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Response to photic stimulation as
a measure of cortical excitability
in epilepsy patients
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Andre D. H. Peterson2

1Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia,
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Studying states and state transitions in the brain is challenging due to nonlinear,

complex dynamics. In this research, we analyze the brain’s response to non-

invasive perturbations. Perturbation techniques o�er a powerful method for

studying complex dynamics, though their translation to human brain data is under-

explored. This method involves applying small inputs, in this case via photic

stimulation, to a system and measuring its response. Sensitivity to perturbations

can forewarn a state transition. Therefore, biomarkers of the brain’s perturbation

response or “cortical excitability” could be used to indicate seizure transitions.

However, perturbing the brain often involves invasive intracranial surgeries or

expensive equipment such as transcranial magnetic stimulation (TMS) which is

only accessible to a minority of patient groups, or animal model studies. Photic

stimulation is a widely used diagnostic technique in epilepsy that can be used

as a non-invasive perturbation paradigm to probe brain dynamics during routine

electroencephalography (EEG) studies in humans. This involves changing the

frequency of strobing light, sometimes triggering a photo-paroxysmal response

(PPR), which is an electrographic event that can be studied as a state transition to

a seizure state. We investigate alterations in the response to these perturbations

in patients with genetic generalized epilepsy (GGE), with (n = 10) and without

(n = 10) PPR, and patients with psychogenic non-epileptic seizures (PNES;

n = 10), compared to resting controls (n = 10). Metrics of EEG time-

series data were evaluated as biomarkers of the perturbation response including

variance, autocorrelation, and phase-based synchrony measures. We observed

considerable di�erences in all group biomarker distributions during stimulation

compared to controls. In particular, variance and autocorrelation demonstrated

greater changes in epochs close to PPR transitions compared to earlier stimulation

epochs. Comparison of PPR and spontaneous seizure morphology found them

indistinguishable, suggesting PPR is a valid proxy for seizure dynamics. Also, as

expected, posterior channels demonstrated the greatest change in synchrony

measures, possibly reflecting underlying PPR pathophysiologic mechanisms. We

clearly demonstrate observable changes at a group level in cortical excitability in

epilepsy patients as a response to perturbation in EEG data. Our work re-frames

photic stimulation as a non-invasive perturbation paradigm capable of inducing

measurable changes to brain dynamics.
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1 Introduction

Understanding brain function is challenging due to its’

nonlinear, complex dynamics. Methods from statistical physics and

dynamical systems theory have been successful in characterizing

other complex, nonlinear systems, including ecological population

changes (Sugihara et al., 2012), weather (Peters and Neelin, 2006),

and economics (Lux and Marchesi, 1999). These theories have also

been successfully applied to the study of the brain, usually in animal

models or using invasive procedures, including the study of brain

state transitions in epilepsy patients (Kalitzin et al., 2002; Da Silva

et al., 2003; da Silva and Harding, 2011; Maturana et al., 2020).

Epilepsy is a brain disease characterized by abnormal electrical

brain activity and unprovoked recurrent seizures, that occurs in

approximately 1% of the population (Fiest et al., 2017). These can

be detected in electroencephalography (EEG), and the transition

to seizure can be conceptualized as a critical transition (Da Silva

et al., 2003; Kramer et al., 2012; Jirsa et al., 2014). Metrics that

identify changes in system dynamics before these transitions, called

“early warning signs,” have been observed in the EEG of epilepsy

patients before seizures (Meisel et al., 2015; Maturana et al., 2020).

These include increased variance, autocorrelation, and sensitivity

to perturbation (a small external input) (Scheffer et al., 2009).

As a system approaches a state transition, it becomes more

sensitive to perturbations, such that it is slower to return to

equilibrium (Scheffer et al., 2009). Since increased sensitivity to

perturbation can forewarn a state transition, biomarkers of the

brain’s perturbation response or “cortical excitability” (Freestone

et al., 2011) could be used to track brain dynamics toward

transitions to different states, including seizure states or other

altered states of consciousness. Studying epilepsy in humans

often involves trying to capture seizures during brain recordings,

which can never be guaranteed and often requires long-term

recordings. Perturbation methods have the benefit of reliably

inducing responses of interest in real time. However, delivering

perturbations to the brain is generally invasive in practice, requiring

implantation of intracranial electrodes or other invasive devices.

Animal studies in mice have successfully used electrical stimulation

as a perturbation to track cortical excitability (Lamers et al.,

2022). In humans, perturbation studies have used a subset of

patients with focal epilepsy eligible for resection surgeries who

are undergoing monitoring to confirm the seizure onset zone,

where electrodes are placed strategically for that patient’s unique

seizure onset zone (Kalitzin et al., 2005; Cook et al., 2013; Bergey

et al., 2015; Wendling et al., 2016; Oderiz et al., 2019). Non-

invasive perturbation is also possible through technologies such as

transcranial magnetic stimulation (TMS) (Manganotti et al., 2013;

Ozdemir et al., 2021; Perellón-Alfonso et al., 2021), although this

technology is relatively expensive and the perturbation itself is

arguably diffuse and spatially non-specific.

Photic stimulation is a widely used diagnostic technique (Fisher

et al., 2022) that could be used as a non-invasive perturbation

paradigm to probe brain dynamics during routine EEG studies

in humans. It involves changing the frequency of strobing light,

sometimes triggering a photo-paroxysmal response (PPR), which

is an electroencephalographic event visible on EEG. Generally, its

primary clinical relevance is to diagnose photosensitive epilepsy,

although we argue that it offers a safe, inexpensive research

method for brain perturbation studies that is accessible to a

much broader range of people. Photosensitivity is prevalent in the

general population but is more common in those with epilepsy,

with photosensitivity being significantly associated with genetic

generalized epilepsy (GGE) (De Kovel et al., 2010). Photosensitivity

has been shown to have a strong genetic basis, with family

studies suggesting evidence of common gene loci in some subsets

of families, though these vary geographically and depending on

clinical phenotypes (De Kovel et al., 2010; Fisher et al., 2022).

Sex has also been shown to be a risk factor for photosensitivity

(Cerulli Irelli et al., 2023), with females exhibiting almost double the

prevalence compared to males, and most prominently presenting

during adolescence (Fisher et al., 2022). This highlights the

importance of investigating sub-groups of epilepsy patients where

possible, in investigations of photic stimulation.

Unlike stimulating the brain with electrodes or with TMS,

photic stimulation itself is input via the visual system of the

brain, engaging with the brain’s functionality in a more “natural,”

endogenous way. In previous studies, markers of critical transitions

have previously only been observed in patients with focal epilepsy;

we aim to observe them during the generalized PPR response.

