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Mild traumatic brain injury (mTBI) is a public health concern. The present study 
aimed to develop an automatic classifier to distinguish between patients with 
chronic mTBI (n = 83) and healthy controls (HCs) (n = 40). Resting-state functional 
MRI (rs-fMRI) and positron emission tomography (PET) imaging were acquired from 
the subjects. We  proposed a novel deep-learning-based framework, including 
an autoencoder (AE), to extract high-level latent and rectified linear unit (ReLU) 
and sigmoid activation functions. Single and multimodality algorithms integrating 
multiple rs-fMRI metrics and PET data were developed. We  hypothesized that 
combining different imaging modalities provides complementary information 
and improves classification performance. Additionally, a novel data interpretation 
approach was utilized to identify top-performing features learned by the AEs. Our 
method delivered a classification accuracy within the range of 79–91.67% for single 
neuroimaging modalities. However, the performance of classification improved to 
95.83%, thereby employing the multimodality model. The models have identified 
several brain regions located in the default mode network, sensorimotor network, 
visual cortex, cerebellum, and limbic system as the most discriminative features. 
We  suggest that this approach could be  extended to the objective biomarkers 
predicting mTBI in clinical settings.
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Introduction

Mild traumatic brain injury (mTBI) is a growing public health concern worldwide that 
can result in a broad spectrum of short-term and long-term symptoms, including a decline in 
cognitive functioning and mobility (e.g., poor concentration, slowed thinking, memory loss, 
sleep disruption, fatigue, and irritability). Annually, mTBI accounts for more than 2 million 
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deaths in the United States and over 10 million hospitalizations across 
the world (Vergara et al., 2017). Several incidents may cause TBI, such 
as falls, vehicle accidents, athletic collisions, blast-related trauma, and 
abuse or assault (Vedaei et al., 2021). A great deal of effort has been 
made to develop biomarkers of mTBI, including the application of 
advanced neuroimaging techniques to integrate large-scale high-
dimensional multimodal neuroimaging data. Conventional computed 
tomography (CT) and magnetic resonance imaging (MRI) fail to 
detect any indication of mTBI in most of the cases, while cognitive 
dysfunction after mTBI has been known to be related to brain function 
disruption. Resting-state functional MRI (rs-fMRI) and positron 
emission tomography (PET) have been used to characterize intrinsic 
brain function, connectivity, and glucose metabolism, thus 
non-invasively aiding in the diagnosis of neurological and psychiatric 
disorders (Byrnes et al., 2014; O’Neill et al., 2017). A critical challenge 
in the analysis of rs-fMRI data owing to their high dimensionality is 
to extract meaningful patterns and derive insights from the data. 
Several methods have been used to analyze rs-fMRI data, such as 
functional segregation and integration analysis. Functional segregation 
focuses on the local function of specific regions incorporating 
spontaneous neuronal activity measured by rs-fMRI data including 
the fractional amplitude of low-frequency fluctuation (fALFF) and 
regional homogeneity (ReHo), while functional integration focuses on 
rs-fMRI functional connectivity (FC) between different brain regions 
considering the brain as an integrated network, which contains degree 
centrality (DC), voxel-mirrored homotopic connectivity (VMHC), 
and FC strength (FCS) (Tononi et al., 1994; Pang et al., 2021).

Taking into account that mTBI symptoms are not detected by 
conventional neuroimaging approaches, several studies have explored 
brain function and metabolism using rs-fMRI and PET imaging. For 
instance, a prior study investigated fALFF and FC among patients with 
mTBI and found decreased fALFF in the frontal, temporal, and 
occipital lobes in mTBI patients compared to healthy controls (HCs). 
Additionally, using seed-based FC by locating the seed in the thalamic 
area, these studies reported higher FC with the frontal, parietal, and 
occipital lobes as well as decreased FC with the temporal areas in 
mTBI patients compared to HCs (Zhou et al., 2014). Another study 
found increased ReHo in the superior frontal and middle occipital 
regions as well as decreased ReHo in the inferior frontal, medial 
frontal, superior temporal, parahippocampus, supramarginal, and 
supplementary motor areas in mTBI patients compared to HCs (Liu 
et al., 2018). Using PET, a previous study on veterans with exposure to 
blast and diagnosed with mTBI compared the cerebral glucose 
metabolism between veterans with exposure to blast and those with 
non-blast exposure. Using the voxel-wise whole-brain analysis, the 
authors of the abovementioned study showed glucose metabolism 
reduction in the parietal cortex, left somatosensory, and right visual 
cortex in the blast-mTBI veterans compared to the non-blast veterans 
(Petrie et al., 2014). Despite various applications of neuroimaging 
modalities, the consensus is far from being reached using different 
measurements, highlighting the need for a comprehensive study using 
multimodality metrics in mTBI patients. Specifically, previous 
literature has suggested that different metrics of rs-fMRI and PET may 
be  complementary to each other in representing brain function 
alteration from different perspectives, bringing about more worthy 
information (Zhou et al., 2019; Pang et al., 2021).

