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Spinal cord injury (SCI) is a critical neurological condition that may impair 
motor, sensory, and autonomous functions. At the cellular level, inflammation, 
impairment of axonal regeneration, and neuronal death are responsible for 
SCI-related complications. Regarding the high mortality and morbidity rates 
associated with SCI, there is a need for effective treatment. Despite advances in 
SCI repair, an optimal treatment for complete recovery after SCI has not been 
found so far. Therefore, an effective strategy is needed to promote neuronal 
regeneration and repair after SCI. In recent years, regenerative treatments have 
become a potential option for achieving improved functional recovery after SCI 
by promoting the growth of new neurons, protecting surviving neurons, and 
preventing additional damage to the spinal cord. Transplantation of cells and cells-
derived extracellular vesicles (EVs) can be effective for SCI recovery. However, 
there are some limitations and challenges related to cell-based strategies. Ethical 
concerns and limited efficacy due to the low survival rate, immune rejection, and 
tumor formation are limitations of cell-based therapies. Using EVs is a helpful 
strategy to overcome these limitations. It should be considered that short half-
life, poor accumulation, rapid clearance, and difficulty in targeting specific tissues 
are limitations of EVs-based therapies. Hydrogel-encapsulated exosomes have 
overcome these limitations by enhancing the efficacy of exosomes through 
maintaining their bioactivity, protecting EVs from rapid clearance, and facilitating 
the sustained release of EVs at the target site. These hydrogel-encapsulated EVs 
can promote neuroregeneration through improving functional recovery, reducing 
inflammation, and enhancing neuronal regeneration after SCI. This review aims to 
provide an overview of the current research status, challenges, and future clinical 
opportunities of hydrogel-encapsulated EVs in the treatment of SCI.
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1 Introduction

Spinal cord injury (SCI) is the most critical complication of spinal injury. The overall global 
incidence of SCI was 0.9 million cases and 12 cases per 100,000 persons in 2019 (Wang et al., 
2022). Most of surviving patients with traumatic SCI suffer from SCI-related complications. 
Primary injury consists of neuronal and glial cell damage, neuroinflammation, and impairment 
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of axonal regeneration, which are caused by the initial compression or 
contusion of the spinal cord. Excessive inflammatory responses, 
vascular network damage, and disruption of the blood-spinal cord 
barrier (BSCB) following mechanical injury initiate a secondary injury 
cascade. Secondary injury cascade consists of hypoperfusion, 
ischemia, oxidative damages, and inflammatory changes leading to 
progressive spinal cord dysfunction and consequent sensory, motor, 
and autonomic function loss (Hellenbrand et al., 2021; Michel et al., 
2021). Furthermore, SCI causes short-term or long-term dysfunctions 
in multiple organs such as the respiratory system, reproductive system, 
cardiovascular system, digestive system, urogenital system, and 
skeletal system (Sweis and Biller, 2017). These complications can 
significantly impact a person’s quality of life, increase hospitalization 
rates, prolong recovery times, and even lead to death. Acute phase 
management and restraining the secondary injury is largely 
determining the final nerve recovery outcomes. However, there are 
currently no effective treatments for complete recovery after SCI 
(Flack et al., 2022). The blood–brain barrier (BBB) and BSCB are in 
fact common barriers that pharmacological strategies for neuro-
oncology and neuro-traumatology have to bypass. Therefore, 
encapsulating drugs into biocompatible and biodegradable vectors 
might be a valid delivery strategy. Hyaluronic acid could be a valuable 
example which was suggested for similar purposes in the diagnosis 
and treatment of high-grade gliomas. Considering the wider range of 
hydrogels materials overcomes specific limitations of hyaluronic acid 
because other materials could offer more options in terms of 
mechanical strength, size and degradation rates (Ganau, 2014; Ganau 
et al., 2017). Currently available treatments mainly rely on suppressing 
damage progression, rehabilitation, prevention of complications, and 
other conservative approaches, which are limited in their effectiveness. 
Therefore, an effective strategy is critical in promoting neuronal 
regeneration and repairing SCI (Ahuja et  al., 2017). Treatment 
strategies for better restoration of neurological function after spinal 
cord injury should be focused on minimizing the primary injury and 
preventing secondary injury, including attenuating inflammatory and 
oxidative responses, promoting remyelination, enhancing regeneration 
of axons, and promoting angiogenesis (Ahuja et al., 2017).

In recent years, regenerative treatments have become a potential 
option for the treatment of pathological brain conditions such as 
cancer, stroke, neurodegenerative diseases, and SCI (Burns and 
Quinones-Hinojosa, 2021; Ghasempour et  al., 2022). These 
regenerative strategies have shown potential in achieving improved 
functional recovery after SCI by promoting the growth of new 
neurons, protecting surviving neurons, and preventing additional 
damage to the spinal cord. This leads to regeneration and repair of 
damaged tissue and restoration of lost functions (Ashammakhi et al., 
2019). Cell transplantation as a regenerative therapy can be effective 
for SCI recovery through immunomodulation, enhancing 
angiogenesis, and promoting axonal regeneration and reinnervation 
(Hall et al., 2022). Currently, many cell-based clinical trials are being 
conducted to promote neuroregenerative (Donovan and Kirshblum, 
2018). Although many types of cells exhibited promising functional 
recovery after SCI, the direct application of cells to target sites is still 
limited in the clinic. Different types of cells, such as embryonic stem 
cells, induced pluripotent stem cells (iPSC), neural precursor cells 
(NPCs), mesenchymal stem cells (MSCs), Schwann cells (SCs), and 
olfactory ensheathing cells (OECs) have been evaluated to promote 
tissue repair after SCI (Hejrati and Fehlings, 2021). Direct 

transplantation of some types of these cells may have some limitations 
such as safety and ethical concerns and limited efficacy due to the low 
survival rate of transplanted cells, immune rejection, and tumor 
formation (Wang et al., 2021). However, some of these challenges of 
cell-based therapy can be  overcome (Hejrati et  al., 2023). Using 
extracellular vesicles (EVs) derived from different types of cells is one 
of the helpful strategies to overcome these limitations without rising 
cell therapy concerns due to their lower immunogenicity and 
cytotoxicity and better bioavailability and biocompatibility (Zeng 
et al., 2022; Amirzadeh gougheri et al., 2023; Moeinabadi-Bidgoli 
et al., 2023).

