and can be expected to better handle brain

signals. Moreover, SNNs can be implemented on dedicated

hardware, with high capacity and low energy cost (Akopyan

et al., 2015; Davies et al., 2018; Pei et al., 2019; Sengupta

et al., 2019). If considering portable monitoring equipment

with low energy costs for endurance, SNNs can provide better

support. On the other hand, SNNs are difficult to train and

usually show a lacking performance compared with ANNs in

some common tasks such as image classification (Rueckauer

et al., 2017; Niu et al., 2023). It is still worth exploring

what data/task is more suitable for SNNs to achieve better

performance and how we can leverage the advantages of

SNNs.

This paper focuses on the combination of cross-patient seizure

detection and SNNs. On one hand, we aim to explore how

to improve cross-patient seizure detection performance from

the perspective of utilizing EEG’s biological characteristics and

reducing potential energy. We apply biologically plausible SNNs

for seizure detection to better capture the biological and temporal

information of EEG signals. On the other hand, SNNs show a

lacking performance compared with ANNs in existing tasks. We
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aim to explore suitable tasks and find real-world applications and

practical scenarios of SNNs.

There are several challenges to applying spiking neural

networks to epileptic signals. Firstly, the time dimension in EEG

signals is fuzzy, as there are many ways to split and assign

the time dimension in EEG signals to the time steps of SNNs.

How we should design the time dimension in input data to

better correspond to the spiking neural network is an important

problem. Secondly, it is also important to design a suitable model

architecture and select appropriate time steps to make full use

of the channel information of EEG signals and the time series

information of each channel so that the spiking neural network

can capture and extract more features of EEG signals. Finally,

there are many training methods for SNNs, however, the most

suitable training method for practical biological data still needs to

be explored.

In this paper, we demonstrate how spiking neural networks

can achieve high performance in difficult cross-patient seizure

detection settings, exceeding existing state-of-the-art ANN

methods. We introduce a recurrent spiking neural network

EESNN (EEG-based recurrent convolutional spiking neural

network) that is composed of spiking neurons simulating

the firing and signal propagation processes in real brain

neurons and evaluate the performance of different time

settings as well as architectures combined with training

methods. Experiments considering both performance and

theoretical energy estimation show the superiority of our

model. In brief, our contributions are summarized as

follows:

• We introduce a bio-inspired spiking recurrent neural

network with a proper training method, which can achieve

comparable state-of-the-art performance in cross-patient

seizure detection. This can provide a better seizure detection

model with more consideration of the biological properties

of EEG and also broaden real-world application scenarios of

SNNs.

• We extensively evaluated the cross-patient seizure detection

performance of different SNN structures, training methods,

and time settings, which has built a solid basis for

understanding and evaluation of SNNs in the seizure detection

task. We found that proper SNNs show a more superior

performance than ANNs, indicating the potential abilities of

SNNs for biomedical signal tasks.

• We have shown that our EESNN model can improve the

theoretical energy efficiency by several orders of magnitude

lower computational cost than ANNs. The result shows that

our method has the potential to construct an energy-saving

and efficient seizure detection system with neuromorphic

computing.

2 Related work

There are two lines of research related to our work: automatic

seizure detection and spiking neural networks.

2.1 Automatic seizure detection

Automatic epilepsy seizure detection based on EEG signals has

attracted widespread attention. The mainstream seizure detection

methods are based on deep neural networks due to their high

accuracy and end-to-end computation. Commonly used network

architectures include the convolutional neural network (Hu et al.,

2018; Wei et al., 2019; Abiyev et al., 2020; O’Shea et al., 2020; Ke

et al., 2021; Shen et al., 2023), recurrent neural network (RNN;

Abdelhameed et al., 2018; Hu et al., 2020), graph neural network

(Wang et al., 2020; He et al., 2022; Tang et al., 2022), Transformer

(Ke et al., 2022; Sun et al., 2022), and their combination

(Abdelhameed et al., 2018; Jia et al., 2020; Ke et al., 2022). However,

these kinds of networks treat EEG signals as image-liked inputs,

which may not better utilize biological information. There are also

some works using spiking neural networks for epileptic seizure

detection due to biological plausibility (Ghosh-Dastidara andAdeli,

2007; Ghosh-Dastidar and Adeli, 2009) and energy efficiency

(Zarrin et al., 2020; Shan et al., 2023; Yang et al., 2023), however,

the performance remains lacking compared with ANNs.

In automatic seizure detection tasks, the main challenge lies

in the cross-patient setting, which focuses on the generalization

ability for unseen patients that is essential to clinical application.

Cross-patient detection does not work well for vanilla deep

learning methods, and more strategies are required. Some works

have used data augmentation methods (Wei et al., 2019; Gómez

et al., 2020; Peng et al., 2022) to improve the accuracy of cross-

patient detection. Another effective cross-patient epilepsy detection

method is to use feature disentanglement to separate patient

personality features and common epilepsy features (Zhang et al.,

2020; Zhao et al., 2022). Some other methods applied meta-

learning for the cross-patient problem, such as MUPS (Meta

Update Strategy; Zhu et al., 2020) and MLCL (meta-learning on

constrained transfer learning; Duan et al., 2020). Some works

have also used domain adaptation (He and Wu, 2020; Nasiri

and Clifford, 2021; Xia et al., 2022) or domain generalization

(Ayodele et al., 2020) with multiple datasets to improve the model’s

generalization ability. Our work mainly explores spiking neural

networks for cross-patient seizure detection, which are orthogonal

to these methods. In this paper, we consider combining the cross-

patient methods from our previous work (Zhang et al., 2023),

including the data augmentation and adversarial strategy (see

Section 3 for details).

2.2 Spiking neural networks

As the third generation of neural networks (Maass, 1997), SNNs

have gained increasing attention recently due to their inherent

energy-efficient computation (Lee et al., 2016) and efficient brain

modeling (Kasabov, 2014). SNNs are applied in numerous fields,

including computer vision (Xiao et al., 2021; Xiao M. et al., 2022;

Niu et al., 2023), speech recognition (Wu et al., 2020; Auge et al.,

2021), natural language processing (Xiao R. et al., 2022), brain

modeling (application; Gütig, 2016; Sahu and Dash, 2023), etc.

However, the performance of SNNs remains limited compared

with ANNs, and the training of SNNs is much harder due to
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FIGURE 2

Two kinds of epileptic seizure detection settings. The green block represents the training set, and the yellow block represents the testing set. (A)

Traditional setting for epileptic seizure detection, where the detection models are trained and tested on the same patients. (B) Cross-patient epileptic

seizure detection, where the training patients and testing patients are di�erent.

the non-differentiable spiking neuron model. Researchers have

made lots of efforts to improve SNNs from both the network

structure (Gu et al., 2020; Lotfi Rezaabad and Vishwanath, 2020;

Comşa et al., 2021; Fang et al., 2021a; Kamata et al., 2022;

Zhang et al., 2022) and the training method (Kim and Panda,

2021; Li et al., 2021; Perez-Nieves and Goodman, 2021; Xiao

et al., 2021, 2023; Xiao M. et al., 2022). However, SNNs still

fail to beat their ANN counterparts in performance. It is worth

noting that most of the existing comparative experiments are

conducted on tasks where ANNs perform well, such as computer

vision, and many SNN model architectures are also based on

existing ANN structures. So, it is essential to explore what kind

of tasks SNNs are suitable for and what kind of SNN can

better play on its unique advantages. Our work explores the

novel application of SNNs on cross-patient seizure detection

and broadens the real-world application of SNNs with better

performance.