Also, unlike previous studies, we aim to compare different epileptic

populations in order to compare how photic stimulation effects

these different groups, including patients with genetic generalized

epilepsy (GGE) who are photosensitive and GGE patients who

are not photosensitive, as well as patients with Psychogenic Non-

Epileptic Seizures (PNES) and healthy controls.

Kalitzin et al. (2002) and Parra et al. (2003) found increased

excitability in photosensitive individuals during stimulation using

a measure of phase clustering called relative phase clustering index

(rPCI). An extended study used rPCI to indicate greater probability

of epileptic seizures (Kalitzin et al., 2005). In another study, higher

visually evoked potential (VEP) amplitudes indicated greater

responses to photic stimulation in individuals with photosensitive

epilepsy compared to controls, especially in occipital areas (Wilkins

et al., 2004). In fact, individuals with photosensitive epilepsy

exhibited stronger suppression of visual perception after TMS over

the visual cortex, and had lower phosphene thresholds compared

to healthy controls, indicative of increased excitability of the visual

cortex.

Studies have used power spectrummeasures to indicate changes

in excitability. For instance, reduced inhibition of alpha rhythm

generating networks was associated with photosensitive epilepsy

(Vaudano et al., 2017), and stimulation via flashed chromatic

gratings induced alpha desynchronisation in posterior electrodes

(Haigh et al., 2018). Changes in power spectral density (PSD)

in lower frequencies have been demonstrated to predict seizures

from EEG recordings (Chu et al., 2017), which is consistent with

expectations of increased autocorrelation and has a theoretical

relationship with the power spectrum (Chatfield and Xing, 2019),

such that we may expect increased low frequency power and long-

range temporal associations. Therefore, increased spatial similarity

could also be a candidate EWS, that could be measurable via

synchrony measures like phase clustering and phase synchrony.

This is supported by findings of increased phase synchronization

in the gamma frequency range in EEG, being associated with
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TABLE 1 Summary of clinical data for participants in all groups.

GGE with PPR GGE without PPR PNES

Age∗ 13–28

(M = 18.4, SD = 4.54)

17–41

(M = 24.3, SD = 8.59)

16–58

(M = 35.3, SD = 13.27)

Sex 5F, 5M 8F, 2M 4F, 6M

Syndrome∗∗ 3 JAE

3 JME

1 CAE

2 GTCSO

1 GGE unspecified

3 JAE

3 JME

1 CAE

3 GTCSO

10 PNES

Seizure types∗∗∗ 2 Absence

1 Myoclonic

2 GTCS

3 GTCS + Absence

2 GTCS + Myoclonic

1 Absence

3 GTCS

3 GTCS + Absence

2 GTCS + Myoclonic

1 GTCS + Myoclonic + Absence

Non-Epileptic

ASMs∗∗∗∗ 1 LEV

2 VPA

3 LTG + VPA

4 None

2 VPA

4 LTG + VPA

1 LTG + Topiramate

1 LTG + VPA + Piracetam

2 None

10 None

∗Age at time of recording. ∗∗JAE, Juvenile Absence Epilepsy; JME, Juvenile Myoclonic Epilepsy; CAE, Childhood Absence Epilepsy; GTCSO, Generalized Tonic-Clonic Seizures Only; PNES,

Psychogenic Non-epileptic Seizures. ∗∗∗GTCS, Generalized Tonic-Clonic Seizure. ∗∗∗∗ASM, Anti-seizure Medication; LTG, Lamotrigine; VPA, Valproate; LEV, Levetiracetam.

increased neuronal excitability in epilepsy patients (Meisel et al.,

2015).

We extend these analyses by using the PPR and photic

stimulation from the perspective of dynamical systems theory.

We study the transition to PPR as a critical transition, and

expect to observe early warning signs prior to that transition. As

mentioned, we expect increased response to perturbation, variance,

and autocorrelation in the brain. The goal of this research is to

measure cortical excitability in epilepsy patients via a perturbation

response. In this case, the perturbation response is non-invasive

and in the form of photic stimulation, which is a commonly used

investigation in routine EEG studies. We hypothesize that we can

use photic stimulation as a perturbation method for observing

increased cortical excitability before PPR. We expect to observe

early warning signs of a PPR transition that are identifiable via

changes to a particular metric’s distribution over time. We analyse

distributions of statistical moments of the EEG timeseries as a data-

driven method for inferring changes to system dynamics, because

the underlying dynamics of brain activity are not observable. These

include changes in variance and autocorrelation function widths

of brain activity, as well as in phase-based synchrony measures. In

particular, we expect the greatest increases to be demonstrated in

the photosensitive GGE (PPR) group, just prior to a PPR, where

they likely experience heightened cortical excitability.

2 Methods

2.1 Participants

The study was conducted using data obtained retrospectively

from databases of the Department of Neurosciences, St. Vincent’s

Hospital, Melbourne, over the period May 2012–August 2022.

This included selected EEG recordings with photic stimulation

from 10 patients with genetic generalized epilepsy (GGE) and

photoparoxysmal response (PPR) used in a previous study

(Seneviratne et al., 2016), 10 GGE patients without PPR, and 10

patients with psychogenic non-epileptic seizures (PNES). Diagnosis

of GGE was established using International League Against

Epilepsy (ILAE) criteria (Scheffer et al., 2017). The diagnosis

of PNES was confirmed with the consensus of at least two

epilepsy specialists following video-EEG monitoring using criteria

from a previous study (Seneviratne et al., 2010). Clinical data

for all patients is summarized in Table 1, with a patient-specific

breakdown in Supplementary Table 1. The use of this data for

study was approved by the human research ethics committee of St

Vincent’s Hospital Melbourne, where the data was obtained.

2.1.1 Healthy controls
Healthy control EEG data was obtained from an open source

repository, originally described and analyzed in a study by

Torkamani-Azar et al. (2020). Control data included ten (six

female) healthy adults aged 22–45 (M = 30.25, SD = 6.95).

For each control subject, we analyzed 2.5 min of eyes-closed,

resting-state EEG. The eyes-closed condition was chosen for

consistency since our analysis focuses on stimulation epochs in

which participants were instructed to close their eyes. More

information regarding recordingmethod is provided in the original

study. Electrodes were selected to match our data, and sampling

rate was conserved. The same EEG pre-processing and measure

calculations were used for this control dataset.