EVs specially exosomes, exert therapeutic impacts in the repair of 
SCI as they have the capability of neuroprotection, anti-inflammation, 
low immunogenicity, neuronal regeneration, and easy transportation. 
They can also attenuate the process of secondary injury and its 
co-morbidities (Huang et al., 2017; Sun et al., 2018; Dutta et al., 2021; 
Romanelli et  al., 2021). Nevertheless, EV-based strategies in SCI 
treatment also have some limitations. Conventional EV-based 
strategies that rely on local repeated injection and systemic 
administrations result in low efficiency due to short half-time, poor 
accumulation, rapid clearance, and difficulty in targeting specific 
tissues (Imai et al., 2015; Lankford et al., 2018). The proper functioning 
of exosomes is dependent on their integration into the injured spinal 
cord tissue. On the other hand, the recovery process of the spinal cord 
is complex and lengthy, and EVs need to be retained in the injured site 
for an extended time. So, combining EVs with a vehicle that can serve 
as a sustained release carrier for EVs can exhibit efficient retention at 
the site of injury (Riau et al., 2019; Wang et al., 2021). There is growing 
interest in the use of hydrogel-encapsulated EVs to address these 
challenges. The combination of hydrogels and cell-derived EVs can 
be  a promising strategy to enhance the efficacy of exosomes by 
maintaining their bioactivity, protecting EVs from rapid clearance, 
and facilitating the sustained release of EVs at the target site (Riau 
et  al., 2019). Encapsulating exosomes with hydrogels have been 
applied in several fields and diseases, such as bone and cartilage 
regeneration, wound repair, corneal damage, myocardial infarction, 
and SCI (Riau et  al., 2019; Xie et  al., 2022; Zhou et  al., 2022). 
Preclinical studies have shown that hydrogel-encapsulated EVs can 
improve functional recovery, reduce inflammation, and enhance 
neuronal regeneration in SCI animal models (illustrated in Figure 1). 
The goal of this review is to provide an overview of the current 
research status of hydrogel-encapsulated cell-derived EVs in 
neuroprotection and SCI functional recovery with a focus on 
describing their underlying mechanisms of action. The challenges and 
opportunities for future clinical applications are also discussed.

2 Pathophysiological mechanisms 
following spinal cord injury

Principal correlated destructive events that contribute to SCI 
pathogenesis are ischemia, oxidative stress, inflammatory responses, 
and apoptotic pathways. The primary injury phase consists of 
principal pathologic events such as destruction of neural parenchyma, 
disruption of axonal network, hemorrhage, and disruption of glial 
membrane. The secondary injury, that is triggered by primary injury, 
promotes permeability and vascular alterations, vasogenic edema, 
glutamate excitotoxicity, metabolic alterations, impaired inflammatory 
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responses, axonal degeneration, demyelination, and fibroglial scarring 
initiation (Anjum et al., 2020; Lima et al., 2022). Trauma-induced 
neuroplastic processes cause white and gray matter atrophy and 
microstructural disrupted integrity. Spinal cord microstructural 
disruption in SCI patients are likely caused by changes in myelin, 
axonal density, and iron deposition, metabolic alterations, and ECM 
disruption. These microstructural disruptions may be associated with 

sensory/motor impairments and may limit the therapeutic efficacy 
(Ziegler et al., 2018; Guo et al., 2019).

In order to overcome structural limitations several biomaterials 
have been evaluated to be placed into the spinal cord lesion in order 
to provide a bridge through the spinal cord lesion sites. These 
biomaterial-based strategies provide structural support to enhance 
axonal growth and regeneration, promoting motor improvement. This 

FIGURE 1

Schematic diagram of extracellular vesicles combined with hydrogels for the regeneration of SCI. Using hydrogel-encapsulated extracellular vesicles 
promotes neurological recovery by enhancing angiogenesis, neurogenesis, remyelination, axonal regeneration, synapse formation, and 
immunoregulation and reducing glial scars and apoptosis.
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supportive structure facilitates the directional growth of neural cells. 
In addition, using biomaterials as neuronal bridging would also 
support cell-based transplants to release neurotrophic factors thus 
enhancing the therapeutic efficacy of regenerative treatments. 
Combining biomaterials with cell-based transplants improves 
biomaterials integration and enhance regenerative growth potential 
(illustrated in Figure 2; Siebert et al., 2015; Li and Mooney, 2016; Liu 
et al., 2017).

Spinal ECM is involved in providing structural support and 
enabling communications under physiological microenvironment. 
The damaged ECM following SCI contributes to neuroinflammation 
and impairs neural plasticity. Therefore, spinal cord ECM remodeling 
could limit the efficacy of regenerative therapies. Biomaterial scaffolds 
can be used as a solution to counter ECM impairment or loss (Chio 
et  al., 2022). Strategies that use ECM-based biomaterials and 
combination of cell-derived ECM with synthetic scaffolds have 
potential to promote tissue repair (Hong et al., 2020; Mazloomnejad 
et  al., 2023). Using combination of biomaterials with cell-based 
strategies promote nerve injury repair by mimicking the physical and 
chemical properties of the normal ECM and offering the correct 

position of neural cell location and ECM deposition (Poongodi 
et al., 2021).