There are also some works that use spiking neural networks

for epilepsy tasks. Zarrin et al. (2020) used feedforward

spiking convolutional neural network for intracranial

electroencephalography (iEEG) seizure detection under patient-

specific setting, while Burelo et al. (2022) aimed at detecting

epileptic high-frequency oscillations, using a fully connected

feedforward spiking neural network under a patient-specific

setting. Yang et al. (2023) applied a spiking convLSTM model for

epilepsy seizure detection. However, these works are different from

our settings, data/tasks, or model architecture. In particular, our

work focuses on the cross-patient (patient-independent) setting,

and we compared the performance of EESNN with various SNN

architectures in Section 4.2.2 and found that our architecture has

better performance.

3 Methods

In this section, we elaborate on two aspects of our method to

solve the cross-patient seizure detection problem: the first is about

SNN architecture with training methods, and the second is about

other cross-patient algorithms except SNN.

3.1 SNN architecture and training methods

3.1.1 Leaky integrate-and-fire neuron
Spiking neurons are inspired by biological neurons in the

human brain, which is different from artificial neural networks. The

difference between SNNs and ANNs mainly lies in two properties.

Firstly, the spiking neuron uses a differential equation to maintain

membrane potential and integrates the input signal. When the

membrane potential reaches the threshold, it sends out a binary

spiking signal. Secondly, the temporal binary spike train is used

for information propagation between the spiking neurons, and the

input and output of the neurons are both spike trains.

The leaky integrate and fire (LIF) model is the commonly used

spiking neuron model. The dynamic of the membrane potential is

described as shown in Equation (1):

τm
du

dt
= −(u− ureset)+ R · I(t), u < Vth (1)

where u represents the membrane potential, I represents the input

current, vth represents the firing threshold, and R and τm represent

the resistance and leakage terms, respectively.When u reaches vth at

time tf , the neuron fires a spike and resets themembrane potential u
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to ureset , which is often set to 0. The spike train emitted by a neuron

can be represented by the Dirac function s(t) =
∑

tf
δ(t − tf ). In

practice, we simulate spiking neurons with discretization. Neurons

are connected by weights w, and we consider the simple current

model Ij[t] =
∑

i wijsi[t] + bj. The discrete computational form is

described as shown in Equation (2):















uj[t + 0.5] = λuj[t]+
∑

i wijsi[t]+ bj,

sj[t + 1] = H(uj[t + 1]− Vth),

uj[t + 1] = uj[t + 0.5]− Vthsj[t + 1],

(2)

Where H(x) is the Heaviside step function, i.e., the non-

differentiable spiking function, si[t] is the binary spike train of

neuron i, and λ is a leaky term related to the constant τm and

discretization time interval for the LIF model. We use subtraction

as the soft reset.

3.1.2 EEG-based recurrent convolutional spiking
neural network

We propose an EESNN model based on SNNs to automatically

detect the seizures, as shown in Figure 3. EEG signals can be treated

as an input current for SNNs (Zhang and Li, 2020; Xiao et al.,

2021). There are hidden layers that consist of LIF neurons in

an EESNN. Compared with common feedforward networks, the

EESNN model adds a feedback connection from the last hidden

layer to the first layer. Such kind of recurrence can better leverage

temporal information from previous time steps at the network level,

apart from the neuron level of SNNs, which may better handle

time series data. Feedback connections are also shown beneficial to

various tasks in previous works (Xiao et al., 2021; Yin et al., 2021;

Kim et al., 2022; Xiao M. et al., 2022).

Finally, an output layer with readout neurons will perform

classification. Formally, the inputs are connected to the first hidden

layer with weight F1, the (l−1)-th layer is connected to the l-th layer

with weights Fl, and the last hidden layer is connected to the first

hidden layer with weight W1. Let ul(t) and sl(t) be the output of l-

th layer and x(t) be the input. This paper usesH groups of different

spiking neurons to form the corresponding H layer. The discrete

updating equation of model membrane potential is described as

shown in Equation (3):

{

u1[t + 1] = λu1[t]+W1sH [t]+ F1x[t]+ b1 − Vths
1[t + 1],

ul+1[t + 1] = λul+1[t]+ Fl+1sl[t + 1]+ bl+1 − Vths
l+1[t + 1], l = 1, 2, · · · ,H − 1.

(3)

In addition, an EESNN uses a two-dimensional convolutional

structure (i.e., the linear operations W1 and Fi are convolutions),

which is also adopted by many deep learning methods for seizure

detection. Specifically, the input is formulated in a similar form

to images, where the two dimensions correspond to the time

dimension of an EEG and the electrode channels, and the “channel”

in the context of images is 1. The convolution will perform

transformations on both the spatial and temporal information of

EEG signals. When it comes to the setting of SNNs, we should

consider the additional temporal dimension of SNNs. There are two

ways to consider the time. First, we can map the time dimension of

EEG signals (i.e., the product of time window size and frequency)

to one dimension in convolutional operations as introduced above,

considering the time steps of SNNs as a separate dimension, with

constant replicated inputs at each time step. Second, we may split

the time of EEG signals as T = t1 × t2, where t1 represents a small

time slide and t2 represents a global number of time slides, and

map each time slide to one dimension in convolutional operations

while setting the time steps of SNNs as t2. We present the results of

different time settings in Section 4.

For the final classification, the output layer of an EESNN is

composed of one neuron, and we assume that it will not spike

or reset (different from hidden neurons) but use the accumulated

membrane potential to perform classification. The membrane

potential will go through a sigmoid function to obtain the

probability of whether it is a seizure. We classify it as a seizure if

this probability is >50%, i.e., it is more likely to be a seizure than

a non-seizure, which is commonly used for deep learning methods.

During inference, this can also be simplified that if the accumulated

membrane potential is positive, then it is classified as seizure.

3.1.3 SNN training methods
3.1.3.1 Implicit di�erentiation on the equilibrium state

(IDE) method

We first consider the Implicit Differentiation on the

Equilibrium state (IDE) method (Xiao et al., 2021) for SNN

training. It decouples the forward and backward computational

graphs, where the forward seeks to find the equilibrium state, and

the backward seeks to find the implicit differentiation and gradient

of the equilibrium state equation. Therefore, common SNN

training problems can be avoided, such as non-differentiability

during forward calculation, large memory overhead caused by

storage of computational graph for backpropagation, etc.

The equilibrium state of the multi-layer EESNN with ureset can

be described as follows:

Proposition 1. (Xiao et al., 2021): If the weighted average inputs

x̂[t] =
∑t

τ=1 λt−τ x[τ ]
∑t

τ=1 λt−τ
converge to an equilibrium point x̂[t] → x∗,

and there exists γ ≤ 1 such that ‖W1‖2‖F
N‖2 · · · ‖F

2‖2 ≤ γ ‖Vth−

ureset‖ ≤ γ (Vth − ureset)
N , then the weighted average spiking

probability of multi-layer FSNN with discrete LIF model α[t] =
∑t

τ=1 λt−τ s[τ ]
∑t

τ=1 λt−τ
will converge to equilibrium points αl[t] → αl∗,

which satisfy the fixed-point equations α1∗ = f1(fn◦· · ·◦f2(α
1∗, x∗))

and αl+1∗ = fl+1(α
l∗), where f1(α, x) = σ ( 1

Vth−ureset
(W1α + F1x +

b1)), fl(α) = σ ( 1
Vth−ureset

(Flα + bl)), and σ (x) = min(1,max(0, x)).

Let α∗ = fθ (α
∗) denote the fixed point equation of equilibrium

state with the EESNN network parameter θ . If we take the

derivative of θ on both sides of the equation, we can get the

implicit differentiation (Bai et al., 2019):

(

I−
∂fθ (a

∗)
∂a∗

)

da∗

dθ
=

∂fθ (a
∗)

∂θ
.