2.2 Electroencephalography recording

Electroencephalography (EEG) data were acquired with

a Compumedics Grael 4K-EEG system (Compumedics Ltd.,

Melbourne, Australia) or Siesta 802 in the case of ambulatory
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recordings. Scalp electrodes were placed according to the

10–20 international system. All EEGs were recorded with a

bandwidth of 0.15–120 Hz, with a sampling rate of 256 Hz,

including provocation techniques such as hyperventilation

and intermittent photic stimulation (IPS) (as illustrated in

Figure 1). Photo-paroxysmal response (PPR) was identified

through visual inspection of the recordings, defined as

epileptiform discharges triggered by IPS visible on the

EEG. For clinical reasons, a number of participants, EEG

recordings were also continued for a full day recording

using the ambulatory recording system, sometimes capturing

spontaneous seizures.

For GGE (PPR) participants, the ordering of stimulation

frequencies often differed after their first PPR was observed;

stimulation frequencies were sometimes repeated in an attempt to

elicit PPR again, and sometimes alternated to high frequencies to

determine an upper sensitivity range, as is convention (Kasteleijn-

Nolst Trenité et al., 2012). It is not clear whether stimulation

order effects exist whether rest periods of approximately 30

seconds truly account for refractory effects of PPR (Brausch and

Ferguson, 1965). Therefore, in an attempt to control for these

confounding variables, we only analyzed data before the first PPR.

For GGE (no PPR) and PNES participants, stimulation frequency

ordering was the same. In order to account for confounding effects

of frequency-dependent responses, we only included stimulation

epochs up to 15Hz in GGE (no PPR) and PNES groups in our

analyses, as we observed PPR at or before 15Hz in all GGE

(PPR) participants.

2.3 Pre-processing

Analyses were performed by importing raw data files from

Profusion EEG 5 into MATLAB R2021a.

For variance and autocorrelation measures, we applied

bandpass filters between 0.5 and 70 Hz to reduce high frequency

artifact and remove DC drift. For phase-based measures, this

filtering step was ommitted, as more narrow bandpass filtering was

later applied to calculate the measure.

To normalize the data, we focused on making the majority

of the signal comparable between different channels with varying

ranges, allowing tail values but without being overly skewed by the

presence of artifacts distorting the re-normalized range. Therefore,

we applied z-score normalization using the native MATLAB

normalize function, using the medianiqr argument to

center the data at 0 and ensure an inter-quartile range of

1, with a window length of two seconds. In GGE (PPR)

participants, since only data before their first PPR was analyzed,

normalization was not affected by the high amplitude spiking

during PPR.

2.4 Measures

To capture the expected rapid dynamics, measures generally

used small windows with maximal overlap, and are described in

detail below.

2.4.1 Variance and autocorrelation function
width

Variance and autocorrelation function width (ACFW) were

calculated for each non-reference EEG channel (n = 19). The

variance of the signal was calculated for each channel with a

moving window of two seconds (512 samples), with overlapping

steps of 1 sample using the native MATLAB movvar function.

To measure the autocorrelation function width (ACFW), using

the same aforementioned window and overlap, the autocorrelation

function was first calculated usingMATLAB’s xcorr function, and

the width in samples was measured at the half prominence of the

function peak, centered at it’s maximum.

2.4.2 Phase-based synchrony measures
To calculate phase-based synchrony measures, we obtain the

phase-angle time series φ(t) (the instantaneous phase of each

sample in the time-series) by constructing an analytic signal where

the real component is the original time-series x(t), and the complex

component is the Hilbert transform of the real signal H[x(t)]. In

other words, the analytic signal is the product of the envelope and

instantaneous phase of the original timeseries,

xanalytic(t) = x(t)+ iH[x(t)] = A(t)eiφ(t). (1)

Note that this only holds if the original signal satisfies

Bedrosian’s Product Thoerem, which requires that the signal is

narrow-banded using a band-pass filter (Ktonas and Papp, 1980).

To do this, we filtered the normalized data using an elliptic

filter, which is a zero-phase filter that circumvents phase shifting

(Gustafsson, 1996). Specifically, a filter was constructed using

MATLAB’s designfilt function, using the bandpassiir

filter, with a filter order of 10, pass-band frequency limits according

to the upper and lower limits of standard EEG frequency bands

(delta: 1.5–4 Hz; theta: 4–8 Hz; alpha: 8–12 Hz; beta: 13–30

Hz; gamma: 30–70 Hz), a pass-band ripple of 3, and stop-band

attenuation of 40.

2.4.2.1 Relative phase

Cosine of the Relative Phase (CRP): Honari et al. (2021)

is calculated by taking the cosine of the instantaneous phase

difference between two channels: cos(1φ(t)), where φx(t) − φy(t)

obtained from the original channel timeseries x(t) and y(t) with

the method previously explained for a given frequency band. This

produces a measure ranging from −1 to 1, where magnitudes

close to 1 denote high synchrony. Values close to −1 also arguably

demonstrate a highly synchronous event, since this is produced

when there is a phase difference of exactly π , known as an anti-

phase relationship (Honari et al., 2021). Measures were considered

for each combination of non-reference channels (n = 19), resulting

in n(n− 1)/2 = 171 unique combinations of channels.

2.4.2.2 Global and posterior synchrony

We also calculated the average synchrony between sets of

channels using the average phase vector for a given sample. For

N oscillators, with instantaneous phases θj for j = 1, 2, ...N, their

position can be represented on the unit circle by eiθj . Then, the

complex number z is the average of their positions,
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FIGURE 1

Schematic of the photic stimulation procedure. Stimulation epochs last for 10 s with a 7 s rest in between. The frequency of subsequent stimulations

increase until a Photo-Paroxysmal Response (PPR) is triggered, and this activating frequency is designated the lower bound. Then, the technician

starts from a high frequency and decreases the frequency of subsequent stimulations until another PPR is triggered, and this frequency is designated

the upper bound. These lower and upper bounds are indicative of the range of frequencies that trigger a PPR response specific to that patient.

FIGURE 2

Each of 19 channels are shown on the unit circle as a blue dot,

representing the instantaneous phase for a given time sample. The

average phase is indicated by the direction of the red vector on the

unit circle, and it’s length corresponds to their similarity, where a

perfect alignment of phase would produce a length of 1, while a

uniform distribution around the circle would be 0.

z =
1

N

N∑

j=1

eiθj . (2)

We found the magnitude of z using MATLAB’s native abs

function; this produces a value from 0 to 1, where 0 represents

no synchrony, or a uniform distribution, and 1 represents all

phases being equal over all channels for a given time sample (see

Figure 2 for an illustration). We calculated the magnitude of the

average phase vector over all 19 channels and designate this global

synchrony, as well as over six posterior channels only (P3, P4, T5,

T6, O1, O2) and designate this posterior synchrony.