3 Using cell-derived EVs for the 
regeneration of SCI

EVs are released from many types of cells and contain many 
biological molecules, such as proteins, lipids, DNA, mRNAs, and 
miRNAs, which are involved in cell–cell crosstalk. EVs contribute to 
tissue repair and regeneration and immunosurveillance. Subtypes of 
EVs are microvesicles, exosomes, and apoptotic bodies, which are 
classified depending on their biogenesis, release pathways, and size 
(Samanta et al., 2018; Rezaee et al., 2023). EVs derived from different 
types of cells promoted functional recovery after SCI through their 
neuroprotective and neuroregenerative properties (Romanelli et al., 
2019). Many studies reported that EVs derived from mesenchymal 
stem cells (MSCs), neural stem cells (NSCs), astrocytes, macrophages/
microglia, and cerebrospinal fluid (CSF) have potential in the 
treatment of spinal cord injury (Zhong et al., 2020; Dutta et al., 2021; 

FIGURE 2

Schematic diagram of spinal cord microstructural disruption after SCI. Spinal cord microstructural disruption after SCI are likely caused by changes in 
myelin, axonal density, and iron deposition, metabolic alterations, and ECM disruption. Application of hydrogel-encapsulated EVs provides structural 
support to enhance axonal growth and facilitates the directional growth of neural cells.

https://doi.org/10.3389/fnins.2023.1309172
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Nazerian et al. 10.3389/fnins.2023.1309172

Frontiers in Neuroscience 05 frontiersin.org

Feng et al., 2021; Zhang et al., 2023). Here we review some possible 
mechanisms and signaling pathways that might be  involved in 
EVs-induced neuroprotection and neuroregenerative.

The neuroprotective effects of EVs are mainly through inhibition 
of inflammation, neuronal death, and promotion of neuronal survival 
(Huang et al., 2017). Macrophages/microglia are one of the main cells 
participating in neuroinflammation in SCI. Macrophages/microglia 
polarization toward pro-inflammatory M1 phenotype occurs in 
response to damaged spinal cord signals (Fu et al., 2022). Human 
umbilical cord MSCs-EVs (hUCMSCs) attenuate the spinal cord 
neuroinflammation and regulate the polarization of macrophages/
microglia toward the anti-inflammatory M2 phenotype via the A2bR/
cAMP/PKA signaling pathway (Zhai et al., 2021). MSCs-EVs also 
inhibit the TLR4/NF-κB signaling pathway, which promotes M2 
macrophage polarization and suppresses inflammation in the spinal 
cord microenvironment (Jiang and Zhang, 2021; Nie and Jiang, 2021). 
Similarly, Schwann cell-derived exosomes promote M2 macrophage/
microglial polarization and attenuate inflammation by regulating the 
SOCS3/STAT3 pathway after SCI (Ren et al., 2023). Inflammatory 
responses may result in apoptosis of neurons and oligodendrocytes 
and consequent neurological defects (Zhang et al., 2012). NSC-EVs 
can attenuate apoptosis and inflammatory processes by activating 
autophagy, which is critical for tissue protection against SCI. They 
increase the expression of the autophagy proteins and enhance 
autophagosome formation (Rong et al., 2019a,b). Schwann cell-EVs, 
MSC-EVs, and microglia-EVs can efficiently assist in neurological 
recovery after SCI via activation of autophagy and inhibition of 
apoptosis through inhibition of the Akt/mTOR signaling pathway 
(Fan et  al., 2020; Pan et  al., 2022; Gao et  al., 2023). Reduced 
proapoptotic protein Bax, the apoptosis effector cleaved caspase-3, 
and the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, and 
increased anti-apoptotic protein Bcl-2 were reported after EVs 
transplantation (Rong et al., 2019a; Huang et al., 2020; Chen et al., 
2021). In addition, macrophage autophagy is also crucial for M2 
polarization, and impaired autophagy results in neuroinflammation 
(Chen et al., 2017). Peripheral Macrophage-derived exosomes activate 
autophagy via inhibition of the PI3K/AKT/mTOR pathway, which 
results in M2-type microglial polarization (Zhang et al., 2021). Studies 
showed that inflammasome activation is also implicated in 
neuroinflammation after SCI, and suppressing NLRP3 inflammasome 
will alleviate neuroinflammation (Jiang et al., 2017). EVs can suppress 
the formation of NLRP3 inflammasome complex, leading to reduced 
apoptosis, neural cell regeneration, and improved motor function 
recovery after SCI (Huang et al., 2020; Mohammed et al., 2020). BSCB 
integrity is another cause of exacerbated inflammatory reactions and 
secondary injury (Freyermuth-Trujillo et al., 2022). Lu et al. showed 
that BMSC-EVs inhibited pericyte migration via suppression of 
NF-κB p65 signaling pathway leading to decreased BSCB permeability 
and improved BSCB integrity and consequent reduced neuronal 
death, increased neuronal survival, and improved motor functions (Lu 
et al., 2019).

In addition to neuroprotective properties, EVs promote neural 
regeneration after SCI. EVs derived from hUCMSCs and skin 
precursor-derived Schwann cells promote axonal growth and 
neuronal survival by inhibiting PTEN and promoting PI3K/Akt/
mTOR pathway (Wu et al., 2020; Xiao et al., 2021). Induced neural 
progenitor cells-derived EVs also promote the activation of 
proliferating endogenous neural stem cells by activating the ERK 

pathway (Ma et al., 2019). Neural repair and tissue regeneration after 
SCI require normal angiogenesis. EVs have pro-angiogenic properties 
promoting neurogenesis, axonal remodeling, and improved 
neurological functions (Zhang et al., 2020; Feng et al., 2021). EVs 
stimulate angiogenesis by activating PI3K/AKT and Wnt/β-catenin 
signaling pathway and enhanced VEGF expression after SCI (Rauch 
et al., 2009; Zhong et al., 2020; Cao et al., 2021; Luo et al., 2021; Huang 
et al., 2022).