Previous works relied typically on mass univariate analysis 
(group-level analysis) and reported group-level differences in specific 

brain areas, while they do not allow statistical inferences at the level of 
individuals. Thus, mass univariate analysis (group-level analysis) and 
reported group-level differences in specific brain areas may contribute 
to the limited translational impact of neuroimaging findings in clinical 
practice. Given the limitations of mass univariate techniques to 
integrate neuroimaging data, machine learning (ML) approaches as 
an area of artificial intelligence (AI) have been used to learn patterns 
in empirical data through developing computational models in order 
to make predictions on new data. Using neuroimaging data, ML 
algorithms as part of the multivariate approaches take into account the 
inter-correlation between voxels, allowing statistical inferences at a 
single subject level, and have the potential to aid in making individual 
diagnostic and prognostic decisions (Quaak et al., 2021). Among all 
the ML algorithms, deep learning (DL) models are becoming the 
state-of-the-art algorithms based on the concept of the artificial neural 
network (ANN) by building multiple interlinked artificial neurons 
that stimulate the biological functions of the human brain. DL 
methods are a type of representation-learning methods that can 
automatically identify the optimal representation from the raw data 
without needing prior feature selection through a hierarchical 
structure that involves the application of sequential non-linear 
transformations to the raw data. Hence, these transformations 
generate an increasingly higher level of abstraction and less bias-prone 
patterns of the given data (Vieira et al., 2017; Liu et al., 2022; Yin et al., 
2022). A DL model with multiple hidden layers has achieved 
unprecedented classification performance relative to the conventional 
ML models in the classification of patients with neurological and 
psychiatric disorders using neuroimaging, including Alzheimer’s 
disease (AD) (Hazarika et al., 2023), Parkinson’s disease (PD), mild 
cognitive impairment (MCI) (Kang et al., 2020), autism spectrum 
disorder (Wang et al., 2019), major depression disorder (MDD) (Liu 
et al., 2022), and schizophrenia (Li et al., 2020). However, to date, to 
our knowledge, no study has been conducted using DL-based 
approach in the identification of patients with chronic mTBI 
incorporating multiple functional imaging modalities.

The present study proposed a novel approach employing several 
rs-fMRI metrics, including fALFF, DC, FCS, ReHo, and VMHC, and 
fluorodeoxyglucose-PET (FDG-PET) in discrimination of patients 
with chronic mTBI compared to HCs. An ANN framework was 
designed by combining autoencoder (AE) and multilayer perceptron 
(MLP) for binary classification. Furthermore, the most discriminative 
regions of interest (ROIs) were defined through the first layer of 
ANN. Finally, rs-fMRI metrics and PET features were fused via a 
multimodality model. We hypothesized that each single model is able 
to provide informative diagnostic performance, while the 
multimodality approach would improve the classification 
performance. Additionally, the results of the model interpretation 
indicating the most discriminative ROIs would be consistent with the 
findings from the literature on mTBI.

Methods

Participants

A total of 83 patients, including 31 men (age: 44 ± 14.6 years) and 
52 women (age: 49 ± 13.6 years) who were experiencing chronic 
symptoms due to a mild traumatic brain injury, and 40 matched 
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healthy controls, including 21 men (age: 41 ± 9.4 years) and 19 women 
(age: 39 ± 10.6 years), participated in this study. mTBI was defined by 
the Mayo Classification System for Traumatic Brain Injury Severity, in 
which an injury was classified as mild if there were a loss of momentary 
consciousness for <30 min and amnesia for <24 h, with no positive 
MRI findings (Malec et al., 2007). Participants had to report a history 
of one or more prior TBI (one or multiple) for meeting the criteria for 
mild concussion (loss of consciousness for <30 min, no significant 
amnesia, and no structural injury to the brain such as a hematoma, 
contusion, dura penetration, or brain stem injury). They had to meet 
ICD-10 criteria for post-concussion syndrome based on symptoms 
that were the result of the TBI and could include headache, dizziness, 
irritability, cognitive problems, emotional problems (e.g., depression 
or anxiety), hypersensitivity to auditory or visual stimuli, balance 
problems, insomnia, or other subjective complaints specifically 
associated with the TBI. Patients also had to report that the symptoms 
lasted for a minimum of 3 months from the last concussion.

