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Introduction: Dynamic functional connectivity (dFC), which can capture

the abnormality of brain activity over time in resting-state functional

magnetic resonance imaging (rs-fMRI) data, has a natural advantage in

revealing the abnormal mechanism of brain activity in patients with Attention

Deficit/Hyperactivity Disorder (ADHD). Several deep learning methods have been

proposed to learn dynamic changes from rs-fMRI for FC analysis, and achieved

superior performance than those using static FC. However, most existingmethods

only consider dependencies of two adjacent timestamps, which is limited when

the change is related to the course of many timestamps.

Methods: In this paper, we propose a novel Temporal Dependence neural

Network (TDNet) for FC representation learning and temporal-dependence

relationship tracking from rs-fMRI time series for automated ADHD identification.

Specifically, we first partition rs-fMRI time series into a sequence of consecutive

and non-overlapping segments. For each segment, we design an FC generation

module to learn more discriminative representations to construct dynamic FCs.

Then, we employ the Temporal Convolutional Network (TCN) to e�ciently capture

long-range temporal patterns with dilated convolutions, followed by three fully

connected layers for disease prediction.

Results: As the results, we found that considering the dynamic characteristics

of rs-fMRI time series data is beneficial to obtain better diagnostic performance.

In addition, dynamic FC networks generated in a data-driven manner are more

informative than those constructed by Pearson correlation coe�cients.

Discussion: We validate the e�ectiveness of the proposed approach through

extensive experiments on the public ADHD-200 database, and the results

demonstrate the superiority of the proposedmodel over state-of-the-artmethods

in ADHD identification.

KEYWORDS

functional connectivity, temporal dependence, dynamics characteristics, attention

deficit/hyperactivity disorder, temporal convolutional network

1 Introduction

Attention deficit/hyperactivity disorder (ADHD) is one of the most common

neurodevelopmental disorders that typically appears in early childhood. It is characterized by

significant symptoms of inattention, impulsivity, and hyperactivity, resulting in substantial

functional impairment in at least two settings (e.g., social, occupational, and/or academic
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activities) (American Psychiatric Association et al., 2013). It

is estimated that ADHD affects approximately 7.2% of people

worldwide (Thomas et al., 2015). The current diagnosis of ADHD

mostly relies on behavior assessment and clinical measures to

quantify the severity of the disorder (Sayal et al., 2018; Chan et al.,

2023), making it a challenging task due to the complexity of its

pathological mechanisms and clinical symptoms (Usami, 2016).

Therefore, the advent of any computer-aided diagnosis method that

supports an objective and quantitative method to identify ADHD

automatically is highly desirable.

Resting-state functional magnetic resonance imaging (rs-

fMRI), a non-invasive neuroimaging technique that measures

spontaneous fluctuations in blood oxygen level dependent (BOLD)

signal at rest, has been widely used to study brain function

in humans (Lee et al., 2013; Cortese et al., 2021; Wang et al.,

2023). Functional connectivity (FC) derived from rs-fMRI is

able to characterize brain function abnormality and thus has

been widely used for diagnosis of psychiatric diseases, such as

schizophrenia, autism spectrum disorders (ASD), and attention

deficit/hyperactivity disorders (ADHD) (Du et al., 2018; Wang

et al., 2019c; Canario et al., 2021). In the field of fMRI analysis, it

is typically assumed that the brain FC is stationary over the whole

scanning process (usually several minutes). In fact, increasing

evidence suggests that the FCs change considerably on a short time

scale (several seconds) (Zhang et al., 2016; Jie et al., 2018; Ding

et al., 2022; Huang et al., 2023), and the static FC analysis cannot

sufficiently perceive these dynamic changes. The sliding window

approach is the commonly used technique to quantify dynamic

FC (dFC). According to this method, BOLD time series extracted

from each subject are first partitioned into multiple overlapping or

non-overlapping segments using fixed-size sliding windows, and

then the FC network based on each segment is constructed for

subsequent analysis.