The magnitude of the mean phase vector can also be calculated

over an epoch of time. For N oscillators over an epoch containing S

samples, the instantaneous phases θj,k for channels j = 1, 2, ...N and

time samples k = 1, 2, ...S can be represented on the unit circle by

eiθj,k . Then, the complex number ẑ is the average of their positions,

ẑ =
1

N

1

S

S∑

k=1

N∑

j=1

eiθj,k . (3)

Again, the magnitude of this vector produces a value from 0 to

1, where 0 represents no synchrony, or a uniform distribution, and

1 results if all phases were equal between all channels over all time

samples in the epoch.

2.5 Analysis strategies and statistics

2.5.1 Clinical characteristics
Differences in ages between the four groups were evaluated

using a one-way ANOVA (using the anova1 function from

the MATLAB Statistics and Machine Learning Toolbox: SML). If

significance was observed, follow-up multiple comparisons were

evaluated using Tukey’s honestly significant difference (HSD)

procedure (by passing thestats struct returned from the ANOVA

into multcompare from the SML Toolbox).

Categorical clinical characteristics such as sex were examined

between all four groups using Pearson’s chi-squared test of

independence (using the crosstab function from SML).

Differences in ASM, syndrome, and seizure type(s) were also

evaluated using this test between the two GGE groups (with and

without PPR) only, since PNES participants were not taking ASMs

and were currently exhibiting non-epileptic seizures. Categories of

ASM and seizure type(s) were considered distinct for each unique

combination, as grouped in Table 1, since this allows for distinction

of combinations that may be clinically significant.

The aforementioned tests were deemed significant with a p-

value less than 0.05. Note that Tukey’s HSD procedure adjusts

p-values for pair-wise multiple comparisons automatically.
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2.5.2 The photo-paroxysmal response
We compared time-frequency spectrograms of PPR events and

spontaneous seizures for the four participants (P1, P2, P5, P6)

for which both events were available. To generate the spectra,

unfiltered epochs were fed to MATLAB’s spectrogram with

window size of 256 samples, overlap of 128, and transform (nfft)

length of 512 samples. Other PPR characteristics including PPR

count, duration, and lower and upper frequency bounds are also

measured for each participant.

2.5.3 Measures
To investigate the hypothesis that photic stimulation perturbs

brain dynamics toward a more excitable state that is measurable

via changes to timeseries measures, we compared distributions of

a number of measures during photic stimulation epochs compared

to a control distribution. Substantial deviations from the control

distribution suggests a shift in dynamics of the underlying system.

Photic stimulation distributions contained epochs before the

first PPR in the GGE (PPR) group, or before the 15 Hz stimulation

in the GGE (no PPR) and PNES groups. We also examined an

additional pre-PPR epoch distribution in the GGE (PPR) group

only, containing the closest full stimulation epoch before (i.e., not

overlapping) the first PPR event.

Since sufficient quality resting state data from the photic

stimulation recordings were not available, we compared our data to

distributions of healthy controls during eyes-closed, resting EEG.

To create the control distributions, we randomly sampled 10s

epochs from the full measure timeseries, with equal representation

from the individuals of the cohort. This constructed distribution

emulated the process of pooling 10s stimulation epochs in the

epileptic cohort groups.

Differences between pairs of group distributions were

evaluated using permutation-based hypothesis tests, which are

non-parametric tests that do not make assumptions about the

distribution of the data (Ernst, 2004). This process involves

creating a joint distribution of two considered groups, and

performing the test statistic of interest on random permutations

of the joint distribution (where each permutation is equally as

likely as another) to construct a distribution of test statistics

(n = 10, 000) that represents the null result distribution. The

test statistic between the original separate distributions is then

compared to the null distribution, where the p-value is the fraction

of permutation tests that are at least as extreme as that test statistic.

A pseudocount (addition of one to the fraction numerator) is

included to avoid p-values of zero (where the test statistic is never

surpassed by permutation values). This is possible because we

used a subset of the possible permutation set (though subsets of

sufficient size have been shown to be accurate) (Knijnenburg et al.,

2009). In our case, this single test statistic value was the average

value of a test distribution constructed from permutation subsets of

the two considered distributions. From the central-limit theorem,

this test statistic distribution will be normal with the mean at its

center. We created confidence intervals around this statistic by

extracting the 2.5th and 97.5th percentile of the test distribution.

We used the Kolmogorov-Smirnov test statistic for continuous

measures, which evaluates the difference between empirical

cumulative distribution functions (CDF), using rank-based

comparisons. This is appropriate considering variance and

synchrony measures demonstrated non-normal distributions

through inspection of q-q plots. The Kolmogorov-Smirnov test

identifies small differences in large datasets as significant even

when differences seem trivial (Riffenburgh, 2012); therefore,

permutation samples of size 500 were taken, in accordance with

sample size recommendations (Abadie, 2002). Chi-squared tests

were used as the test statistic for auto-correlation function width,

which is a discrete measure.

We also investigated whether measures of synchrony would

change with photic stimulation. The relative phase measure

contained significant degrees of freedom (unique channel pairs =

171, frequency bands = 5, resulting in 855 potential comparisons),

so we investigated whether factor analysis could reduce the

parameter space by identifying channels that demonstrated the

greatest variation. Factor analyses of the GGE (PPR) stimulation

epochs (using factoran from SML, with 5 component factors

to generate the maximum likelihood estimate) were carried out.

This analysis was performed for each frequency band separately to

investigate whether variation was also frequency-band dependent.

To further investigate whether measures varied by channel,

and whether this is apparent in posterior channels reflecting

underlying posterior pathophysiology, we compared posterior and

global synchrony distributions to the corresponding control

distributions. Differences were evaluated using the same

permutation based hypothesis tests described above, using

the two-sample Kolmogorov-Smirnov test as the test statistic, since

synchrony values are continuous.

Bonferroni correction, considered the most conservative

multiple-comparison correction, was carried out (the standard p-

value was divided by 56: a total of 12 comparisons for variance

and autocorrelation distributions, and 5 frequency bands x 4

distributions x 2 sets of channel groups in the synchrony analyses),

requiring a p-value less than 0.00096 for significance.