According to the chain rule, the gradient of the loss function with

respect to the neural network parameters is as follows:

∂L(a∗)

∂θ
=

∂L(a∗)

∂a∗
∂a∗

∂fθ (a∗)

∂fθ (a
∗)

∂θ
= −

∂L(a∗)

∂a∗

(

J−1
gθ

∣

∣

a∗

)∂fθ (a
∗)

∂θ
,

where gθ (a) = fθ (a) − a, J−1
gθ

∣

∣

a∗
is the inverse Jacobian of gθ

evaluated at α∗. This calculation of the inverse Jacobian can be
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FIGURE 3

The structure of EESNN network. The network is composed of H hidden layers with feedforward connection weights F1, ..., FH, and there exists a

feedback connection from the top hidden layer to the bottom with weight W1. The output layer reads the last hidden layer with weight W0.

solved effectively by the linear equations:
(

JTgθ |a∗
)

x+
(

∂L(a∗)
∂a∗

)T
=

0, where T means the transpose operation. We can use Broyden’s

method (Bai et al., 2019; Xiao et al., 2021) or approximationmethod

with acceleration (Fung et al., 2022) to solve the equation.

3.1.3.2 Surrogate gradient method

There are other successful training methods for SNNs, and

we also consider the surrogate gradient (SG) method. In SNNs,

the binary spike train makes the back-propagation process non-

differentiable. To solve the difficult training of spiking neural

networks, researchers usually use the surrogate gradient methods

(Wu et al., 2018; Fang et al., 2021a; Deng et al., 2022) to replace the

non-differentiable terms with the derivative of a smooth function.

Specifically, the non-differentiable term ∂s
∂u can be replaced by

derivatives of piece-wise linear, sigmoid, or atan functions, whose

expressions are: h1(u) = 1
a1
sign

(

|u − Vth| ≤ a1
2

)

, h2(u) =

1
a2

exp((Vth−u)/a2)

[1+exp((Vth−u)/a2)]
2 , h3(u) = a3

2(1+( π
2 a3x)

2)
, where a1, a2, a3 are

hyperparameters.

SG is usually combined with the Backpropagation Through

Time (BPTT) framework (Werbos, 1990), which is an extension

of backpropagation to the temporal dimension. The gradients are

iteratively calculated based on backpropagation from both spatial

and temporal dimensions (Wu et al., 2018). There are also methods

that improve BPTT for temporally online training. For example,

online training through time (OTTT; Xiao M. et al., 2022) avoids

the drawback of BPTT to backpropagate through previous time

by tracking presynaptic traces of neurons so that gradients can be

online calculated at each time and can also archive competitive

performance.We will consider these methods with their commonly

adopted network structures as well as ourmodel in the experiments.

3.2 Other cross-patient algorithms

As introduced previously, there are several cross-patient

algorithms proposing techniques to improve deep learning

methods, which are orthogonal to network structures. We

considered combining our SNNmodel with the data augmentation

and adversarial strategy from our previous work (Zhang et al.,

2023).We briefly introduce them, and all experiments include these

techniques by default.

3.2.1 EEG data augmentation
As there is only a small sample size of seizure periods leading

to the class imbalance problem in real seizure datasets, EEG

data augmentation is an important technique for cross-patient

performance. Existing EEG data augmentation only considers the

temporal characteristics (Wei et al., 2019; Gómez et al., 2020; Peng

et al., 2022) and does not make good use of spatial information. Our

previous work (Zhang et al., 2023) designed the spatio-temporal
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EEG augmentation (STEA) for the training data, which can achieve

better performance than previous works. For any t-second EEG

signals x with c electrode channels, we calculated the mean and

variance matrix of the flattened vectors x̂ ∈ Rt×c and generated

new EEG signals through the multi-gaussian distribution. We

augmented training seizure data using STEA, which can largely

alleviate the class imbalance problem.

3.2.2 Adversarial strategy
Adversarial strategy (Zhang et al., 2023) aims at refining

feature extraction by minimizing individual characteristics so that

common features across different people are obtained for better

cross-patient generalization. Specifically, an adversarial patient

identity classifier will be added to the network, and with the

alternative training between the epilepsy detection model and

the identity discriminator under the adversarial objective (i.e.,

the discriminator is encouraged to classify identities while the

model is encouraged to confuse the discriminator), the end-

to-end feature extractor can well detect the seizure periods

while it cannot distinguish the patient’s identity. This training

strategy can make the feature extractor automatically extract the

individual-invariant features associated with epilepsy for cross-

patient improvement. After training, the neural network model

can extract common features among different patients, that is,

patients cannot be distinguished based on features. This patient-

invariant representation can be better generalized for unseen

patients, improving the cross-patient performance of the model.

We leveraged this adversarial identity classifier and training

strategy for our EESNN model.

3.3 Overall pipeline

The overall pipeline of our cross-patient seizure detection

method is as follows: we first conduct Spatial-Temporal-EEG-

Augmentation (STEA) on the EEG signals of the training set

(Section 4). Then, EEG signals are fed as current input into

spiking recurrent convolutional neural network EESNN (Section

3.1.2) with SNN training methods (Section 3.1.3) and adversarial

strategy (Section 3.2.2) for seizure-invariant feature extraction and

classification. The illustration of the overall method can be found

in Figure 4.

4 Experiments

4.1 Experimental setup

Seizure detection aims to distinguish whether the EEG in a

short time interval is in the ictal stage, so it is formulated as a binary

classification task. After splitting the whole EEG signals into short

segments with the same window size (t seconds), we get the EEG

segments and denote the available data as (xi, yi), i = 1, · · · ,N,

where N is the number of segments and yi ∈ {0, 1} is a class

label, with yi = 1 corresponding to a seizure period and yi = 0

corresponding to a non-seizure period. The EEG signal of the i-th

sample is denoted as xi ∈ R
T×C where C is the channel dimension

and T is the temporary dimension. The research goal is to design a

classifier to correctly distinguish whether the patient is on seizure

according to t-second EEG signal duration.

Specifically, we focus on cross-patient seizure detection in this

paper. Under the basic problem of seizure detection, the cross-

patient setting has a sample of M patients, where MD patients are

formodel training and otherMT patients are formodel testing, with

MD + MT = M. The value of M for different datasets is shown

in Table 1, and the value of MT is specified in the experiments,

i.e., the test patient number in Tables. Cross-patient settings are

the data pattern of actual medical treatment. Besides, cross-patient

seizure detection can be reproducible, and generalizable to future

patients.

In our experiments, except for the general setting, we also

consider “fine-tuning” settings. Since there are few patients

in the test set, we divide a small amount of data to fine-

tune the model for better generalization. This might also

correspond to some real-world situations when patients come

for treatment for the second time and doctors can collect their

data. “Fine-tuning” settings can also verify the flexibility of the

model to adapt to new patients. In the experiments below, we

consider both settings. The latter is marked as “fine-tuning”

in the results; other results belong to the former setting by

default.

For concrete experiments, we chose one public epilepsy

dataset, CHB-MIT (Shoeb and Guttag, 2010), and one clinical

epilepsy dataset, PKU1st. The CHB-MIT dataset collected by

Boston Children’s Hospital includes 23 patients’ EEG data with

a 256 Hz sampling frequency and 23 channels. It is the most

commonly used public dataset for EEG detection. The PKU1st

dataset is the latest EEG data collected by the Department of

Pediatrics, Peking University First Hospital, and approved by

the Ethics Committee of the Peking University First Hospital

(2021-225). The PKU1st dataset consists of EEG signals from

19 patients, the EEG sampling frequency is 500 Hz, and there

are 19 channels in EEG signals. The details of the two datasets

can be found in Table 1. More details can be found in the

Supplementary material.