Existing methods for dFC analysis based on sliding windows

can be roughly categorized into two categories: (1) traditional

machine learning methods and (2) deep learning methods. In the

first category, low-level measures (i.e., clustering coefficients) of

FCs are first extracted as new representations of the data, and then

the corresponding classifier (i.e., support vector machine, SVM)

is trained for final prediction (Wee et al., 2016; Jie et al., 2018;

Wang et al., 2021). For example, Wee et al. (2016) proposed to

use the fused multiple group LASSO algorithm to simultaneously

generate dFC networks for these sub-segments. Then, clustering

coefficients are calculated from each generated FC network. Finally,

the concatenated clustering coefficients of all these segments are

used to train an SVM classifier for disease diagnosis. Jie et al.

(2018) first constructed dynamic FCs from each segment and

then extracted temporal and spatial variabilities from these FCs

as features. Finally, the manifold regularized multi-task feature

learning and multi-kernel learning techniques are used to integrate

these features for disease prediction. Luo et al. (2023) proposed

to calculate temporal microstate dynamics and spectral power

features to analyze group differences between ADHD and normal

controls (NCs), as well as its subtypes. These studies show that

taking dynamic properties into consideration helps improve the

performance of disease diagnosis, and the discovered changes in

FCs may be potential biomarkers to distinguish patients from

normal controls. However, existing methods based on traditional

machine learning usually rely on handcrafted features to learn

models for subsequent classification/prediction tasks, which may

lead to sub-optimal performance.

The second category (i.e., deep learning methods) has been

widely used in dFC analysis due to its powerful learning

ability (Wang et al., 2019b; Li et al., 2020; Cao et al., 2022).

Different from traditional machine learning methods, deep

learning methods usually learn high-level features from dFC

networks in a data-driven manner, which can effectively improve

learning performance. For example,Wang et al. (2019b) proposed a

Spatial-Temporal convolutional-recurrent neural Network (STNet)

for Alzheimer’s disease progression prediction using rs-fMRI time

series. Specifically, a convolutional component was employed to

construct the FC within each time-series segment. Then, the

long short-term memory (LSTM) units were used to model the

temporal dynamics patterns of these successive FCs, followed by

a fully-connected layer to perform disease progression prediction.

Lin et al. (2022) developed a Convolutional Recurrent Neural

Network (CRNN) for dynamic FCs analysis for automated

brain disease diagnosis. In this method, a sequence of pre-

constructed FC networks is input into three convolutional layers

to extract temporal features, and an LSTM layer is used to

capture temporal information for multiple time segments, followed

by three fully connected layers for brain disease classification.

To take advantage of spatiotemporal information of fMRI data,

Yan et al. (2019) designed a Multi-scale RNN framework for

schizophrenia classification. Specifically, stacked convolution layers

were used to extract different scale features, followed by a two-layer

stacked Gated Recurrent Unit (GRU) for dynamic information

mining. Zhao et al. (2022) designed a hybrid deep learning

framework, including a convolutional recurrent neural network

with attention module (C-RNNAM) and a deep neural network

(DNN). Specifically, C-RNNAM was used to extract temporal

dynamic dependencies with an attention module to automatically

learn discriminative knowledge from time courses, while DNN was

applied to learn FC patterns with layer-wise relevance propagation.

Then, the two outputs were concatenated and fed to logistic

regression for final prediction.

Although existing deep learning methods have advanced the

dFC analysis from learning efficiency and classification accuracy

perspectives, they only can capture the dependencies of adjacent

timestamps. Previous studies (Wang et al., 2019b; Lin et al., 2022)

usually employed recurrent neural network (RNN) with LSTM or

GRU. To capture temporal dependency for dFC analysis. While

in these methods, the latent state at each time segment t, is only

a function of the data at t and the hidden state and memory at

t − 1. This is limiting when the dynamics at time segment t are

related to the course of many timestamps (Lea et al., 2017). To this

end, in this paper, we propose a novel dynamic FC analysis model

called Temporal Dependence neural Network (TDNet), which

can capture temporal-dependence relationships from rs-fMRI time

series for automated ADHD diagnosis. Figure 1 shows an overview

of the proposed TDNet model. Specifically, we first partition

rs-fMRI time series into a sequence of consecutive and non-

overlapping segments using fixed-size sliding windows. Then, we

utilize FC generation module, which consists of three convolution

layers and a bilinear operation layer, to learn the FC for each

segment. To capture the temporal dependencies across multiple
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segments, a temporal convolutional network (TCN) using dilated