To enhance the therapeutic potential of EVs for targeted spinal 
cord repair, preconditioning of cell sources and engineering of EVs 
can be  useful (Chen et  al., 2022). Hypoxia and melatonin 
preconditioning of cells alter the contents of EVs toward more 
protective capacity (Liu et  al., 2021; Liang et  al., 2022). Hypoxic 
preconditioning enhances the regulation of some miRNAs that exert 
neuroprotective properties after SCI through HIF-1a-related pathways 
(Liu et al., 2020; Huang et al., 2022). Melatonin prevents neural death 
and facilitates neuroplasticity through attenuating oxidative stress and 
inflammation after SCI (Xie et  al., 2023). Moreover, the specific 
miRNAs, siRNA, proteins, and small molecular drugs can be loaded 
into exosomes by engineering strategies to promote targeted repair 
(Chen et al., 2021; Li et al., 2023; Yaghoobi et al., 2023; Zeng et al., 
2023). Therefore, these modified MSC-EVs are promising regenerative 
agents for SCI.

4 Hydrogel-based treatments for SCI 
regeneration

Hydrogels are a highly porous network of hydrophilic polymers 
capable of absorbing large amounts of water or other fluids. They are 
biomaterials commonly utilized in regenerative medicine and appear 
to be a promising tool especially in the repair of nerve injury, offering 
a wide range of applications due to their unique properties (Perale 
et  al., 2011). Hydrogels are utilized as scaffolds in regenerative 
medicine to support the growth and regeneration of cells and tissues. 
They provide a suitable environment for cells to attach, proliferate, and 
differentiate, mimicking the natural extracellular matrix (ECM) found 
in living tissues (Yu et al., 2020). They can be synthesized through 
crosslinking hydrophilic polymers by physical, chemical, or enzymatic 
processes, each with its own set of benefits and limitations. The 
engineering of hydrogels allows for versatility in terms of design and 
functionality, such as mechanical strength, porosity, biodegradability, 
and bioactivity. These properties can be tailored to match specific 
tissue types or applications (Kwon et al., 2012). In the context of CNS 
injury, hydrogels act as a bridge to connect the two severed ends of the 
injured nerve, promote axon growth, and provide an attachment site 
for proliferation and differentiation of transplanted cells. Due to the 
presence of the BSCB, drug delivery to the CNS might be challenging. 
Also, the presence of cerebrospinal fluid circulation impedes the 
colonization of transplanted cells or biological factors, leading to their 
compromised function. Therefore, designing biomaterials such as 
hydrogels that are capable of delivering drugs to the damaged site is of 
great importance. Also, in order to prevent long-term damage to the 
surrounding tissues, it is crucial for biomaterials designed for CNS 
repair to degrade within a suitable timeframe (Zhao et al., 2023). 
Taken together, the use of hydrogels in regenerative medicine, 
especially in SCI repair, has many advantages, such as the effective 
delivery of bioactive molecules (such as growth factors or drugs), their 
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biocompatibility with living tissues, and their ability to provide 
structural support while allowing nutrient exchange (Ji et al., 2014).

Based on their polymer origin, hydrogels can be  classified as 
natural, synthetic, and natural-synthetic composite hydrogels (hybrid 
hydrogels). Natural hydrogels possess excellent biocompatibility and 
can mimic the ECM found in tissues, providing a suitable environment 
for cell growth and tissue regeneration (Perale et al., 2011). Their 
similarity with the ECM reduces the stimulation of chronic 
inflammation or immunological reactions and toxicity (Mano et al., 
2007). Decellularized ECM (dECM) can be an ideal natural material 
for the preparation of hydrogels and is expected to play an important 
role in the future of regeneration therapies (Kasravi et  al., 2023). 
Potential immunogenicity in some natural biomaterials is reported, 
however there are some considerable practical solutions to overcome 
the immunogenicity of bioscaffolds (Kasravi et al., 2023). Natural 
hydrogels can be classified into several types based on their source and 
materials. Materials are being investigated to support cell therapies are 
synthesized from polysaccharides such as (alginate, chitosan, and 
hyaluronic acid), polypeptides such as (collagen), hydrolyzed collagen 
(such as gelatin) and linked proteins (such as fibrin) (Perale et al., 
2011). Synthetic hydrogels, on the other hand, are engineered to have 
specific properties such as tunable mechanical strength and 
degradation rates. They can be tailored to mimic the native tissue 
microenvironment and provide structural support for cells during 
regeneration. Additionally, hybrid hydrogels combine both natural 
and synthetic components to harness the advantages of both materials, 
offering enhanced mechanical properties while maintaining 
biocompatibility (Cai et al., 2023). These compositions can provide a 
biocompatible structure for tissue engineering and biomedical 
applications such as SCI treatment (Riedelová-Reicheltová et al., 2016).

As mentioned previously, hydrogels result from crosslinking 
polymers through chemical, physical, or enzymatic approaches. While 
chemical crosslinking is difficult to change, physical crosslinking is 
reversible, and the state of physical crosslinking might change in 
response to external conditions (Cai et  al., 2023). Crosslinking 
methods affect the physical properties of the hydrogel, such as 
stiffness. Hydrogel stiffness exerts important effects on outcomes of 
different regenerative fields. Soft hydrogels loaded with exosomes 
showed better nerve repair compared with stiff hydrogels through the 
quick release of exosomes (Liu et  al., 2022). In this regard, smart 
hydrogels are physically cross-linked hydrogels capable of responding 
to external stimuli, including changes in temperature, light, electrical 
signaling, and pH in the environment (Cai et al., 2023). These smart 
hydrogels have been used in tissue engineering, drug and cell delivery, 
and the promotion of tissue repair by regulating the tissue 
microenvironment. Recent studies have reported the beneficial effects 
of smart hydrogels for SCI treatment. Using smart hydrogels resulted 
in beneficial effects such as attenuation of inflammatory conditions in 
SCI (Wang et al., 2021; Zheng et al., 2021). Also, the application of 
such hydrogels can lead to the release of drugs into the site of SCI, 
because they can sense and respond to the microenvironment 
condition (Chang et al., 2022).