There are several steps to preprocess raw EEG data before

training. Firstly, we conduct EEG data cleaning to remove

duplicate channels and invalid data. Secondly, we downsample

EEG signals to a lower frequency to reduce noise and memory

usage. Specifically, we downsample 256 to 64 Hz and downsample

500 to 50 Hz. Thirdly, we split the continuous EEG into many

short-time segments with ground-truth expert labels and set the

ratio of seizure and non-seizure segments number to be 1:5.

The EEG window length is usually selected between 2 and 12 s

arbitrarily.

In the comparison experiment, we keep the evaluation

setting the same as the compared method. Under the

leave-one-out setting, we employ N-fold cross-validation

to partition the EEG segments into training and testing

sets, where N is the patient number of a dataset. Thus,

it can better measure the overall capability of our

model.

In our experiments, four statistical indicators are

used for the performance evaluation of the proposed

method. Some indicators are defined as shown in
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FIGURE 4

The overall framework of our methods.

TABLE 1 The statistical information of two seizure datasets used in this work.

Datasets No. of
subjects

EEG
channels

Place method Sampling
frequency (Hz)

Seizure
(h)

Non
seizure (h)

Total
record (h)

CHB-MIT 23 21 International 10–20

system

256 3.26 964.59 967.85

PKU1st 19 19 International 10–20

system

500 0.99 72.18 73.17

Equations (4–7):

Sensitivity =
TP

TP + FN
, (4)

Specificity =
TN

TN + FP
, (5)

RAccuracy =
r · TP + TN

r · (TP + FN)+ TN + FP
, (6)

GMean =
√

Sensitivity× Specificity. (7)

We also use AUC (the area under the receiver

operating curve) as one of the metrics. In clinical

practice, the most concerned indicator is Sensitivity. In

addition, the balance of sensitivity and specificity is also

necessary, which can be reflected in the GMean and

RAccuracy.

Cross-patient seizure detection aims to classify the seizure and

non-seizure periods. The goal of this work is to build a reliable and

accurate seizure detection method to facilitate and accomplish the

diagnosis of epilepsy.
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4.2 Results

4.2.1 A representative example for cross-patient
seizure detection using our SNN

To illustrate the experiment setting and how the EESNN

facilitates well-behaved generalization ability, let us consider a one-

hidden-layer EESNN to detect seizure abnormalities in the cross-

patient setting.We use the PKU1st dataset and split the EEG signals

into many 2-s segments labeled as a seizure or not.

4.2.1.1 Training

For any 2-s EEG signal in a training set with 10 patients, the

time step of EESNN is set as 2. The input EEG signals is reshaped

into three-dimensional (3D) tensors (electrode channels × time

samples× 1).

TABLE 2 Comparison of performance between the state-of-the-art

artificial neural network and our spiking neural network in the

cross-patient epilepsy detection task (2-s, 9-person PKU1st dataset

without fine-tuning) under the same training setting.

Network
type

Sensitivity
(%)

AUC
(%)

GMean
(%)

Raccuracy
(%)

ANN 56.89 72.91 66.58 67.40

SNN 80.82 78.04 69.89 70.63

Bold means the better performance between ANN and SNN.

4.2.1.2 Inference (test)

The trained EESNN model is used to detect the seizure period

for another nine patients in the testing dataset which has no overlap

with training data.

4.2.1.3 Our method outperforms state-of-the-art ANN

methods

We compare the single-layer EESNN model with the existing

state-of-the-art ANN model (Ke et al., 2021; Zhang et al., 2023),

and the two methods are trained under the same setting. The

specific experimental results are shown in Table 2. Our spiking

neural network with only one layer still has good performance in

the cross-patient epilepsy detection task and exceeds the artificial

neural network. More comprehensive comparison experiments can

be seen in Section 4.2.3.

4.2.2 Evaluation of di�erent SNN architectures,
training methods, and time settings

In this section, we demonstrate how SNNs can be

applied to cross-patient seizure detection effectively.

Although in the previous section, SNNs showed a potentially

superior brain abnormality detection ability compared

to ANNs, not all SNNs perform well. This section will

explore how to effectively use SNNs to process brain

signals.

FIGURE 5

Evaluation of di�erent spiking neural networks, training methods, and time correspondences. (A, C) Used the CHB-MIT dataset under a 4 s time

window size with one test patient. (B, D) Used the PKU1st dataset under a 2 s time window size with nine test patients.
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TABLE 3 The comparison with existing cross-patient seizure methods.

Dataset Method Time window
size

Test patient
number

Sensitivity
(%)

AUC (%) GMean
(%)

RAccuracy
(%)

CHB-

MIT

First Seizures Model (Gómez et al.,

2020)†
4 1 78.48 – 88.53 89.18

SDG (Ayodele et al., 2020)† – – 71.45 - 73.69 73.73

AAN (Zhang et al., 2023)∗ 4 1 95.71 97.98 94.13 94.15

EESNN (ours)∗ 4 1 91.67 98.64 94.38 94.42

LSTMSNN (Yang et al., 2023)† 12 1 - 97.5 – –

EESNN (ours)∗ 12 1 86.29 99.52 92.15 92.35

CW-SRNet (Ke et al., 2021) 2 9 43.33 79.55 64.91 70.29

AAN (Zhang et al., 2023)∗ 2 9 61.31 88.23 74.58 76.02

EESNN (ours)∗ 2 9 65.70 79.21 71.15 71.38

IBA (Zhao et al., 2022)† 1 1 77.78 93.61 81.79 83.31

AAN (Zhang et al., 2023)∗ 1 1 92.43 93.80 85.71 86.40

EESNN (ours)∗ 1 1 83.04 94.11 82.79 83.98

MIDS+WGAN (Wei et al., 2019)† 5 1 74.08 – 82.76 83.27

CW-SRNet (Ke et al., 2021) 5 1 42.67 96.18 64.97 70.08

AAN (Zhang et al., 2023)∗ 5 1 99.74 97.56 93.54 93.73

EESNN (ours)∗ 5 1 94.34 95.66 92.79 92.81

PKU1st CW-SRNet (Ke et al., 2021) 5 1 2.91 62.75 16.58 48.71

ConvLSTM (Yang et al., 2022) 5 1 3.9 36.10 16.58 37.2

Dense CNN (Saab et al., 2020) 5 1 23.3 79.7 47.71 60.5

Dist-DCRNN (Tang et al., 2022)∗ 5 1 67.0 87.1 77.18 77.95

AAN (Zhang et al., 2023)∗ 5 1 83.50 86.59 83.11 83.11

EESNN (ours)∗ 5 1 81.55 84.20 82.32 82.32

CW-SRNet (Ke et al., 2021) 2 9 30.62 76.59 54.52 63.85

ConvLSTM (Yang et al., 2022) 2 9 22.97 50.66 42.59 50.98

Dense CNN (Saab et al., 2020) 2 9 41.63 64.98 58.27 61.6

Dist-DCRNN (Tang et al., 2022)∗ 2 9 47.8 70.8 62.61 64.9

AAN (Zhang et al., 2023)∗ 2 9 56.89 72.91 66.58 67.40

EESNN (ours)∗ 2 9 80.82 78.04 69.89 70.625

∗Means that these models’ results are under the same STEA data augmentation and PANN strategy as ours. †Means that these models’ results are derived directly from their papers, and other

results are reproduced by us with the standard training procedure. Bold means the best performance among different models.

We first analyzed the performance of different time settings.

We compared several time settings in EEG signals. The first

method maps the time dimension of EEG signals (i.e., the

product of time window size and frequency) to one dimension

in convolutional operations and considers the time steps of

SNNs as a separate dimension, with constant replicated inputs

at each time step, and we set time steps to be 12. In the

second method, we split the time of EEG signals as T = t1 ×

t2, where t1 represents a small time slide and t2 represents

a global number of time slides, and mapped each time slide

to one dimension in convolutional operations while setting the

time steps of SNNs as t2. The third method maps the time

dimension of EEG signals to one dimension in convolutional

operations and considers the time steps of SNNs as a separate

dimension that is set to be 2, which is the time setting in our

method. As Figure 5 shows, the third approach can achieve the

best performance. Compared with the first setting, our method

has superior performance, probably because fewer time steps can

introduce noise to increase generalization ability. In the seizure

detection task, a larger time step of the SNN does not guarantee

a better result.