causal convolutions and residual blocks is employed in the TDNet

model. Finally, we apply a convolution operation over the output of

TCN to get the probabilistic values to fuse dFCs, followed by three

fully-connected layers and a softmax activation for final prediction.

Extensive experimental results on the ADHD-200 dataset show the

effectiveness of our model in capturing temporal dynamic patterns

and producing high disease diagnosis accuracy.

2 Materials and methods

In this section, we describe the materials used in this study, as

well as the proposed method for dynamic functional connectivity

analysis with rs-fMRI time series.

2.1 Materials

2.1.1 Data acquisition
In this study, we conduct experiments on the publicly

available ADHD-200 dataset to demonstrate the effectiveness

of our TDNet model. The ADHD-200 dataset totally collected

973 subjects from eight different imaging sites, including 362

ADHD patients, 585 normal controls (NCs), and 26 undiagnosed

subjects. The data is available from the NeuroImaging Tools &

Resource Collaboratory (NITRC) website.1 Each participant’s data

is composed of a resting state functional MRI scan, a structural

MRI scan, and the corresponding phenotypic information. More

details about the scan procedures and parameters are also

described on the NITRC website.2 Note that ADHD patients

within the dataset are subdivided into three subtypes, including

ADHD-Combined, ADHD-Hyperactive/Impulsive, and ADHD-

Inattentive. For simplicity, we will ignore subtypes in the binary

classification task and label all subtypes as 1. In the ADHD-200

Global Competition, the data was divided into a training set and

a test set, and the corresponding numbers of subjects were 768

and 197, respectively. In this paper, we also follow this division

in our experiments. Due to the labels of 26 subjects in the test set

have not been released, they were not included in our performance

evaluation. Besides, subjects from the Pitt andWashu imaging sites

were also discarded in our study because they only contained NC

subjects in the training set. Thus, a total of 782 subjects were used in

this study, including 620 ADHDpatients and 162NCs. The detailed

demographic information of involved subjects and data partition

for experiments are provided in Table 1.

2.1.2 Data preprocessing
All the rs-fMRI data used in this study are processed by

using the Athena pipeline.3 Specifically, the first four volumes are

removed to allow for magnetization equilibrium, and then the

1 https://fcon_1000.projects.nitrc.org/indi/adhd200/

2 https://www.nitrc.org/plugins/mwiki/index.php/neurobureau:

AthenaPipeline#Summary_Data

3 http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:

AthenaPipeline

TABLE 1 Demographic information of the studied subjects from the

ADHD database.

Item KKI NI NYU OHSU PKU Total

Training dataset

Number 83 48 216 79 194 620

NC 61 23 98 42 116 340

ADHD 22 25 118 37 78 280

Gender(M/F) 46/37 31/17 140/76 43/36 144/50 404/216

Item KKI NI NYU OHSU PKU Total

Test dataset

Number 11 25 41 34 51 162

NC 8 14 12 28 27 94

ADHD 3 11 29 6 24 73

Gender(M/F) 10/1 12/13 28/13 17/17 32/19 99/63

NC, normal control; M/F, male/female.

remaining volumes are processed by the following procedures,

including slice timing correction, head motion correction,

Montreal Neurological Institute (MNI) space normalization, and

re-sampling at 4 × 4 × 4mm3 resolution. After that, mean white

matter (WM) and cerebrospinal fluid (CSF) signals, six head

motion parameters, and a third-order polynomial were included

in a voxelwise nuisance regression model to eliminate time series

variations caused by physiological noise, head motion, and scanner

drifts. The rs-fMRI data were then further spatially smoothed with

a 6mm full-width-at-half-maximum (FWHM) Gaussian kernel and

temporally filtered to preserve the signals of 0.009−0.08Hz. Finally,

the time series of 116 pre-defined regions-of-interest (ROIs)

are extracted from the preprocessed data using the automated

anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002).