Recent studies used modified applications of hydrogels to promote 
the growth, development, maturation, and regeneration of neural 
tissue, including the application of conductive hydrogels and 
incorporation of dopamine or nanomaterials/nanoparticles into 
hydrogels. Electrical signals play a crucial role in nerve tissue 
development, growth, and regeneration. Conductive hydrogels can 

enhance the transmission of electrical signals between adjacent cells, 
support the reconstruction of impaired signaling pathways, and help 
to maintain the electrical microenvironment suitable for nerve 
function and regeneration. Application of these hydrogels in 
peripheral nerve injury has become a better alternative than the 
conventional autologous nerve transplantation (Dong et al., 2020). In 
addition to electrical signals, dopamine plays a significant role in the 
growth and differentiation of neurons and the promotion of synaptic 
formation. In this regard, the application of dopamine-functionalized 
hydrogels can promote neural repair and regeneration. Also, 
application of such hydrogels promoted the differentiation of NSCs 
and the growth of synapses (Zhao et al., 2023). Overall, the diverse 
range of hydrogel materials available in regenerative medicine holds 
great promise for developing innovative therapies that can effectively 
repair damaged tissues and organs especially damaged neural tissues.

5 Hydrogel-encapsulated exosomes 
for the regeneration of SCI

EV-based therapies are currently commonly administered 
through repeated local or intravenous injections. As mentioned 
earlier, injection of EVs alone may not be appropriate for spinal cord 
lesions as exosomes clear rapidly and have a short duration of action. 
Therefore, sustained retention in the lesion site is required to achieve 
therapeutic effects (Riau et al., 2019). Embedding EVs into hydrogels 
is applicable for sustained release and effective retention at the site of 
injury (Chen et al., 2022). A combination of EVs and hydrogels has 
been assessed as a potential option for the treatment of several 
neurological conditions. Using hydrogel-integrating EVs in the 
recovery of motor function in stroke and cerebral ischemia has been 
suggested (Zhang et al., 2018; Tsintou et al., 2021; Han et al., 2023). It 
has been shown that the use of hydrogel-loaded exosomes in traumatic 
brain injury promotes axonal regeneration, remyelination, synapse 
formation, and remodeling of brain structural and functional recovery 
through promoting angiogenesis, neurogenesis and microglia 
immunoregulation (Li et  al., 2022; Liu et  al., 2023). Exosomes 
encapsulated in hydrogels can also be used to deliver microRNAs 
(miRNAs), proteins, and mRNAs to promote functional recovery 
(Han et al., 2019). In this section, we review preclinical applications of 
EVs derived from different sources of cells combined with different 
types of hydrogels and their underlying mechanisms of action 
(Table 1).

The most common source of EVs was MSCs, which were used in 
combination with different types of hydrogels to repair injured nerve 
tissue. Many studies reported that using EVs derived from different 
types of MSCs can inhibit neuroinflammation and prevent the process 
of secondary injury after SCI (Sun et al., 2018; Wang et al., 2018; Lu 
et al., 2019). In a recent study, Roh et al. used a hyaluronic acid-based 
hydrogel combined with biochemical cues containing MSCs-derived 
EVs for neuronal regeneration after SCI. This composite scaffold 
enhanced spinal cord regeneration by promoting angiogenesis, neural 
differentiation, and remyelination, inhibiting inflammation and 
apoptosis and also reducing glial scarring. It induced M2 macrophage 
polarization and decreased M1 macrophage-related inflammation, 
resulting in enhanced functional recovery (Roh et al., 2023).

BMSC and their EVs had beneficial neuroprotective effects 
on tissue repair and axonal growth. Application of BMSC and 
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TABLE 1 Preclinical studies of Hydrogel-Encapsulated Extracellular Vesicles for the Regeneration of SCI.

Source of 
EVs

Type of hydrogel Characteristic of 
hydrogel

Delivery route Animal 
model

Results Main involved signaling 
pathway

Ref.

UCMSC PLGA-PEG-PLGA  • Injectable

 • Temperature

 • Sensitive

Injection into the injury site Rat  • Reduced inflammation

 • Reduced neuronal apoptosis

 • Promoted neurological recovery

 • Regulating the Nrf2-keap1 

signalling cascade

 • Suppressing NLRP3/Caspase-1

Xiao et al. (2023)

CSF GelMA and hyaluronic acid composite 

hydrogel

 • Light responsive Local application of hydrogel 

dressing

Mice  • Improved motor function recovery

 • Promoted angiogenesis

 • Activating PI3K/AKT signaling 

pathway

Li et al. (2023)

NSCs GelMA  • Injectable Orthotopically injected into the site 

of injury

Mice  • Promoted NSCs differentiation and axonal regeneration

 • Promoted M2 polarization

 • Promoted functional recovery

 • Showed anti-inflammatory effects

 • Promoted axonal regeneration

 • Promoted remyelination

 • Activating MAPK signaling 

pathway

Zeng et al. (2023)

MSCs GelMA hydrogel  • Light responsive Application with MN array patch Rat  • Alleviated the inflammatory response

 • Improved functional recovery

NR Fang et al. (2023)

MSCs Hyaluronic acid-based hydrogel  • Injectable Complete spinal cord transection 

and local implantation of hydrogel

Rat  • Improved functional recovery

 • Reduced inflammation

 • Promoted angiogenesis

 • Promoted M2 macrophage polarization

NR Roh et al. (2023)

hUCMSCs GelMA NR Injection into the injury site Rat  • Reduced neuroinflammation

 • Increased neuroprotection

 • Activating EGFR/STAT3 signaling Wang et al. (2023)

hUCMSCs GelMA  • Light responsive

 • Injectable

Injection into the injury site Rat  • Anti-inflammatory effects

 • Anti-fibrotic effect

 • Promoted nerve regeneration

 • Promoted recovery of motor function

NR Wang et al. (2023)