Additionally, for the SNN architectures and training methods,

we compare several baseline models, including ALIF RSNN

(Yin et al., 2021) trained with BPTT, PLIFSpikingResNet (Fang

et al., 2021b) trained with BPTT, and SpikingVGG (Simonyan

and Zisserman, 2015) trained with online training through time

(OTTT; Xiao M. et al., 2022), with our method. The best

performance across all time settings is reported for all models.

As Figure 5 shows, EESNN trained with IDE (Xiao et al., 2021)

achieves the best performance.
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TABLE 4 The comparison with previous methods under the same training procedure and the finetune setting.

Dataset Method Time window
size

Test patient
number

Sensitivity
(%)

AUC (%) GMean
(%)

RAccuracy
(%)

CHB-

MIT

AAN+finetune (Zhang et al., 2023) 5 1 95.83 94.15 90.80 90.94

EESNN+finetune (ours) 5 1 98.40 99.85 98.81 98.82

AAN+finetune (Zhang et al., 2023) 4 1 99.37 98.23 87.32 88.05

EESNN+finetune (ours) 4 1 99.99 99.87 97.80 97.83

AAN+finetune (Zhang et al., 2023) 2 9 90.38 90.95 81.04 81.53

EESNN+finetune (ours) 2 9 84.95 96.64 90.60 90.80

PKU1st AAN+finetune (Zhang et al., 2023) 5 1 81.93 87.97 82.43 82.44

EESNN+finetune (ours) 5 1 78.31 98.74 87.66 88.22

AAN+finetune (Zhang et al., 2023) 2 9 82.24 84.99 76.06 76.29

EESNN+finetune (ours) 2 9 88.01 86.14 73.63 74 81

Bold means the better performance between ANN (AANmodel) and SNN (EESNNmodel) under the finetune setting.

4.2.3 Performance comparisons and analyses
To demonstrate the superior performance of our approach,

we also compare the performance with other popular cross-

patient seizure detection methods. We compare our method

to several baseline models, including MIDS+WGAN (Wei

et al., 2019), First Seizures model (Gómez et al., 2020), SDG

(Ayodele et al., 2020), CW-SRNet (Ke et al., 2021), Dist-

DCRNN (Tang et al., 2022), ConvLSTM (Yang et al., 2022),

and Dense CNN (Saab et al., 2020). Additionally, during

comparison, we kept experimental settings consistent with

theirs.

The brief descriptions of the 10 baseline models are as follows:

• MIDS+WGAN (Wei et al., 2019) starts with MIDS (the

merger of the increasing and decreasing sequences)

data prepossessing and WGAN (Wasserstein Generative

Adversarial Nets) data augmentation and then employs a

15-layer CNN architecture for cross-patient detection with

the standard training procedure.

• AAN (Zhang et al., 2023) uses the STEA data augmentation

and PANN training strategy, which is the same as our method,

and then employs a 16-layer CW-SRNet for cross-patient

detection.

• IBA (Zhao et al., 2022) is a kind ofmulti-view learningmethod

with feature disentanglement; each EEG sample has a window

size of 1 s with 50% overlapping, and it uses two GAN models

for cross-patient seizure detection under standard training

procedure.

• Dist-DCRNN (Tang et al., 2022) is a diffusion convolutional

recurrent neural network that can model the spatiotemporal

dependencies in EEGs. We reproduced the model with STEA

data augmentation and a PANN training strategy, which are

the same as our method.

• LSTMSNN (Yang et al., 2023) applies a spiking convLSTM

model after using a sliding window of 1 s with 50% overlap to

crop the EEG signals with AdamW optimizer under standard

training procedure.

• ConvLSTM (Yang et al., 2022) uses the convolutional

long short-term memory network for cross-patient

seizure detection. We reproduced it on the same

dataset under the cross-patient setting with the standard

training procedure.

• First Seizures model (Gómez et al., 2020) implements a

fully convolutional network (FCN) with a time-shift between

consecutive windows of 1/4 s for the seizure period of the

dataset and regularization strategies.

• SDG (Ayodele et al., 2020) uses the technique of supervised

domain generalization with additional much more datasets

for training. The backbone model is a CNN architecture for

feature extraction followed by an LSTM layer for seizure

detection.

• CW-SRNet (Ke et al., 2021) exploits a custom CNN

architecture composed of CW-Block with attention

mechanism and SE-Block. CW-SRNet is a non-cross-

patient (patient-specific) model with the state-of-the-art

performance. We reproduced it on the same dataset under the

cross-patient setting under standard training procedure.

• Dense CNN (Saab et al., 2020) exploits densely connected

inception network trained by imperfect but plentiful archived

annotations. We reproduced it on the same dataset under the

cross-patient setting under standard training procedure.

Tables 3, 4 show the performance comparisons between our

method and various methods. Compared with AAN (Zhang et al.,

2023), which was the previous state-of-the-art method and which

uses the same training setting as our model, our method can

improve the performance probably because our spiking recurrent

neural network can capture the biological information in EEG.

Moreover, compared with other machine learning methods, our

approach can achieve superior performance due to the effective

network structure, training method, adversarial strategy, and

special data augmentation. In particular, our EESNN model

achieves the best performance under the fine-tuning setting. The

method in this paper significantly improves the performance of

cross-patient epilepsy detection.

In addition, the leave-one-out result of cross-patient detection

on the CHB-MIT dataset is shown in Figure 6, where we select

each patient alone as the testing set and other patients for
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FIGURE 6

The leave-one-out (LOO) result of cross-patient detection on the CHB-MIT dataset. Patient IDs indicated on the X-axis are sorted by sensitivity.

TABLE 5 The average spiking probability in EESNNs per time step for all neurons.

Layer Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Average

Spiking probability 0.0018 0.0048 0.0054 0.0060 0.0062 0.0052

Our model is trained on the CHB-MIT dataset with 2 s window size and nine test patients.

TABLE 6 Comparison of computation cost and energy cost of di�erent

methods under CHB-MIT dataset with a 2 s window size and nine test

patients, where RNN is the corresponding ANN network to EESNN, and

the AAN model (Zhang et al., 2023) is the state-of-the-art network under

cross-patient seizure detection.

Network
type

Operation
number

Energy
consumption

(mJ)

Average
spiking

probability

EESNN 1.4× 108 1.4× 10−1 0.0052

RNN 2.6× 1010 1.2× 102 1

AAN (Zhang

et al., 2023)

1.6× 109 7.2× 100 1

Bold means the fewest computation cost and energy cost.

training. Among all patients, we have an average of 90.46%

sensitivity, 96.86% AUC, 91.44% GMean, and 91.68% RAccuracy

under 4 s EEG segments with a finetune setting. The single

result of each patient is shown in Figure 6 after sorting by

sensitivity, which indicates the powerful generalization ability of

our method.