2.2 Methods

As illustrated in Figure 1, the proposed TDNet consists of

three modules: (a) an rs-fMRI time series partition module, (b) a

FC generation module, and (c) a temporal convolutional network

module. Given a set of labeled fMRI time series, D = (X(i), y(i)),

X
(i) = (x

(i)
1 , · · · , x

(i)
N )T ∈ R

N×M represents the i-th subject, which

contains N time series (N = 116). Here, x
(i)
n ∈ R

M (n = 1 · · · ,N)

denotes the n-th time series of i-th subject with M successive time

points. In addition, y(i) ∈ {−1, 1} denotes the class label of X(i).

Specifically, y(i) = 1 denotes the subject is an ADHD patient, while

y(i) = −1 represents the subject belonging to the normal control

(NC) group. The proposed TDNet takes preprocessed time series

signals (i.e.,X) from rs-fMRI data as the input, which aims tomodel

dynamic characteristics of such data for disease diagnosis.

2.2.1 Partition of rs-fMRI time series
We first employ the sliding window strategy to partition all

rs-fMRI time series into T non-overlapping windows with a fixed

window size L to preserve the temporal variability. Specifically, we
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A B C

FIGURE 1

Architecture of TDNet, including three components: (A) partitioning rs-fMRI time series via non-overlapping sliding windows, (B) a FC generation

module (with three cascaded convolutional layers and a bilinear operation layer) to construct functional connectivity within each time window, and

(C) a temporal convolutional network to capture temporal dynamics across all the time windows. With the output of the temporal convolutional

network, a convolution is used to obtain these probabilistic values to fuse these time windows, followed by three fully-connected layers and a

softmax activation for final disease identification. The left in TCN block is a dilated causal convolution with dilation factors D = 1, 2, 4 and filter size

k = 3. The right is a TCN residual block. A 1× 1 convolution is added when residual input and output have di�erent dimensions.

set the window size L as 20 time points, by which S = {Xt ∈

R
N×L}Tt=1 denote the resulting time series segments. The lengths of

extracted time series are 119, 257, 171, 74, and 231 repetition time

(TR) for the KKI, NI, NYU, OHSU, and PKU datasets, respectively,

and the corresponding TR is 2.5, 1.96, 2, 2.5, and 2s. Due to the

scanning time of each site is different, we obtain T = 5, T = 12,

T = 8, T = 3, and T = 11 time-series segments for these

sites, respectively. It is worth noting that we discard windows

with time points less than 20 in the experiment. The reason for

choosing such window length is that window sizes around 30-60s

can provide a robust estimation of the dynamic fluctuations in rs-

fMRI data (Zhang et al., 2016; Wang et al., 2021). For each subject,

the time-series segments S will be considered as the input of the

proposed network (as introduced below).

2.2.2 FC generation module
In this module, a convolutional neural network (CNN) block is

used to extract features from each brain region’s time-series signals

at each time segment for learning high-level representations. As

depicted in the middle of Figure 1, the CNN block consists of 3

convolutional (Conv) layers, and the k-th layer can be denoted by

Fk ∈ R
fk×N×dk , where fk is the number of convolutional filters in

the k-th layer, N is the number of ROIs, and dk is the dimension

of the extracted region features, respectively. Each layer consists

of convolutional, batch normalization (BN), rectified linear unit

(ReLU), and dropout operations. We define the collection of filters

in each layer as Wk ∈ R
fk×1×Lk , and denote the bias vectors as

bk ∈ R
fk . Given the time series from the previous preprocessing,

F
t
k−1

(Ft0 ∈ R
1×N×L), we compute activations Ft

k
as follows:

F
t
k = ReLU(BN((Wk ∗ F

t
k−1 + bk))), (1)

where ∗ is the convolution operator. Based on the encoded

time-series feature F
t of t-th time series segment, a bilinear

operation is employed to model dependencies between pairs of

ROIs. Specifically, for each subject, we calculate the inner product

between each pair of brain regions to generate a functional

connectivity matrix At as:

A
t = F

t(Ft)⊤, (2)

where A
t ∈ R

1×N×N and each element A
t
ij =

∑d3
q=1 F

t
iqF

t
jq

measures the degree of second-order dependency between two

brain regions. A large value of At
ij indicates the i-th and j-th ROIs

are highly related.
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2.2.3 Temporal convolutional network module
In this module, a temporal convolutional network (TCN) with

dilated causal convolutions and residual blocks is employed to

model temporal dependencies for DFC analysis. Specifically, the

TCN uses residual blocks as the building blocks (Bai et al., 2018).

One residual block of the TCN architecture can be seen in the

bottom right of Figure 1, which is composed of two sets of dilated

causal convolution layers with the same dilation factor, followed

by batch normalization, ReLU activation, and dropout layers. The

dilated causal convolutional layer is the core network layer of

the TCN, which consists of two parts: causal convolution (Long

et al., 2015) and dilated convolution (Oord et al., 2016). The causal

convolutions ensure that the network produces an output of the

same length as the input, and there is no future information leakage.

The dilated convolutions help the network to increase its receptive

field without the need to increase the number of parameters by

increasing the number of layers or the kernel size. By increasing the

dilation factor, the receptive field also grows exponentially with the

number of layers. In the TCN block (see in the right of Figure 1),

the residual connection combines the input and the output feature

maps, and if the depth of the input and output is different, a 1 × 1

convolution is used. The set of operations at each layer can be

mathematically described as follows:

H̃q = ReLU(W2 ∗ ReLU(W1 ∗Hq−1 + b1)+ b2),

Hq = Hq−1 +W3 ∗ H̃q + b3,
(3)

where Hq denotes the output of q-th (q ∈ [1, · · · ,Q]) residual

block, ∗ is the convolution operator, W1,W2 ∈ R
3×fq are the

weights of the dilated convolution filters with kernel size 3 and

fq is the number of convolution filters, W3 ∈ R
1×fq are the

weights of a 1 × 1 convolution, and b1, b2, b3 ∈ R
fq are bias

vectors. These operations are depicted in Figure 1. Note that

although TCN only has 1D dilated causal convolutions, they are

still capable of processing 2D feature maps by considering the

second dimension as the depth dimension. For each generated FC

(i.e., At , t ∈ [1, · · · ,T]), we first remove the upper triangle and

the diagonal elements and convert the remaining elements into a

N(N−1)/2-dimensional vectorized representation. Then, we stack

the vectorized representation of these FCs into a longitudinally

ordered sequence, denoted as H ∈ R
T×N(N−1)/2, and treat it as the

input to the TCN.

By stacking several residual blocks, the receptive field of the

proposed TCN is determined through the following:

ReceptiveField = 1+ 2(2Q − 1)(K − 1), (4)

where Q is the number of residual blocks and K is the kernel

size. To fuse temporal dynamic patterns, we further apply a 1 × 1

convolution over the output of the last dilated convolution layer

followed by a tanh activation,

P = tanh(WHQ + b), (5)

where P ∈ R
T denotes the contribution of these time-series

segments for ADHD diagnosis, HQ is the output of the last dilated

convolution layer, W ∈ R
1×D and b ∈ R

D are the trainable

weights and bias for the 1 × 1 convolution layer, D is the number

of convolutional filters. After that, P is applied to obtain the fused

dFCs representationH
′, which can be defined as follows:

H
′ = PH. (6)

Finally, the fused representation is fed to three fully-connected

layers for classification.