ADMSCs Collagen and Fibrin Hydrogel NR Local injection into the injury site 

via Hamilton syringe

Rat  • Regenerated the injured nerve

 • Reduced spinal cord lesion-induced central neuropathic pain

NR Afsartala et al. (2023)

M2 microglia PLEL hydrogel  • Thermosensitive

 • Injectable

Injection into the injury site Rat  • Alleviated inflammation

 • Promote restoration of neuronal function

 • Inhibiting Bcl-2 pathway Zhang et al. (2022)

MSC GelMA hydrogel  • NR Application with MN array patch Rat  • Reduced neuroinflammation

 • Elevated neuroprotective-related proteins and miRNAs

NR Han et al. (2022)

MSCs Tannic acid doped hydrogel Spinal cord transection and local 

implantation of hydrogel

Rat  • Promoted the recovery of motor function

 • Mitigated of the inflammatory and ROS microenvironment

NR Liu et al. (2022)

BMSCs GMP hydrogels  • Electroconductive Spinal cord hemisection and local 

implantation of hydrogel

Mice  • Promoted NSC recruitment

 • Promoted axon regeneration

 • Promoted motor recovery

NR Fan et al. (2022)

BMSCs Fibrin gel NR Transplantation

to the lesion site

Mice  • Promoted motor function and electrophysiological performance

 • Enhanced neurogenesis

 • Promoted oligodendrogenesis

NR He et al. (2022)

USC NR NR Local intrathecal injection Mice  • Enhanced spinal cord neurological functional recovery

 • Promoted angiogenesis

Activating PI3K/AKT signaling Cao et al. (2021)

hUCMSCs Hyaluronic acid hydrogel  • Adhesive Transplantation to the lesion site Rat  • Promotes angiogenesis

 • Nerve regeneration at

 • The site of spinal cord injury

 • Locomotor function recovery

Activating HIF-1α/VEGF Mu et al. (2022)

(Continued)
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their EVs resulted in attenuated neuronal apoptosis and inhibited 
inflammatory response during SCI through inhibiting the TLR4/
MyD88/NF-κB signaling pathway, caspase-3, and 12 (Ide et al., 
2010; Novikova et al., 2011; Bai et al., 2019; Gu et al., 2020; Fan 
et al., 2021). In a study by Fan et al. electroconductive hydrogels 
encapsulated BMSCs-exosomes enhanced tissue repair and 
significant functional recovery after SCI. These exosome-loaded 
hydrogels activate the PTEN/PI3K/AKT/mTOR pathway, leading 
to myelin-associated axonal regeneration, enhanced neurogenesis, 
and reduced neuroinflammation. On the other hand, GMP 
hydrogel increased the proportion of M1 microglia through 
activation of the IKKα/β/ NF-κB pathway in the inflammatory 
microenvironment of the damaged spinal cord, which causes 
aggravation of neuroinflammation. Combining BMSCs-exosomes 
with GMP hydrogel promoted polarization of microglia into M2 
phenotype via decreasing expression of phosphorylated-IKKα/β, 
p-IκBα, and p-P65 (Fan et al., 2022). He et al. showed that BMSC-
derived exosomes loaded in fibrin gel enhanced 
oligodendrogenesis, as expression of neuronal markers such as 
doublecortin (Dcx), NeuN, and Tuj1 were significantly increased. 
These exosomes contained high levels of neuropeptide VGF. VGF 
promotes myelination and oligodendrogenesis, resulting in 
functional recovery (He et  al., 2022). Neurological functional 
recovery after BMSC-derived exosomes encapsulated in 3D 
gelatin methacrylate hydrogel (GelMA) has also been reported in 
another study. GelMA-Exos promoted neuronal differentiation 
and reduced glial scars in injured sites (Cheng et al., 2021).