4.2.4 Theoretical energy estimation
As for efficient neuromorphic computation, the energy and

computational costs are important statistics. We calculated

the average spiking probability per time step of our trained

model for inference [i.e., the total spike counts/(the number

of neurons * time steps)] and compared the theoretical

energy estimation following previous works (Yin et al., 2021;

Wu et al., 2021)citepwu2021tandem,yin2021accurate with the

state-of-the-art ANN model to demonstrate the advantage of

our SNN. For ANNs, every synaptic operation requires a MAC

(multiplication and accumulation) operation, while for event-

driven SNNs, it only requires an accumulate (AC) operation when

a spike is triggered. According to the 45 nm CMOS processor

(Horowitz, 2014), the energy for 32 bit FP MAC operation is

4.6 pJ and for AC operation it is 0.9 pJ, and we calculated the

theoretical estimation of energy cost for different models based

on it. As shown in Table 5, the average spiking probability is only

around 0.5%, indicating the sparsity of spikes as well as small

operation numbers and energy consumption. We calculated the

corresponding operation numbers for all synapses of the neuron

population and the energy consumption (i.e., the operation

number multiplied by energy for each one) in Table 6. The results

show that our EESNNmodel has several orders of magnitude lower

computation cost and energy consumption than ANN models,

which is beneficial for building an energy-efficient system.

4.2.5 Explanation experiments
To explore the interpretability of our model, we performed

an interpretable visualization experiment of EESNN through the

Grad-CAM technique (Selvaraju et al., 2017). Grad-CAM can

visually locate the important areas of the input that influence

the classification result of the model most via gradients, and it

can be used to show how our model infers a seizure. Figure 7A

shows the importance of each channel and each moment in seizure

EEG signals for seizure detection by our model, which is the

gradient of each position considering the classification output of
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FIGURE 7

(A) Gradient-based localization of one 4 s seizure EEG signal segment through EESNN, where the x-axis represents di�erent channels, and the y-axis

represents di�erent times. The important channels and temporal moments of each EEG signal segment are dark colors. (B) The corresponding raw

EEG signal where di�erent colors represent di�erent channels.

the model. The red color represents positive gradients, and the

blue color represents negative gradients. A darker color means

a larger absolute magnitude of the gradient, which indicates the

importance of this position identified by our model. As the EEG

signal uses a 4-s period with 64 HZ and 21 channels, the GramCAM

result in Figure 7A has 256 × 21 units. In Figure 7B, we show the

corresponding raw EEG signal in the CHB-MIT dataset, where

the channel order is consistent with Figure 7A, and different

colors represent different channels. This method may help to

discover some structures of the EEG data that indicate a seizure.

Additionally, we would like to mention that our work is mainly

aimed at assisting clinical diagnosis and does not intend to replace

explainable treatment. It may serve as a timely warning, which can

relieve the pressure on doctors.

5 Conclusion

This article introduces a brain-inspired spiking

neural network for cross-patient seizure detection. Our

proposed spike neural network structure EESNN may

better capture the bio-characteristics of EEG signals

and imitate the spiking signal processing in real brain

neurons, enabling performance improvement with low

energy costs. Moreover, this paper explores how the model

architecture, time correspondence, and training method

can make the spiking neural network more suitable for EEG

data processing.

Our work has found that brain-inspired SNNs can outperform

ANNs in epileptic seizure detection, especially showing better

generalization ability under the cross-patient experiment and

finetune setting experiment, which indicates that SNNs may be

better suitable for brain activity tasks. In existing works, SNNs

usually have a lacking performance compared to ANNs since

they mainly focus on computer vision tasks, while brain activity

data may be a better fit for SNNs. On the other hand, SNNs

can be implemented on dedicated hardware with high capacity

and low energy consumption; thus, our work has the potential

to build an accurate hardware-friendly, low-power neuromorphic

system.
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Comşa, I.-M., Versari, L., Fischbacher, T., and Alakuijala, J. (2021).
Spiking autoencoders with temporal coding. Front. Neurosci. 15, 712667.
doi: 10.3389/fnins.2021.712667

Daoud, H. and Bayoumi, M. A. (2019). Efficient epileptic seizure prediction
based on deep learning. IEEE Trans. Biomed. Circuits Syst. 13, 804–813.
doi: 10.1109/TBCAS.2019.2929053

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Deng, S., Li, Y., Zhang, S., and Gu, S. (2022). “Temporal efficient training of spiking
neural network via gradient re-weighting,” in International Conference on Learning
Representations.

Duan, T., Shaikh, M. A., Chauhan, M., Chu, J., Srihari, R. K., Pathak, A., et al.
(2020). Meta learn on constrained transfer learning for low resource cross subject EEG
classification. IEEE Access 8, 224791–224802. doi: 10.1109/ACCESS.2020.3045225

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and Tian, Y. (2021a). “Deep
residual learning in spiking neural networks,” in Advances in Neural Information
Processing Systems.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2021b).
“Incorporating learnable membrane time constant to enhance learning of spiking
neural networks,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision. doi: 10.1109/ICCV48922.2021.00266

Fung, S. W., Heaton, H., Li, Q., McKenzie, D., Osher, S., and Yin, W. (2022).
“JFB: Jacobian-free backpropagation for implicit networks,” in Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36, 6648–6656. doi: 10.1609/aaai.v36i6.20619

Ghosh-Dastidar, S., and Adeli, H. (2009). A new supervised learning algorithm for
multiple spiking neural networks with application in epilepsy and seizure detection.
Neural Netw. 22, 1419–1431. doi: 10.1016/j.neunet.2009.04.003

Ghosh-Dastidara, S., and Adeli, H. (2007). Improved spiking neural networks for
EEG classification and epilepsy and seizure detection. Integr. Comput. Aided Eng. 14,
187–212. doi: 10.3233/ICA-2007-14301

Gómez, C., Arbeláez, P., Navarrete, M., Alvarado-Rojas, C., Le Van Quyen,
M., and Valderrama, M. (2020). Automatic seizure detection based on
imaged-EEG signals through fully convolutional networks. Sci. Rep. 10, 1–13.
doi: 10.1038/s41598-020-78784-3

Gu, F., Sng, W., Taunyazov, T., and Soh, H. (2020). “Tactilesgnet: a spiking
graph neural network for event-based tactile object recognition,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Las Vegas, NV),
9876–9882. doi: 10.1109/IROS45743.2020.9341421

Gütig, R. (2016). Spiking neurons can discover predictive features by aggregate-label
learning. Science 351:aab4113. doi: 10.1126/science.aab4113

He, H., and Wu, D. (2020). Different set domain adaptation for brain-computer
interfaces: a label alignment approach. IEEE Trans. Neural Syst. Rehabil. Eng. 28,
1091–1108. doi: 10.1109/TNSRE.2020.2980299

He, J., Cui, J., Zhang, G., Xue, M., Chu, D., and Zhao, Y. (2022). Spatial-
temporal seizure detection with graph attention network and bi-directional lstm
architecture. Biomed. Signal Process. Control 78, 103908. doi: 10.1016/j.bspc.2022.
103908

Horowitz, M. (2014). “1.1 Computing’s energy problem (and what we can do
about it),” in IEEE International Solid-State Circuits Conference (ISSCC). (California).
doi: 10.1109/ISSCC.2014.6757323

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (Utah), 7132–7141. doi: 10.1109/CVPR.2018.
00745

Hu, X., Yuan, S., Xu, F., Leng, Y., Yuan, K., and Yuan, Q. (2020).
Scalp EEG classification using deep bi-lstm network for seizure detection.
Comput. Biol. Med. 124, 103919. doi: 10.1016/j.compbiomed.2020.
103919

Jia, S., Hou, Y., Shi, Y., and Li, Y. (2020). Attention-based graph resnet for motor
intent detection from raw EEG signals. arXiv preprint arXiv:2007.13484.