2.2.4 Implementation details
The TDNet model was implemented using Python based on

the Keras package,4 and the model was trained on an NVIDIA

GeForce GTX 2080 Ti GPU. In the CNN block, the number of

convolutional filters for three convolutional layers was set as 4,

2, and 1, respectively, and the kernel size of these layers were

1 × 3, 1 × 3 and 1 × 1. In the TCN block, the number of

convolution filters and residual blocks were both set to 3. Three

fully-connected layers with 512, 128, and 2 neurons, respectively.

The categorical_crossentropy was used as the loss function and the

dropout rate of dropout layers was 0.3. The model is trained for

100 epochs with an Adam optimizer at recommended parameter

settings and a batch size of 16.

3 Experiments

3.1 Experimental setup

We evaluate the proposed method using the classification

accuracy on rs-fMRI data from five different sites (i.e., KKI, NI,

NYU, OHSU, and PKU) from the ADHD database. We compare

our TDNet with the following six deep learning methods, including

two static methods, two dynamic methods, and two variants of

our method. (1) Multilayer Perceptron (MLP): The MLP contains

two hidden layers with 512, and 128 neurons on each layer for

ADHD diagnosis; (2) Convolution Neural Network (CNN): The

CNN consists of three convolution layers with kernel size 5 × 5,

5 × 5, and 3 × 3, respectively, and kernel(s) for these layers are

8, 4, and 1. Two fully connected layers with 512 and 128 neurons,

and an output layer with 2 neurons are followed. (3) Long Short-

Term memory (LSTM): The LSTM contains three stacked layers

with 512, 256, and 2 neurons, respectively, followed by softmax

activation; and (4) CNN-LSTM: A simple combination of CNN and

LSTM models. Specifically, the same architecture as CNN model is

employed, but without using fully-connected layers. The output of

the CNN is fed to an LSTMmodel to model temporal information.

The CNN-LSTM model uses the same parameters as CNN and

LSTM. (5) TDNet-F: To evaluate the effectiveness of our generated

FC networks, the TDNet-F method was designed to use pre-

constructed dynamic FCs as the input data, while the remaining

network architecture was the same as TDNet. (6) TDNet-T: As a

variant of TDNet, TDNet-T was implemented without considering

the temporal dynamics along timestamps. That is, we replaced the

TCNmodule with three fully-connected layers with 512, 128, and 2

neurons, respectively.

4 https://github.com/fchollet/keras
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3.2 Classification performance

The classification accuracy of the proposed TDNet and other

competing methods are shown in Table 2. From Table 2, we

can have three interesting observations. First, dynamic FC-based

models (i.e., LSTM, CNN-LSTM, TDNet-F, TDNet-T, and TDNet)

generally outperform methods based on static FC networks (i.e.,

MLP and CNN). For example, the highest average accuracy

achieved by TDNet is 73.2%, which is higher than those of

static FC-based methods. This demonstrates that considering the

TABLE 2 Classification accuracy achieved by di�erent methods on five

datasets with rs-fMRI time-series data.

Method Site Average

KKI NI NYU OHSU PKU

MLP 72.7 60.0 65.9 70.6 51.0 64.0

CNN 63.6 64.0 68.3 70.6 64.7 66.2

LSTM 72.7 56.0 61.0 67.7 53.0 62.1

CNN-LSTM 63.6 56.0 68.3 73.5 58.8 64.1

TDNet-F 72.7 64.0 68.3 67.7 58.8 66.3

TDNet-T 72.7 64.0 70.7 73.5 64.7 69.1

TDNet (Ours) 81.8 68.0 73.2 76.5 66.7 73.2

Best results are shown in bold.

dynamic changes of rs-fMRI time series is beneficial to improving

the diagnostic performance of ADHD. Second, the proposed TDNet

achieves consistently better results than the other comparative

methods. For example, the highest accuracy value is 66.2% achieved

by CNN model, which is significantly lower than our proposed

model. This indicates that the data-driven construction of dynamic

FCs helps boost the learning performance of TDNet. Third,

compared with the LSTM and CNN-LSTM methods, our TDNet

can obtain better performance, which proves the advantage of

mining sequential dynamic patterns from rs-fMRI time series.