3 Results

3.1 Participant clinical characteristics

One-way ANOVA identified a difference in age between at least

two groups [F(3, 36) = 6.77, p < 0.001]. Post-hoc analyses

revealed that the following significant differences existed: the GGE

(PPR) group had lower ages compared to the PNES group [p <

0.001, 95% C.I. = (−27.77,−6.03)] and compared to controls

[p = 0.018, 95% C.I. = (−23.42,−1.68)]. The GGE (no PPR)

group also had lower ages compared to the PNES group [p < 0.046,

95% C.I. = (−21.87,−0.13)]. We did not reject the null hypothesis

that group and sex are independent [χ2(3) = 3.58, p = 0.31];

therefore, groups did not differ in sex ratio.

We also investigated whether ASM, syndrome, and seizure type

differed between the two GGE (with and without PPR) groups. We

did not reject the null hypothesis of independence between group

and ASM [χ2(5) = 3.81, p = 0.58], syndrome [χ2(4) = 3.53, p =

0.47], or seizure type [χ2(5) = 1.87, p = 0.87]; therefore, these

groups did not differ in the spread in these variables (see Table 1 for

a breakdown of categories).
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3.2 The photo-paroxysmal response

PPR featured spike-wave morphology in all channels and lasted

between 0.6-28 seconds (see Figure 3 for an example). As can be

seen in Table 2, GGE patients with PPR exhibited individualized

responses to photic stimulation, including differences in their

photosensitivity ranges as well as PPR length.

In four participants, spontaneous seizures were observed hours

after photic stimulation. We compared the transition to PPR events

and spontaneous seizures by their time-varying frequency spectra

by visual inspection (Figure 4). Though spectra varied according to

the individual, we observed changes to the distributions of power

per frequency bin at the transition, including increased power

especially in delta and theta frequencies. The spectral dynamics of

PPR and seizure transitions appear similar.

We inspected spectrograms over participants’ stimulation

trains and often observed increased power in the base frequency of

stimulation, as well as its harmonics (see Supplementary Figure 2).

We observed this in all participant groups during photic

stimulation. Comparison is difficult due to varying data quality

and different stimulation frequency ordering in the photosensitive

group. The visibility of these bursts of increased power varied

substantially by participant, though we report that it was most

visible in the occipital channels. Interestingly, they are found to

exist even during PPR (see Supplementary Figure 2A).

3.3 Measures

We examined whether measures could track individualized

responses to perturbations by examining the timeseries

of measure values from GGE (PPR) participants as a

PPR approaches.

3.3.1 Variance and autocorrelation
From inspecting individual stimulation trials, we observed an

increase in variance during stimulation epochs close to a PPR (see

Figure 5 and Supplementary Figure 3 for further examples).

We analyse whether these measures may track cortical

excitability using group-wise comparisons. To do this, we

compared the distributions of variance and autocorrelation

function widths (ACFW) during photic stimulation epochs

between groups. Values were pooled over all 19 electrode

channels and the 10 participants in each of the four groups.

We compared the cumulative distribution functions of these

measures to resting healthy controls, and observed a greater relative

proportion of high values in all groups during photic stimulation

(see Figure 6). Significant differences in empirical cumulative

distribution functions (CDF) was found compared to controls in

all groups during stimulation, as well as in the the GGE (PPR)

group just prior to their first PPR (“pre-PPR”), where cortical

excitability was hypothesized to be greatest (see Table 3 for a

breakdown of statistical test outputs). There was no significant

differences between the photosensitive GGE (PPR) group and the

non-photosenstive epilepsy groups.

3.3.2 Synchrony
3.3.2.1 Relative phase

To investigate whether changes in synchrony may indicate

increased cortical excitability, we constructed phase diagrams

of relative phase values in stimulation epochs leading to a

PPR. In some cases, we observed greater clustering in epochs

close to a PPR, indicating that a particular channel pair was

becoming more synchronous (marked also by longer mean

vector lengths, see Figure 7). However, clustering magnitudes

varied considerably between individuals and depending on

combinations of factors like channel pair, frequency band,

and time to PPR, suggesting considerable individual variation.

Magnitudes tended to correlate positively between frequency

bands, though lower frequency bands (delta, theta, alpha)

tended to have ranges extending to higher values, compared to

beta and gamma, which tended to have lower values overall,

likely related to different degrees of freedom from bandwidth

ranges.

To investigate whether certain channels may demonstrate

greater change in synchrony, a factor analysis was performed

on relative phase values during stimulation from the GGE

(PPR) participants. In this analysis, the data from each EEG

channel are assumed to depend on a linear combination of

latent components, which attempt to capture the variance of

the data along their axes, (similar to Principal Component

Analysis). Each channel’s factor loadings for each component axis

indicate the amount of variance in the data that was captured

along that component. The three dominant component factors

separated a subset of posterior channels, which demonstrated

the greatest variance along these factor axes (see Figure 8). This

result was relatively consistent over all frequency bands (see

Supplementary Figure 4).

3.3.2.2 Global and posterior synchrony

To investigate changes in synchrony in broader brain regions,

we compared global and posterior synchrony in groups during

photic stimulation compared to controls. Significant differences

in empirical cumulative distribution functions (CDF) was found

compared to controls in some frequency bands and groups for both

global and posterior synchrony (see Figure 9 for an illustration of

the CDFs, and Table 4 for a breakdown of statistical test outputs).

For global synchrony, stimulation groups differed significantly to

controls in some frequency bands, including gamma in all groups,

with an overall reduced probability of high coherence values (see

Figure 9). In comparison, posterior distributions showed increased

probability of high coherence values in stimulation groups

compared to controls, reaching significance for all frequency bands

except the GGE (PPR) stimulation gamma distribution. There

was no significant differences between the pre-PPR distribution

and stimulation distribution for GGE (PPR) group for global or

posterior synchrony.

Distinction between each group’s stimulation distribution is

not seperable from inspection of CDF distributions, though the

presence of differences relative to controls across stimulation

groups suggests a group-independent effect of the photic

stimulation on relative global and posterior synchrony, that is not

specific to a particular group.
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FIGURE 3

Photo-paroxysmal response (PPR). The figure shows a typical PPR lasting approximately 5 seconds, visible as spike-wave morphology. Lines are

di�erent channels as indicated on the y-axis, and time is indicated in seconds on the x-axis.

TABLE 2 Participant-specific information about PPR events.

Participant Lower and upper frequency (Hz) bounds PPR count (n) Average PPR length (s)

1 15–23 2 22.69

2 15–20 2 2.93

3 15–23 2 1.58

4 18–30 2 0.81

5 8–30 2 4.00

6 8–25 2 2.25

7 13 1 1.47

8 9–30 5 3.26

9 13–50 3 2.15

10 13–25 5 1.55

4 Discussion

4.1 Summary

The primary finding of this study was that the response to

perturbation by photic stimulation was observable via changes

in EEG measures. Specifically, distributions of variance and

autocorrelation function width (ACFW) shifted to higher values

just before photo-paroxysmal response (PPR), indicating greater

cortical excitability close to seizure transitions, as hypothesized.