Written informed consent, approved by the institutional review 
board of Thomas Jefferson University, was obtained from all 
participants, and the study was registered on clinicaltrials.gov with the 
following identifier: NCT03241732. Participants were recruited from 
the local community by self-referral and from local neurology offices 
and were excluded if they had a history of other neurological 
disorders, significant medical illness, a current substance-use disorder, 
or current Diagnostic and Statistical Manual of Mental Disorders, 4th 
Edition (DSM-IV) Axis I psychiatric illness.

For the control group, individuals were excluded if they had a 
history of previous TBI, a history of other neurological disorders, 
significant systemic medical illness, a current substance use disorder, 
and a current Diagnostic and Statistical Manual of Mental Disorders, 
4th Edition (DSM-IV) Axis I psychiatric illness (Vedaei et al., 2023).

Imaging protocol

For each individual, an MRI examination was performed using a 
3 T Siemens Biograph mMR Positron Emission Tomography-MR 
(mMR PET-MR) scanner with a 32-channel head coil. A structural 
T1-weighted image was acquired to use during the segmentation and 
registration steps of data preprocessing. The MRI parameters for the 
anatomical T1-weighted sequence were as follows: repetition 
time = 1,600 ms, echo time = 2.46 ms, field of view 
(FOV) = 250 mm × 250 mm, matrix = 512 × 512, voxel size = 0.49 × 0.49, 
and 176 slices with slice thickness = 1 mm.

In addition, a resting-state BOLD scan was administered using an 
echo planar imaging (EPI) sequence using the following imaging 
parameters: FOV = 240 mm × 240 mm; voxel size = 3 mm × 3 mm ×  
4 mm; TR = 2000.0 ms; TE = 30 ms; slice thickness = 4 mm; number of 
slices = 34; number of volumes = 180; and acquisition time = 366 s. 
During rs-fMRI, the participants were asked to close their eyes and 
rest quietly without thinking about anything.

The PET imaging was performed utilizing general standard-of-
care procedures. For the PET scan, an intravenous catheter was placed 
in the antecubital vein of the arm and 148–296 MBq of FDG was 
injected via manual bolus over a period of less than 1 min. The 
intravenous catheter was removed, and the patient was then asked to 
lie still in a chair in a dimly lit room with minimal ambient 
environmental stimuli for approximately 30 min to allow for FDG 

uptake. PET images and MRI images were simultaneously obtained 
on a 3 T Siemens mMR PET-MRI scanner (Siemens Medical Solutions 
USA, Inc., Malvern, PA). The PET imaging was a 20 min single FOV, 
list mode continuous acquisition. All PET/MRI acquisitions included 
the sequence used for the derivation of standard MR attenuation 
correction maps based on the Dixon sequence that allows for the 
separation of water, fat, and bone signals and automatically applies the 
calculated attenuation correction. Other standard imaging corrections 
were applied for detector efficiency, decay, dead time, attenuation, and 
scatter corrections. Image reconstruction used a Gaussian filter set at 
2 mm full width at half maximum (FWHM) and was based on an 
ordinary Poisson ordered-subsets expectation maximization 
algorithm with 4 iterations and 21 subsets producing an image with a 
matrix size of 344 × 344 pixels and a voxel size of 1×1×2 mm. All the 
subjects signed the institutionally approved IRB consent form.