Finally, our TDNet achieves an improvement of 6.9% and 4.1%

compared with the results yielded by its two variants TDNet-F and

TDNet-T, respectively. These results show that both modules are

useful in helping to boost the learning performance of TDNet.

In addition, we also compare our method with several state- of-

the-art approaches using rs-fMRI data from ADHD-200 database

for ADHD identification. Such experimental results can be found

in Table 1 of the Supplementary material.

3.3 Constructed functional connectivity

In contrast to previous studies that rely on pre-defined FC

networks (e.g., via Pearson’s correlation) (Wee et al., 2016; Jie

et al., 2018; Wang et al., 2019a, 2022), the proposed method can

generate dynamic FC networks in a data-driven manner. We now

FIGURE 2

Group di�erence between the learned FC and the traditional “Stationary FC”. Here, p-values less than 0.05 between ADHD and NC groups are set to

0 (corresponding to the green parts in the figure). The term At (t = 1, 2, · · · , 5) corresponds to the group di�erence based on dynamic functional

connectivities learned on t-th sliding window by the proposed FC generation module in TDNet.
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FIGURE 3

Top 15 brain functional connectivity patterns identified by our TDNet method in ADHD vs. NC classification on the KKI site.

investigated the FC networks constructed by the proposed TDNet

in the KKI site. Specifically, the output of the FC generationmodule

is a 4-dimensional tensor with the size of Batch_size×T × N × N

(T = 5), denoting the dependency between a pair of ROIs for each

subject in T time series segments. We measure the group difference

between ADHD vs. NC using the standard t-test, with p-values

shown in Figure 2. For comparison, in Figure 2, we also report

the group difference of the stationary FC network (constructed

by Pearson correlation coefficients between rs-fMRI time-series

of any pair of ROIs). In Figure 2, the obtained p-values were

binarized for clarity (i.e., set to 1 if the p-value is more than 0.05;

and 0, otherwise).

From Figure 2, we can clearly see that there are

significant differences in the discriminative information

contained in different time series segments. Compared

with other sub-segments, A
2 contains relatively richer

information, which indicates that considering temporal

dynamic patterns can help improve learning performance.

Additionally, the correlations learned by our TDNet

are more informative than the static functional

connectivity constructed by Pearson correlation coefficients,

indicating that TDNet can identify more ADHD-related

discriminative connectivities.

3.4 Identified discriminative brain regions

It’s meaningful to identify the discriminative brain regions that

are associated with ADHD diagnosis. Here, we investigate the top

15 discriminative brain regions identified by the TDNet method

on the KKI site. Since the identified brain connectivity patterns

may be different in each segment, we use the cumulative absolute

value in A
t as an indicator of its contribution to ADHD vs. NC

classification. Hence, we calculate the cumulative absolute value of

each element in A
t across all segments, and treat these values as

the contribution indicator for subsequent classification tasks. We

show the top 15 connectivity patterns identified by our TDNet in

Figure 3, and further report the names of the corresponding brain

ROIs in Table 3.

From Figure 3 and Table 3, we can see that several brain

regions, e.g., Superior frontal gyrus, medial orbital (ORBsupmed),

Middle frontal gyrus, orbital part (ORBmid), and Gyrus rectus

(REC), are selected frequently in the ADHD vs. NC classification

task. These findings are consistent with previous studies (Joo

et al., 2016; Itani et al., 2019; Sun et al., 2020). In addition,

the selected brain regions such as Superior frontal gyrus,

orbital part (ORBsup) and Cuneus (CUN) are also sensitive

biomarkers for ADHD diagnosis, proven by previous studies
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(Sun et al., 2020; Lan et al., 2021). These results suggest that

the identified brain regions by our method are reliable for

ADHD analysis.

4 Discussion

4.1 Influence of di�erent lengths of sliding
windows

We also investigate the effects of different lengths of sliding

windows on the TDNet method in terms of classification accuracy

on five different sites. Specifically, we use a rectangle window,

and vary the length of the sliding window to create time-series

TABLE 3 Names of brain ROIs in the top 15 connectivity patterns

identified by the proposed TDNet method.