In all epilepsy groups, phase coherence distributions differed

to controls. As expected, posterior channels demonstrated the

greatest variation in synchrony. Greater changes were sometimes

observed in epochs close to PPR for some individuals, but

there was no significant difference at a group level. This is not

surprising considering the patient-specific nature of responses, and

we suggest future research apply individualized analyses utilizing

repeated-trials. We have demonstrated measurable changes of
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FIGURE 4

Time-varying frequency spectra for PPR (top row) and spontaneous seizure (bottom row) transitions which occur at the 10s mark in each subplot.

Columns are di�erent participants, and data is sourced from the “O2” channel (similar spectra were observed in other channels). Time in seconds is

shown on the x-axis, frequencies up to 128 Hz are shown on the y-axis, and power per frequency bin for a given window of samples is represented

as a color, where values correspond to a colormap (see legend), where higher values are bright red, and lowest values are deep blue. In general,

increased power can be observed from the midway (5 s) point, especially in lower frequencies. Note that vertical lines at 50 Hz is a power line artifact.

excitability across different groups of epilepsy patients using photic

stimulation, particularly photosensitive patients in the lead up

to seizure transitions consistent with previous literature (Scheffer

et al., 2009; Meisel et al., 2015; Maturana et al., 2020). Therefore,

we argue that PPR is a valid proxy for studying seizure transitions.

This human model is a safer alternative to inducing seizures, and

can be reliably induced via photic stimulation. We argue this model

has great potential for developing new diagnostic methods and

evaluating treatments for epilepsy.

4.2 Relevance and significance of findings

At a group level, we observed greater proportions of

higher variance and autocorrelation distributions in all group

distributions during photic stimulation compared to resting

controls (see Figure 6). Individually, patients demonstrated

considerable variation in response values, particularly in the

photosensitive group, motivating our group-level analysis to

understand overall trends. Values tended to be highest in the

photosensitive group, compared to the non-photosensitive

generalized epilepsy group, and patients with psychogenic

non-epileptic seizures displayed the lowest values; however, this

difference was not found to be significant in the group-level

analysis. As expected, the photosensitive group demonstrated

further increases just before photo-paroxysmal response.

We interpret the shift in distributions as a data-driven

illustration of underlying dynamical regime changes close to seizure

transitions. These observations are consistent with predictions

of increased system summary statistics before state transitions

in dynamical systems, together with increased responses to

perturbation (Scheffer et al., 2009). These early warning signs

of transitions have been observed before seizure transitions

(McSharry et al., 2003; Maturana et al., 2020). Though, our data

differs in that it reflects changes to the actively evoked perturbation

response, instead of just passive observations of change. Studies

have elicited active perturbation using invasive EEG for focal

epilepsy and observed similar warning signs (Meisel et al., 2015,

2016), while we report it here using non-invasive perturbation

methods in generalized epilepsy. We argue that the lead-up

to PPR demonstrates similar changes in dynamics to seizure

transitions, making it a good proxy for studying seizure transitions.

Further, PPR demonstrates characteristic spike-wave morphology,

and similar spectral content to spontaneous seizures visible in

spectrograms. Increased power was evident in a broad range of

frequencies including the 2-5Hz activity characteristic of seizure

activity (Kasteleijn-Nolst Trenité et al., 2012).

We speculate that the increased variance before PPR, is

associated with an increased firing activity of neurons in synchrony,

considered to underpin seizure activity. Increased autocorrelation

width suggests longer lasting increases to self-similarity (Scheffer

et al., 2009), changes to the periodicity in the signal, decreased

dimensionality (Elger and Lehnertz, 1998), and possibly increased
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FIGURE 5

The first subplot shows the EEG trace (blue line) of participant 4 in the leadup to a PPR, visible as high amplitude spiking activity after the marked PPR

onset boundary (vertical red line). Consecutive red dots mark 10 seconds of photic stimulation for the frequency (labeled below them). Below, the

corresponding variance of the signal is displayed, using the shared time axis (y-axis), where di�erent electrode channels are displayed as di�erent

colored lines. Observe the increasing variance close to the boundary. See Supplementary Figure 3 for further participant examples.

FIGURE 6

Cumulative distribution functions (CDF) for (A) variance (left plots) and (B) autocorrelation function width (ACFW; right plots), where the x-axis is the

values for each measure, and the y-axis is the probability of observing a corresponding x-value and all values less than it. Each colored line represents

a di�erent group’s distribution, pooled over all participants and channels for selected epochs (refer to legend). Right-shifted lines indicate

distributions with larger proportions of high values of the variance and ACFW. Observe how all groups show right-shifts compared to the control

(gray) line. Also observe how, for the GGE (red) group, their distributions shift further to the right, in the epoch just before PPR (dotted line labeled as

“pre-PPR”), compared to earlier stimulation epochs [solid line labeled as “GGE (PPR) stim”].

variance. We also understand that for cyclo-stationary signals,

the autocorrelation function is equal to the absolute value of

the square of its Fourier transform, in which case increased

width of the major peak may reflect changes to the ratio of

power in various frequency ranges. We observed distinct changes

in power at the frequency of stimulation and their harmonics,

which supports this explanation (see Supplementary Figure 2).

It could also reflect a breakdown in the signals’ stationarity,

which is to be expected during a change in dynamical regime.

In sum, it is difficult to disentangle the exact mechanism
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TABLE 3 Statistical results.

Distribution 1 Distribution 2 Variance Autocorrelation function
width

GGE (PPR) stim GGE (PPR) pre-ppr D = 0.19*

95%CI = [0.14, 0.25]

χ2 = 44.86*

95%CI = [27.00, 66.33]

GGE (PPR) stim GGE (no PPR) stim NS NS

GGE (PPR) stim PNES stim NS NS

Controls resting GGE (PPR) stim D = 0.16*

95%CI = [0.12, 0.20]

χ2 = 368.42

95%CI = [319.78, 419.03]

Controls resting GGE (no PPR) stim D = 0.15*

95%CI = [0.11, 0.19]

χ2 = 226.86

95%CI = [185.66, 269.26]

Controls resting PNES stim D = 0.12*

95%CI = [0.08, 0.15]

χ2 = 272.92

95%CI = [227.15, 319.27]

Significance is evaluated through permutation (n = 10, 000) hypothesis tests of the test statistic where ’*’ denotes significance (adjusted for multiple comparisons using bonferroni correction).