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1303564
https://www.frontiersin.org/articles/10.3389/fnins.2023.1303564/full#supplementary-material
https://doi.org/10.1109/SiPS.2018.8598447
https://doi.org/10.3390/app10124089
https://doi.org/10.1109/ICET.2016.7813209
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1007/978-3-030-86383-8_20
https://doi.org/10.1016/j.compbiomed.2020.103757
https://doi.org/10.1038/s41598-022-05883-8
https://doi.org/10.1016/0013-4694(58)90053-1
https://doi.org/10.3389/fnins.2021.712667
https://doi.org/10.1109/TBCAS.2019.2929053
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/ACCESS.2020.3045225
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.1609/aaai.v36i6.20619
https://doi.org/10.1016/j.neunet.2009.04.003
https://doi.org/10.3233/ICA-2007-14301
https://doi.org/10.1038/s41598-020-78784-3
https://doi.org/10.1109/IROS45743.2020.9341421
https://doi.org/10.1126/science.aab4113
https://doi.org/10.1109/TNSRE.2020.2980299
https://doi.org/10.1016/j.bspc.2022.103908
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1016/j.compbiomed.2020.103919
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2023.1303564

Kamata, H., Mukuta, Y., and Harada, T. (2022). “Fully spiking variational
autoencoder,” in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36,
7059–7067. doi: 10.1609/aaai.v36i6.20665

Kasabov, N. K. (2014). Neucube: a spiking neural network architecture for mapping,
learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62–76.
doi: 10.1016/j.neunet.2014.01.006

Ke, N., Lin, T., and Lin, Z. (2021). “Channel-weighted squeeze-and-
excitation networks for epileptic seizure detection,” in 2021 IEEE 33rd
International Conference on Tools with Artificial Intelligence (ICTAI), 666–673.
doi: 10.1109/ICTAI52525.2021.00106

Ke, N., Lin, T., Lin, Z., Zhou, X.-H., and Ji, T. (2022). “Convolutional
transformer networks for epileptic seizure detection,” in Proceedings of the 31st
ACM International Conference on Information & Knowledge Management (Georgia),
4109–4113. doi: 10.1145/3511808.3557568

Kim, Y., Li, Y., Park, H., Venkatesha, Y., and Panda, P. (2022). “Neural architecture
search for spiking neural networks,” in European Conference on Computer Vision (Tel
Aviv: Springer), 36–56. doi: 10.1007/978-3-031-20053-3_3

Kim, Y., and Panda, P. (2021). Revisiting batch normalization for training low-
latency deep spiking neural networks from scratch. Front. Neurosci. 15, 773954.
doi: 10.3389/fnins.2021.773954

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep
spiking neural networks using backpropagation. Front. Neurosci. 10, 508.
doi: 10.3389/fnins.2016.00508

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S. (2021). “Differentiable
spike: rethinking gradient-descent for training spiking neural networks,” in Advances
in Neural Information Processing Systems, Vol. 34, 23426–23439.

Li, Y., Liu, Y., Cui, W.-G., Guo, Y.-Z., Huang, H., and Hu, Z.-Y. (2020).
Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-
and-excitation network. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 782–794.
doi: 10.1109/TNSRE.2020.2973434

Lotfi Rezaabad, A., and Vishwanath, S. (2020). “Long short-term memory spiking
networks and their applications,” in International Conference on Neuromorphic Systems
2020, 1–9. doi: 10.1145/3407197.3407211

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)00011-7

Mormann, F., Andrzejak, R. G., Elger, C. E., and Lehnertz, K. (2007). Seizure
prediction: the long and winding road. Brain 130, 314–333. doi: 10.1093/brain/awl241

Nasiri, S., and Clifford, G. D. (2021). Generalizable seizure detection model using
generating transferable adversarial features. IEEE Signal Process. Lett. 28, 568–572.
doi: 10.1109/LSP.2021.3060967

Niu, L.-Y., Wei, Y., Liu, W.-B., Long, J.-Y., and Xue, T.-H. (2023). Research
progress of spiking neural network in image classification: a review. Appl. Intell. 1–25.
doi: 10.1007/s10489-023-04553-0

O’Shea, A., Lightbody, G., Boylan, G., and Temko, A. (2020). Neonatal seizure
detection from rawmulti-channel EEG using a fully convolutional architecture.Neural
Netw. 123, 12–25. doi: 10.1016/j.neunet.2019.11.023

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards
artificial general intelligence with hybrid tianjic chip architecture.Nature 572, 106–111.
doi: 10.1038/s41586-019-1424-8

Peng, R., Zhao, C., Jiang, J., Kuang, G., Cui, Y., Xu, Y., et al. (2022). TIE-EEGNet:
temporal information enhanced EEGnet for seizure subtype classification. IEEE Trans.
Neural Syst. Rehabil. Eng. 30, 2567–2576. doi: 10.1109/TNSRE.2022.3204540

Perez-Nieves, N., and Goodman, D. (2021). Sparse spiking gradient descent. Adv.
Neural Inform. Process. Syst. 34, 11795–11808.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion
of continuous-valued deep networks to efficient event-driven networks for image
classification. Front. Neurosci. 11, 682. doi: 10.3389/fnins.2017.00682

Saab, K., Dunnmon, J., Ré, C., Rubin, D., and Lee-Messer, C. (2020).
Weak supervision as an efficient approach for automated seizure detection in
electroencephalography. NPJ Digit. Med. 3, 59. doi: 10.1038/s41746-020-0264-0

Sahu, R., and Dash, S. R. (2023). “Detection of brain abnormalities from
spontaneous electroencephalography using spiking neural network,” in Intelligent
Technologies: Concepts, Applications, and Future Directions, Volume 2 (Singapore:
Springer), 123–143. doi: 10.1007/978-981-99-1482-1_6

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra,
D. (2017). “Grad-cam: visual explanations from deep networks via gradient-based
localization,” in Proceedings of the IEEE International Conference on Computer Vision
(Venice), 618–626. doi: 10.1109/ICCV.2017.74

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95.
doi: 10.3389/fnins.2019.00095

Shan, H., Feng, L., Zhang, Y., Yang, L., and Zhu, Z. (2023). Compact seizure
detection based on spiking neural network and support vector machine for
efficient neuromorphic implementation. Biomed. Signal Process. Control 86, 105268.
doi: 10.1016/j.bspc.2023.105268

Shen, M., Wen, P., Song, B., and Li, Y. (2023). Real-time epilepsy seizure
detection based on EEG using tunable-q wavelet transform and convolutional
neural network. Biomed. Signal Process. Control 82, 104566. doi: 10.1016/j.bspc.2022.
104566

Shoeb, A. H., and Guttag, J. V. (2010). “Application of machine learning to epileptic
seizure detection,” in Proceedings of the 27th International Conference on Machine
Learning (ICML-10) (Haifa), 975–982.

Simonyan, K., and Zisserman, A. (2015). “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning Representations
(San Diego, CA).

Sun, Y., Jin, W., Si, X., Zhang, X., Cao, J., Wang, L., et al. (2022). Continuous seizure
detection based on transformer and long-term IEEG. IEEE J. Biomed. Health Inform.
26, 5418–5427. doi: 10.1109/JBHI.2022.3199206

Tang, S., Dunnmon, J., Saab, K. K., Zhang, X., Huang, Q., Dubost, F., et al. (2022).
“Self-supervised graph neural networks for improved electroencephalographic seizure
analysis,” in International Conference on Learning Representations.

Wang, J., Liang, S., He, D., Wang, Y., Wu, Y., and Zhang, Y. (2020). “A
sequential graph convolutional network with frequency-domain complex network
of EEG signals for epilepsy detection,” in 2020 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), 785–792. doi: 10.1109/BIBM49941.2020.
9313232

Wei, Z., Zou, J., Zhang, J., and Xu, J. (2019). Automatic epileptic EEG
detection using convolutional neural network with improvements in time-
domain. Biomed. Signal Process. Control 53, 101551. doi: 10.1016/j.bspc.2019.
04.028

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.
Proc. IEEE 78, 1550–1560. doi: 10.1109/5.58337

World Health Organization (2016). A Report About Epilepsy. Available online at:
https://www.who.int/news-room/fact-sheets/detail/epilepsy

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. (2021). “A tandem learning
rule for effective training and rapid inference of deep spiking neural networks,” in IEEE
Transactions on Neural Networks and Learning Systems.