Index of pairwise ROI ROI names

26 & 25 ORBsupmed.R & ORBsupmed.L

25 & 10 ORBsupmed.L & ORBmid.R

27 & 25 REC.L & ORBsupmed.L

10 & 6 ORBmid.R & ORBsup.R

10 & 9 ORBmid.R & ORBmid.L

26 & 10 ORBsupmed.R & ORBmid.R

25 & 9 ORBsupmed.L & ORBmid.L

25 & 23 ORBsupmed.L & SFGmed.L

27 & 10 REC.L & ORBmid.R

25 & 6 ORBsupmed.L & ORBsup.R

46 & 45 CUN.R & CUN.L

27 & 26 REC.L & ORBsupmed.R

25 & 5 ORBsupmed.L & ORBsup.L

28 & 25 REC.R & ORBsupmed.L

28 & 27 REC.R & REC.L

ROI, region-of-interest.

segments. The width of the sliding window is selected from

the range of [10, 15, 20, 25, 30]×TR. In Figure 4, we report the

classification accuracy achieved by our TDNet method under

different lengths of sliding windows on ADHD vs. NC classification

task. As can be seen from Figure 4, with the increases in the

width of the sliding window, the classification accuracy fluctuates

to a certain extent. When the width reaches 20×TR, our method

achieves the best performance. These results suggest that it is

reasonable to set the length of the sliding window to 20×TR.

4.2 Influence of Di�erent Partition of
Sliding Windows

Furthermore, We investigate the influence of using

overlapping sliding windows on the performance of the

proposed method for ADHD diagnosis. Specifically, we set

the window size L as 20 time points and the gap between

two adjacent windows as 2×TR. This produces T = 6,

T = 14, T = 9, T = 3, and T = 12 time series segments

for these sites, respectively. The experimental results are

shown in Figure 5. From Figure 5, we can clearly see that the

classification performance obtained by our method using non-

overlapping sliding windows on different sites is better than

using overlapping ones. Therefore, using non-overlapping sliding

windows to partition the time series is a more appropriate choice

in experiments.

4.3 Limitations and future work

There are still several limitations that need to be considered in

this study. First, we extract the time series signals from 116 ROIs

based on the AAL atlas and generate the corresponding functional

connectivity for ADHD diagnosis. Recent studies (Wu et al.,

2019; Messé, 2020) have shown that FCs generated with different

partitioning schemes can provide different connectivity patterns,

which may contribute to more accurate brain disease diagnosis.

It would be interesting to investigate the effect of different

FIGURE 4

Results of the proposed TDNet method with respect to di�erent lengths of sliding windows in ADHD vs. NC on di�erent sites.
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FIGURE 5

Results of the proposed TDNet method with respect to di�erent

partitions of sliding windows in ADHD vs. NC on di�erent sites.

partitioning schemes on ADHD prediction. Second, we currently

only use the rs-fMRI data to automatically identify ADHD in this

study. In fact, different imaging modalities, such as structural MRI,

can provide disease-related complementary information for disease

diagnosis. The use of multi-modal information for brain disease

analysis will be our future work. Finally, due to the different lengths

of time series data in each imaging site, we are limited in the sample

size that could be used simultaneously in this study. In future

work, we will evaluate the proposed method on a larger dataset,

such as Alzheimer’s Disease Neuroimaging Initiative (ADNI) with

rs-fMRI data.

5 Conclusion

In this paper, we propose a novel Temporal Dependence neural

Network (TDNet) for automated diagnosis of ADHD using rs-

fMRI time series. Specifically, we first partition rs-fMRI time

series into multiple sub-segments using a non-overlapping sliding

time window strategy. Then, an FC generation module is used

to learn the FC for each segment and a temporal convolutional

network module is employed to capture the temporal dependencies

across these segments. Experimental results demonstrate that our

model can achieve superior performance on the public ADHD-200

database compared to several state-of-the-art methods.
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