NS denotes no significant difference. D is the Kolmogorov-Smirnov test statistic. χ2 is the Chi-squared test statistic. 95%CI obtained through the 2.5th and 97.5th percentiles of the test statistic

distribution constructed through permutation re-sampling (n = 10, 000).

FIGURE 7

Chronological phase histograms during P1’s stimulation train. Each plot represents 10 s of binned relative phase di�erence values between O1 and Fz

for epochs leading to the first PPR. Each bin has a direction from 0 to 2pi around the unit circle, and a length indicating the relative frequency of

values, ranging from 0 to 1. The radius of each circle plot varies to assist visualization, and the the mean relative phase amplitude (time-varying

synchrony) is indicated by a black line whose length is labeled above each plot and also ranges from 0 to 1, where 1 indicates greater clustering of

the values in the plot. Each row corresponds to relative phase values within di�erent frequency bands (see legend).

behind these changes, although they do reflect changes in

brain dynamics.

Compared to resting controls, all groups demonstrated

significantly reduced gamma coherence when averaged over all

channels (see Figure 9) but increased coherence when averaged

over only the posterior subgroup in nearly all frequency bands

(see Figure 8). We also found the majority of change in phase

clustering (cosine of the relative phase) values occurred in the
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FIGURE 8

(A) Biplot of factor loadings (blue vectors) on the three dominant components (axes), generated from a factor analysis of cosine of the relative phase

values during photic stimulation, pooled over GGE (PPR) participants. Each channel’s factor loadings for each component axis indicate the amount of

variance in the data that was captured along that component. Channels with the highest factor loadings, or in other words demonstrated the

greatest variance, along the component axes are P4, T6, O2, O1, P3, T5 (labeled in red text). This suggests that the greatest change in the data was

demonstrated by this subset of channels. Similar results were obtained when repeated in other frequency bands (see Supplementary Figure 4). (B)

Subgraph of posterior channels.

FIGURE 9

Empirical cumulative distribution functions (CDF) for coherence in di�erent groups (di�erent colored lines, see legend), within di�erent frequency

bands (columns). The x-axis is coherence calculated as the mean phase vector magnitude over a set of channels. The y-axis is the cumulative

probability for the corresponding x-values. From visual inspection, there is evidence for decreased global synchrony during stimulation in the first

row where left-shifts are observed compared to controls (black line), most evident in the gamma band. Increased posterior synchrony is evident in

the second row in all frequency bands, with right shifted CDFs for groups during stimulation (colored lines) compared to controls (black line). See

Table 4 for a breakdown of significant di�erences. (A) CDFs for Global Coherence (mean magnitude over all channels). (B) CDFs for Posterior

Coherence (mean magnitude over posterior channels only).
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TABLE 4 Statistical results.

Distribution 1 Distribution 2 Global synchrony Posterior synchrony

Delta

GGE (PPR) pre-PPR GGE (PPR) stim NS NS

Resting Controls GGE (PPR) stim D = 0.096*

95%CI = [0.058, 0.14]

D = 0.42*

95%CI = [0.37, 0.48]

Resting Controls GGE (no PPR) stim NS D = 0.49*

95%CI = [0.44, 0.55]

Resting Controls PNES stim D = 0.20*

95%CI = [0.14, 0.25]

D = 0.067*

95%CI = [0.37, 0.48]

Theta

GGE (PPR) pre-PPR GGE (PPR) stim NS NS

Resting Controls GGE (PPR) stim D = 0.16*

95%CI = [0.10, 0.21]

D = 0.34*

95%CI = [0.29, 0.40]

Resting Controls GGE (no PPR) stim D = 0.16*

95%CI = [0.11, 0.21]

D = 0.43*

95%CI = [0.37, 0.48]

Resting Controls PNES stim D = 0.12*

95%CI = [0.070, 0.17]

D = 0.43*

95%CI = [0.37, 0.48]

Alpha

GGE (PPR) pre-PPR GGE (PPR) stim NS NS

Resting Controls GGE (PPR) stim D = 0.34*

95%CI = [0.29, 0.34]

D = 0.34*

95%CI = [0.29, 0.34]

Resting Controls GGE (no PPR) stim D = 0.12*

95%CI = [0.074, 0.17]

D = 0.38*

95%CI = [0.32, 0.43]

Resting Controls PNES stim D = 0.18*

95%CI = [0.13, 0.23]

D = 0.34*

95%CI = [0.29, 0.40]

Beta

GGE (PPR) pre-PPR GGE (PPR) stim NS NS

Resting Controls GGE (PPR) stim D = 0.11*

95%CI = [0.062, 0.16]

D = 0.28*

95%CI = [0.23, 0.34]

Resting Controls GGE (no PPR) stim NS D = 0.37*

95%CI = [0.31, 0.42]

Resting Controls PNES stim D = 0.15*

95%CI = [0.10, 0.21]

D = 0.33*

95%CI = [0.27, 0.38]

Gamma

GGE (PPR) pre-PPR GGE (PPR) stim NS NS

Resting Controls GGE (PPR) stim D = 0.21*

95%CI = [0.15, 0.26]

D = 0.33*

95%CI = [0.050, 0.16]

Resting Controls GGE (no PPR) stim D = 0.13*

95%CI = [0.24, 0.35]

D = 0.13*

95%CI = [0.078, 0.18]

Resting Controls PNES stim D = 0.27*

95%CI = [0.241, 0.32]

D = 0.24*

95%CI = [0.19, 0.29]

Significance is evaluated through permutation (n = 10, 000) hypothesis tests of the test statistic where “*” denotes significance (adjusted for multiple comparisons using bonferroni correction).

NS denotes no significant difference. D is the Kolmogorov-Smirnov test statistic. 95%CI obtained through the 2.5th and 97.5th percentiles of the test statistic distribution constructed through

permutation re-sampling (n = 10, 000).

posterior subgroup via a factor analysis. This evidence of increased

posterior synchrony is well established in the literature (Porciatti

et al., 2000; Kalitzin et al., 2002; Parra et al., 2003; Fisher et al., 2022),

including in healthy individuals (Salchow et al., 2016), suggesting

recruitment of the visual system that is arguably enhanced to flicker

in particular. It is likely that subsequent aberrant propagation of

posterior synchronization due to abnormal gain control results

in PPR (Fisher et al., 2022). However, we were not able to find

substantial group differences between photosensitive and non-

photosensitive distributions during stimulation, or between the

photosensitive group prior to PPR and earlier epochs, which

suggests the measure was not able to indicate increased cortical

excitability, as was found in ECoG data (Meisel et al., 2015). We

did, however, observe substantial individual variation, andmultiple
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examples of increased coherence close to PPR in some individuals,

channels, and frequency bands (see Figure 7). Therefore, we

encourage future work to conduct individualized, frequency-

specific evaluations of multiple stimulation trials to elucidate

enhanced responses in photosensitive individuals.