Wu, J., Yılmaz, E., Zhang, M., Li, H., and Tan, K. C. (2020). Deep spiking neural
networks for large vocabulary automatic speech recognition. Front. Neurosci. 14, 199.
doi: 10.3389/fnins.2020.00199

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Xia, K., Deng, L., Duch, W., and Wu, D. (2022). Privacy-preserving domain
adaptation for motor imagery-based brain-computer interfaces. IEEE Trans. Biomed.
Eng. 69, 3365–3376. doi: 10.1109/TBME.2022.3168570

Xiao, M., Meng, Q., Zhang, Z., He, D., and Lin, Z. (2022). “Online training through
time for spiking neural networks,” in Advances in Neural Information Processing
Systems.

Xiao, M., Meng, Q., Zhang, Z., Wang, Y., and Lin, Z. (2021). “Training feedback
spiking neural networks by implicit differentiation on the equilibrium state,” in
Advances in Neural Information Processing Systems. New Orleans, LA.

Xiao, M., Meng, Q., Zhang, Z., Wang, Y., and Lin, Z. (2023). Spide: a purely spike-
based method for training feedback spiking neural networks. Neural Netw. 161, 9–24.
doi: 10.1016/j.neunet.2023.01.026

Xiao, R., Wan, Y., Yang, B., Zhang, H., Tang, H., Wong, D. F., et al.
(2022). Towards energy-preserving natural language understanding with spiking
neural networks. IEEE/ACM Trans. Audio Speech Lang. Process. 31, 439–447.
doi: 10.1109/TASLP.2022.3221011

Yang, Y., Eshraghian, J. K., Truong, N. D., Nikpour, A., and Kavehei, O. (2023).
Neuromorphic deep spiking neural networks for seizure detection.Neuromor. Comput.
Eng. 3, 014010. doi: 10.1088/2634-4386/acbab8

Yang, Y., Truong, N. D., Maher, C., Nikpour, A., and Kavehei, O. (2022).
Continental generalization of a human-in-the-loop ai system for clinical
seizure recognition. Expert Syst. Appl. 207, 118083. doi: 10.1016/j.eswa.2022.
118083

Yin, B., Corradi, F., and Bohté, S. M. (2021). Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks. Nat. Mach. Intell. 3,
905–913. doi: 10.1038/s42256-021-00397-w

Zarrin, P. S., Zimmer, R., Wenger, C., and Masquelier, T. (2020). “Epileptic
seizure detection using a neuromorphic-compatible deep spiking neural network,”
in Bioinformatics and Biomedical Engineering: 8th International Work-Conference,
IWBBIO 2020 (Granada: Springer), 389–394. doi: 10.1007/978-3-030-45385-5_34

Zhang, J., Dong, B., Zhang, H., Ding, J., Heide, F., Yin, B., et al. (2022). “Spiking
transformers for event-based single object tracking,” in Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition (NewOrleans, LA), 8801–8810.
doi: 10.1109/CVPR52688.2022.00860

Zhang, W. and Li, P. (2020). Temporal spike sequence learning via
backpropagation for deep spiking neural networks. Adv. Neural Inform. Process. Syst.
33, 12022–12033.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1303564
https://doi.org/10.1609/aaai.v36i6.20665
https://doi.org/10.1016/j.neunet.2014.01.006
https://doi.org/10.1109/ICTAI52525.2021.00106
https://doi.org/10.1145/3511808.3557568
https://doi.org/10.1007/978-3-031-20053-3_3
https://doi.org/10.3389/fnins.2021.773954
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/TNSRE.2020.2973434
https://doi.org/10.1145/3407197.3407211
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1093/brain/awl241
https://doi.org/10.1109/LSP.2021.3060967
https://doi.org/10.1007/s10489-023-04553-0
https://doi.org/10.1016/j.neunet.2019.11.023
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1109/TNSRE.2022.3204540
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1038/s41746-020-0264-0
https://doi.org/10.1007/978-981-99-1482-1_6
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1016/j.bspc.2023.105268
https://doi.org/10.1016/j.bspc.2022.104566
https://doi.org/10.1109/JBHI.2022.3199206
https://doi.org/10.1109/BIBM49941.2020.9313232
https://doi.org/10.1016/j.bspc.2019.04.028
https://doi.org/10.1109/5.58337
https://www.who.int/news-room/fact-sheets/detail/epilepsy
https://doi.org/10.3389/fnins.2020.00199
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1109/TBME.2022.3168570
https://doi.org/10.1016/j.neunet.2023.01.026
https://doi.org/10.1109/TASLP.2022.3221011
https://doi.org/10.1088/2634-4386/acbab8
https://doi.org/10.1016/j.eswa.2022.118083
https://doi.org/10.1038/s42256-021-00397-w
https://doi.org/10.1007/978-3-030-45385-5_34
https://doi.org/10.1109/CVPR52688.2022.00860
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2023.1303564

Zhang, X., Yao, L., Dong, M., Liu, Z., Zhang, Y., and Li, Y. (2020). Adversarial
representation learning for robust patient-independent epileptic seizure detection.
IEEE J. Biomed. Health Inform. 24, 2852–2859. doi: 10.1109/JBHI.2020.2971610

Zhang, Z., Ji, T., Xiao, M., Wang, W., Yu, G., Lin, T., et al. (2023). Cross-
patient automatic epileptic seizure detection using patient-adversarial neural networks
with spatio-temporal EEG augmentation. Biomed. Signal Process. Control 89, 105664.
doi: 10.1016/j.bspc.2023.105664

Zhao, Y., Zhang, G., Zhang, Y., Xiao, T., Wang, Z., Xu, F., et al. (2022). Multi-view
cross-subject seizure detection with information bottleneck attribution. J. Neural Eng.
19, 046011. doi: 10.1088/1741-2552/ac7d0d

Zhu, Y., Saqib, M., Ham, E., Belhareth, S., Hoffman, R., and Wang, M. D.
(2020). “Mitigating patient-to-patient variation in EEG seizure detection using meta
transfer learning,” in 2020 IEEE 20th International Conference on Bioinformatics and
Bioengineering (BIBE) (IEEE),

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2023.1303564
https://doi.org/10.1109/JBHI.2020.2971610
https://doi.org/10.1016/j.bspc.2023.105664
https://doi.org/10.1088/1741-2552/ac7d0d
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Efficient and generalizable cross-patient epileptic seizure detection through a spiking neural network
	1 Introduction
	2 Related work
	2.1 Automatic seizure detection
	2.2 Spiking neural networks

	3 Methods
	3.1 SNN architecture and training methods
	3.1.1 Leaky integrate-and-fire neuron
	3.1.2 EEG-based recurrent convolutional spiking neural network
	3.1.3 SNN training methods
	3.1.3.1 Implicit differentiation on the equilibrium state (IDE) method
	3.1.3.2 Surrogate gradient method


	3.2 Other cross-patient algorithms
	3.2.1 EEG data augmentation 
	3.2.2 Adversarial strategy

	3.3 Overall pipeline

	4 Experiments
	4.1 Experimental setup
	4.2 Results
	4.2.1 A representative example for cross-patient seizure detection using our SNN
	4.2.1.1 Training
	4.2.1.2 Inference (test)
	4.2.1.3 Our method outperforms state-of-the-art ANN methods

	4.2.2 Evaluation of different SNN architectures, training methods, and time settings
	4.2.3 Performance comparisons and analyses
	4.2.4 Theoretical energy estimation
	4.2.5 Explanation experiments


	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