Transplantation of hUCMSCs and their EVs can promote SCI 
repair by attenuating inflammatory responses and promoting 
nerve regeneration. These neuroprotective properties of 
hUCMSCs were related to the activation of the PTEN/Akt/mTOR 
axis, decreased inflammatory cytokines, increased anti-
inflammatory cytokines, and activation of M2 macrophages (Bao 
et al., 2018; Xiao et al., 2021; Zhu et al., 2021; Sun et al., 2023). 
hUCMSCs derived exosomes encapsulated in fibrin glue resulted 
in nerve tissue regeneration as they reduced lesion volume, 
increased integrity, improved remyelination, a more abundant 
distribution of neurofilament proteins (indicators of mature 
neurons) in both the lesion and adjacent areas, and also 
significantly increased distribution of choline acetyltransferase 
(an indicator for cholinergic neurons). These fibrin glue 
exosomes also inhibited excessive production of reactive oxygen 
species (ROS) and prevented the oxidative procedures. They 
exhibited significant anti-inflammatory effects via the regulation 
of macrophage phenotypes toward M2 macrophages (Mu et al., 
2021). In addition, four-dimensional cultured hUCMSC-derived 
sEVs combined with GelMA hydrogel attenuated 
neuroinflammation through polarization of the macrophage/
microglia from M1 to M2 phenotype, resulting in enhanced 
survival of spinal neurons after injury. These EVs promoted 
polarization of the M2 phenotype via upregulation of IGFBP2/
EGFR protein, leading to phosphorylation of STAT3 (Wang et al., 
2023). Another study used a combination of Berberine-loaded 
hUC-MSCs-sEVs with GelMA hydrogel, which resulted in 
attenuated local inflammation and created a favorable 
microenvironment for nerve regeneration and axonal regrowth 
(Wang et  al., 2023). A tannic acid-doped hydrogel with 
sustainable hUCMSCs-derived sEV release has also been shown T
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to exhibit anti-inflammatory and anti-antioxidant properties 
leading to restoration of motor function and urinary tissue 
preservation in SCI (Liu et  al., 2022). As mentioned earlier, 
exosomes can be loaded with different substances to promote SCI 
recovery. miR-138-5p-loaded UCMSC-exosomes combined with 
a temperature-sensitive hydrogel showed promising results. 
Protective effects of miR-138-5p-loaded exosomes were reported 
in an in vitro assessment. These exosomes were able to reduce 
neuronal apoptosis through the reduction of intracellular ROS 
production and consequent oxidative stress via activation of the 
Nrf2-mediated pathway. They also reduced inflammation 
through suppression of the NLRP3-caspase1 signaling pathway 
and inhibition of M1 polarization. In addition, similarly in vivo 
experiments showed that Exos-138 hydrogel can promote axonal 
regeneration, and motor function recovery and reduce 
inflammation in rats with SCI (Xiao et  al., 2023). Hypoxia 
preconditioned hUCMSCs-derived exosomes loaded by adhesive 
hyaluronic acid hydrogel promoted angiogenesis, nerve 
regeneration, and functional recovery after SCI. These 
regenerative effects were achieved by activation of HIF-1α and 
overexpression of VEGF (Mu et  al., 2022). Hypoxic 
preconditioning of mesenchymal stem cells enhances 
neuroprotection and ameliorates SCI via improved survival and 
migration of cells, angiogenesis, and decreased 
neuroinflammation via HIF-1α related signaling pathways 
(Imura et  al., 2017; Wang et  al., 2018). In addition, hypoxia-
preconditioned MSC-derived EVs were reported to have higher 
regenerative capacity than those obtained under normoxia. 
Priming MSC in hypoxia favors generating EVs enriched in 
HIF-1α and hypoxia regulated-miRNAs (HRMs), leading to 
attenuated inflammatory/oxidative stress (Luo et al., 2019; Huang 
et al., 2022; Pulido-Escribano et al., 2022). Similarly, exosomes 
derived from hypoxic preconditioned human umbilical vein 
endothelial cells (HUVEC) stimulated MSCs for angiogenic SCI 
treatment. Application of these MSCs in a hyaluronic acid 
hydrogel scaffold resulted in an effective nerve tissue repair and 
significant motor function recovery (Li et al., 2022).

Adipose tissue-derived mesenchymal stem cells (ADMSCs) are 
another type of MSCs that was used as a source of exosomes. ADMSCs 
and ADMSCs-derived EVs can improve neurological function by 
reducing inflammatory responses and regulating microglial polarization 
(Mukhamedshina et al., 2018; Chen et al., 2022; Sung et al., 2022; Luo 
et al., 2023). The combination of ADMSCs-derived EVs with F127-
polycitrate-polyethyleneimine hydrogel (FE) promoted motor 
functional recovery of spinal cord injury. This type of hydrogel was 
reported to be  multifunctional as they were injectable, adhesive, 
temperature-responsive, self-healing, and anti-inflammatory. Using FE 
hydrogel to control the sustained release of EVs at the spinal cord injured 
site promoted functional recovery through attenuating inflammatory 
reaction, promoting remyelination and axonal regeneration, and 
reduced neuron apoptosis after SCI. FE-EVs also reduced the fibrotic 
scar formation via suppressing fibroblast migration, leading to better 
axonal regeneration in the microenvironment. They can also reduce 
excessive activated macrophages, resulting in enhanced remyelination 
and axonal regeneration (Wang et  al., 2021). Transplantation of 
ADMSCs-EVs encapsulated within collagen and fibrin hydrogel 
(ECM-based hydrogel scaffolds) can regenerate the injured nerve and 
decrease SCI-induced central neuropathic pain (Afsartala et al., 2023).

Human placenta amniotic membrane mesenchymal stem cells 
(hpAMSCs) isolated from the mesenchymal layer of the human 
placenta amniotic membrane are another potential therapeutic option 
in the repair of spinal cord injury. hpAMSCs and their EVs exert 
neuroprotective effects after SCI through reactivation of endogenous 
neurogenesis, axonal regeneration, promotion of angiogenesis, and 
reductions of inflammatory cell infiltration and cell apoptosis (Zhou 
et al., 2016, 2021; Zhang et al., 2020). hpAMSCs-derived exosomes 
loaded in a peptide-modified adhesive hydrogel (Exo-pGel) promoted 
significant nerve recovery and urinary tissue preservation by effectively 
reducing inflammation and oxidation. Significant reduction in 
inducible Nitric Oxide Synthase, (iNOS), peroxidative agents, and 
neuronal death were reported in the Exo-pGel treatment. Higher 
densities of neurofilaments and choline acetyltransferase and lesser 
accumulation of astrocytes in the Exo-pGel treatment indicated 
regeneration of nerves and restricted secondary damage (Li et al., 2020).

Instead of direct injection of MSCs or MSC-EVs into the injured 
site, Fang et al. fabricated microneedle (MN) array-MSC patches seeded 
with MSCs to achieve better and longer sustained delivery of MSC-EVs. 
Localized and sustained release of MSC-EVs after MN patch 
implantation was reported at the spinal injury site. The solution of 
MSC-EVs mixed with GelMA was mounted on the top of the MN 
patch, followed by a blue light photocuring process. MN-MSC seeded 
patches effectively downregulated neuroinflammation via reducing 
inflammatory factors (TNF-a, IL-1ß, MMP-9) and inflammatory 
immune cells (M1 microglia), increasing anti-inflammatory factors 
(TGF-ß, Arg-2). More neurons, less apoptosis of spinal cord cells, more 
myelin sheath, more axon regrowth, and more protection of spared 
axons from secondary injury were reported in the treatment with 
MN-MSC patch, resulting in functional recovery (Fang et al., 2023). The 
hybrid of GelMA hydrogel-MN array patch with 3D-cultured 
MSC-derived exosomes was used in another study for spinal cord repair. 
This hybrid reduced the number of apoptotic cells, improved spinal cord 
tissue morphology (significant reduction of cavity volume), and 
effectively attenuated neuroinflammation via promoting polarization of 
microglia from the M1 to M2 phenotype in the injured site (Han et al., 
2022). As both studies mentioned, the advantage of using these 
microneedle (MN) array patches was the sustained release of EVs into 
the injured microenvironment (Han et al., 2022; Fang et al., 2023).