4.3 Limitations

In this retrospective study, there were several limitations.

This study was deliberately conceived using retrospective data

from routine EEG databases to investigate its limits as a

non-invasive perturbation dataset. Due to the retrospective study

design, there were several limitations. Because of this, we did

not have appropriate resting state recordings, instead compared

data to resting controls. However, ideally, each individual would

be compared to their own resting or baseline distribution to

ascertain the true response to perturbation. Another issue was the

considerable within-group variability that we observed, suggesting

that the population distribution for each epilepsy group was

itself heterogeneous and would overlap each other considerably.

We observed frequency-dependent differences in the responses

to perturbation, consistent with previous research that generally

found marked responses in the 10–20Hz range (Kasteleijn-

Nolst Trenité et al., 2012), and in harmonic frequencies of

the PPR-evoking frequency (activation frequency) (Parra et al.,

2003). However, it would not have been appropriate to perform

an individualized frequency-dependent analysis, since only a

single trial was available for each participant, and because of

confounders. This included ordering effects due to variation in

stimulation frequency order (which could be mitigated through

randomization), possible refractory effects from PPR events, and

individualized responses to perturbation. Our work highlights the

limitations of current data acquisition methods in routine EEG that

severely limits individualized analysis.

4.4 Future work

The applications for photic stimulation are three-fold: (1) it can

be used to diagnose photosensitive epilepsy; (2) it can be used as a

therapeutic tool for epilepsy patients to monitor treatment efficacy;

and (3) it can be used as a perturbation paradigm for studying

brain dynamics.

Photic stimulation may continue to be used for its current

diagnostic purposes for epilepsy. However, we recommend for

research purposes, thatmultiple trials within a single sessionmay be

necessary to obtain sensitive results. Multiple trials will also enable

the construction of robust, patient-specific profiles of frequency-

dependent responses to perturbations. These profiles would be

clinically significant in that changes to the initial measurements

could be used to evaluate the efficacy of medications, which are

understood to alter cortical excitability as their mode of action

(Premoli et al., 2017). They could also be used to evaluate the

safety of medication withdrawal, and create standardized clinical

guidelines, by indicating whether drug removal has shifted patients

to regimes of higher cortical excitability and, therefore, seizure

risk (Meisel et al., 2015, 2016), and monitor disease course in

the long-term. Also, it should be noted that observing measurable

responses to perturbation from photic stimulation is not limited to

photosensitive individuals. We observed responses to perturbation

in all groups, regardless of epilepsy diagnosis (GGE or PNES),

syndrome, seizure type, age, sex, or ASM. We conclude that the

response to perturbation may be observable in the general epilepsy

population, suggesting that the photic stimulation paradigm offers

a great potential framework for studying seizure dynamics at large.

Though, due to documented effects of these clinical factors (Fisher

et al., 2022), family history (De Kovel et al., 2010), as well as

the effect of ASM action on responses (French et al., 2014), we

encourage further investigation of these sub-groups with sufficient

power to observe group-level differences.

We wish to emphasize the potential for photic stimulation

to be used as a perturbation paradigm for studying general

brain dynamics. Previous, studies have already shown that greater

responses to perturbation are associated with elevated cortical

excitability relating to seizure risk in focal epilepsy (Maturana

et al., 2020), with cohorts of patients undergoing pre-surgical

evaluations (Freestone et al., 2011; Bergey et al., 2015) and with

severe treatment-resistant epilepsy (Cook et al., 2013; Oderiz

et al., 2019). Like the implanted electrical stimulation in these

studies, photic stimulation enacts a perturbation. Compared to

these surgical methods, it can be considered a much safer method

for studying the transition to seizure, as well as compared to non-

surgical alternatives like seizure provocation during hospitalization

via medication withdrawal and sleep deprivation. In fact, this

non-invasive method could potentially be used at home, only

requiring an EEG headset, appropriate software, and a monitor for

administering the appropriate photic stimulation. Changes to an

individual’s baseline at any frequency could indicate meaningful

differences to cortical excitability and seizure risk, regardless of the

type of epilepsy. Also, as the response to photic stimulation differs

in other diseases including migraine (De Tommaso et al., 2013),

schizophrenia (Portnova and Maslennikova, 2023), alzheimer’s

disease and mild cognitive impairment (Fisher et al., 2022; Kim

et al., 2023), its relevance as a research paradigm to studying wider

diseases of brain structure or function is significant, in particular

cortico-thalamic circuitry dysregulation in which many brain

diseases are implicated (Guillery and Sherman, 2002; Sarnthein

et al., 2005). Furthermore, photic stimulation could be used to

observe changes in cortical excitability in healthy individuals under

initiating factors (Kasteleijn-Nolst Trenité et al., 2012; Fisher et al.,

2022) like alcohol withdrawal and sleep deprivation, to provide

further insight to acute symptomatic seizures of people without

epilepsy and human brain dynamics in general.

4.5 Conclusion

We found that the response to photic stimulation was a

valid non-invasive perturbation to brain dynamics. This paper

represents photic stimulation data from photosensitive generalized

epilepsy patients, patients with GGE who are not photosensitive,

and patients with psychogenic non-epileptic seizures, compared to

resting controls. At a group level, consistent with the hypothesis
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that PPR induces a change in brain state, we observed clear changes

in group signal statistics including the CDF of the variance and

autocorrelation. We further investigated changes in synchrony

measures, and could not find consistent group-level patterns of

change that correlated with the transition. However, we did find

posterior increases in synchrony consistent with past research. In

conclusion, EEG time-series analysis was able to capture changes

in cortical excitability during active perturbation, via biomarkers

that track brain dynamics before state transitions. We find that

current data acquisition methods limit individualized analysis, and

encourage future research to extend current routine EEG protocol

to include the randomization of frequency order, acquisition of

baseline or resting periods, and importantly, multiple stimulation

trials. Photic stimulation demonstrates a non-invasive human

method for studying seizure transitions, and potentiallymonitoring

and evaluating treatments in epilepsy and other brain diseases.
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