As mentioned earlier, preconditioning may have beneficial effects 
on EV production and quality. Zeng et al. reported neuroprotective and 
neurodegenerative properties of EVs derived from melatonin-pretreated 
NSCs (Zeng et al., 2023). Melatonin preconditioning promotes the anti-
inflammatory, antioxidant, and antiapoptotic properties of stem cells 
derived-EVs. These effects are mainly due to increased polarization of 
microglia/macrophages from M1 to M2, reduced the ROS production 
and regulated mitochondrial function (Liu et al., 2021). Transplantation 
of these EVs combined with GelMA exerted anti-inflammatory effects 
and promoted NSCs differentiation, axonal regeneration, M2 
polarization, remyelination, and functional recovery (Zeng et al., 2023). 
Different conditioning methods need to be  further investigated in 
EVs-hydrogel combination therapies to improve the quality of EVs.

Local administration of human urine stem cell (USC)-derived 
exosomes enriched with ANGPTL3 embedded in hydrogel can 
improve neurological functional recovery after spinal cord injury 
through enhancing angiogenesis. After crossing the blood–brain 
barrier (BBB), USC-Exos is taken up by endothelial cells in the injured 
site, and ANGPTL3 acts as an angiogenic mediator via activation of 
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the PI3K/AKT signaling pathway in these cells. Obtaining USC-Exos 
is a non-invasive approach and easily assessable, which can be a new 
innovative therapeutic strategy (Cao et al., 2021).

Another source that was used in studies was CSF-EVs derived 
from the subarachnoid space of SCI pigs. SCI-CSF-EVs are 
suggested to be  more associated with neurological functional 
recovery following SCI in comparison with EVs derived from 
other sources. These EVs contain protective factors secreted by 
spinal cord cells, which are involved in the promotion of the 
neurological function after SCI. Li et al. shown that using these 
EVs promotes vascular regeneration and recovery of motor and 
sensory function mainly through activating of the PI3K/AKT 
pathway (Li et al., 2023). PI3K/AKT is an important signaling 
pathway for neurological functional recovery after spinal cord 
injury. This pathway is crucial for neuron repair, angiogenesis 
promotion, and microenvironment improvement. This pathway 
is also involved in promoting macrophage polarization toward 
M2 phenotype and microglial proliferation (Xu et al., 2021; Wang 
et al., 2022; Li et al., 2023).

M2 macrophages are another potential source of exosomes 
that can enhance angiogenesis, neurogenesis, and tissue 
regeneration after SCI (Huang et al., 2022). Hydrogel-mediated 
sustained release of M2-Exos significantly promoted vascular 
regeneration through activating Wnt/β-catenin signaling and 
inducing the expression of angiogenic-related genes in spinal 
cord microvascular endothelial cells, resulting in functional 
neurological recovery after SCI (Luo et al., 2021). Activation of 
the HIF-1α/VEGF axis is also involved in M2-Exos-induced 
angiogenesis and functional recovery following SCI (Huang et al., 
2022). Zhang et al. have also demonstrated the functional role of 
M2 microglia-derived EVs in SCI therapy. The incorporation of 
M2-EVs into PLEL hydrogel resulted in improved motor nerve 
functional recovery through increased BBB scores and reduced 
scare areas. They were involved in the reduction of local 
inflammation through EVs-induced M2 polarization and reduced 
neuronal apoptosis through inhibition of the Bcl-2 pathway 
(Zhang et al., 2022).

6 Conclusion and perspectives

To date, there are no fully effective treatment methods for 
regeneration of the spinal cord after SCI due to the complex 
microenvironment of the injured spinal cord. There are currently 
some clinical trials assessing the safety and efficacy of EVs in 
patients with CNS conditions (e.g., ischemic stroke, depression, 
anxiety, and dementias) and also some clinical trials using 
hydrogel-based strategies in the treatment of SCI. The novel 
EVs-hydrogels combination therapy can be  a promising 
therapeutic strategy to promote neuronal survival, axonal 
regeneration, and tissue remodeling by delivering EVs directly to 
the injured site and providing a supportive scaffold for tissue 
repair. A combination of tissue engineering strategies with 
rehabilitation and neuromodulation approaches may help to 
enhance the efficacy of spinal cord regeneration. This approach 
can be used as a personalized strategy by selecting the appropriate 
cell source and engineering the optimum exosomes. However, 

there are still some issues that are necessary to be  addressed 
before clinical application, so further preclinical studies are 
needed. These challenges include ensuring the long-term and 
sustained safety and efficacy of EVs and optimizing the hydrogel 
properties. The quality of EVs can be improved through different 
methods such as biophysical inducing, biochemical 
preconditioning, and cellular reprogramming of EV cell sources. 
Genetic reprogramming of cells, such as overexpression of 
specific proteins and miRNA in cells, can increase the therapeutic 
potency of secreted EVs. In addition, decreasing the stiffness of 
hydrogel, reducing the complexity of hydrogel preparation, and 
providing user-friendly hydrogels with controllable and 
predictable gelation time should also be considered.

Taken together, this strategy provides a homeostatic 
environment that would mimic the physiologic niche of the 
spinal cord. Indeed, therapeutic strategies of hydrogel-loaded 
EVs still have a long way to go, from pre-clinical experiments to 
clinical application. The focus of future preclinical studies and 
clinical trials should be on assessing the long-term safety and 
efficacy of the best cell source and hydrogel type to provide 
complete spinal cord regeneration.
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