Data processing and feature selection

Resting-state functional MRI processing
For all the participants, rs-fMRI data were preprocessed using 

Data Processing Assistant for resting-state fMRI (DPABI_
V7.0_230110; http://rfmri.org/DPARSF) (Yan et al., 2016) in several 
steps. Data processing includes discarding the first 10 volumes to 
remove potential bias in the analysis arising from the initial transient 
approach to steady-state magnetization and adaptation of participants 
in the scanning environment; slice timing and motion correction 
using six rigid body motion parameters, co-registration and 
normalization of T1-weighted and the mean of realigned EPI images 
to the EPI template in Montreal Neurological Institute (MNI) space 
with a resampling voxel size of 3 × 3 × 3 mm; employing the Friston 
24-parameter model (the 24 parameters including 6 head motion 
parameters, 6 head motion parameters of the previous scan, and the 
12 corresponding squared items) to regress out the micro head motion 
effects from the realigned data (Friston et al., 1996); and regressing out 
the signal from the white matter (WM) and cerebrospinal fluid (CSF) 
with a temporal band-pass of 0.01–0.08 Hz to reduce the effects of 
low-frequency drifts and high-frequency respiratory and cardiac 
noise. The exclusion criteria included excessive head motion (> 
2.0 mm translation and/or 2.00 rotation) (Power et al., 2014). The head 
motion was measured using frame-wise displacement (FD). No 
participant was excluded due to the exclusion criteria. Furthermore, 
the mean FDs were not different between the mTBI patient and HC 
groups (independent t-test, p-value = 0.2).

Fractional amplitude of low frequency fluctuation
After preprocessing for each participant, spatial smoothing with 

a Gaussian kernel of 6 mm FWHM was applied. fALFF is the fast 
Fourier transformation (FFT) of rs-fMRI time series and is calculated 
as the ratio of power in the low-frequency band (0.01–0.08 Hz) to the 
power of the entire frequency range (0–0.25 Hz) (Zou et al., 2008). 
Therefore, with FFT, the time courses of the rs-fMRI signal were 
converted to the frequency domain; then, the voxel-wise fALFF maps 
were generated as the ratio of power in the low-frequency band (0.01–
0.08 Hz) to the power of the entire frequency range (0–0.25 Hz). The 
normalized derivation of ALFF describes the spontaneous brain 
activity across the whole brain by measuring the amplitude of neural 
activity in the low-frequency range (0.01–0.08 Hz) relative to the 
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entire frequency range (e.g., 0–0.25 Hz if TR = 2 s) amplitude. Hence, 
this frequency range has been recommended to use fALFF rather than 
ALFF due to its reliability to exclude non-specific signal noises, such 
as physiological artifacts (Zou et al., 2008). To ensure standardization, 
the fALFF maps were transformed to z-scores using Fisher’s 
z-transform, and zfALFF maps were generated (Vedaei et  al., 
2022, 2023).

Functional connectivity strength
For each participant, the FCS maps were measured by estimating 

the Pearson correlation coefficients between the time series of each 
voxel and all other voxels in the entire brain (Dai et al., 2015). For a 
given voxel i, FCS was measured using the following equation (Eq. 1) 
(Dai et al., 2015):

 

FCS i r ,
j i

ij 0( ) = >
≠
∑1

N
Z r

voxels

N
ij

voxels

 
(1)

where zij refers to the Fisher’s Z-transformed version of the 
correlation coefficient, rij refers to the values between voxel i and voxel 
j , and r0refers to a correlation threshold that was used to exclude weak 
correlations possibly arising from noises (r0=0.2 in this study). rij  was 
converted to Zijusing Fisher’s Z-transformation. Nvoxelsis also defined 
as the total number of voxels within the gray matter mask (Vedaei 
et al., 2023).

Degree centrality
DC is the graph theory-based metric representing the number of 

links incident upon each brain voxel as a node. It measures the 
functional connection between each voxel and the voxels in the entire 
brain that is defined as an edge. By computing the Pearson correlation 
coefficient between the time series of each pair of voxels, a correlation 
matrix can be obtained. To exclude the weak correlations that could 
be induced by physiological noise, the threshold of 0.25 was used to 
generate the undirected adjacency matrix. Thus, for each voxel, DC 
was calculated as the sum of its connections with other voxels. For 
standardization purposes, the weighted DC was transformed to 
z-scores using Fisher’s z-transform. Finally, the zDC map was 
smoothed with an isotropic 6 mm FWHM Gaussian kernel (Wang 
et al., 2021).

Regional homogeneity
ReHo is a voxel-based measure of brain activity that evaluates the 

similarity or synchronization between the time series of a given brain 
activity and its nearest neighbors. This synchronization is 
accomplished on a voxel-based basis by calculating Kendall’s 
coefficient of concordance (KCC) with a given time series that is 
assigned as the center voxel and that of its nearest 26 neighboring 
voxels (Eq. 2) (Zang et al., 2004; Ji et al., 2020),
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In this formula, w is the KCC (ranging from 0 to 1) among given 
voxels; K  is the number of neighboring voxels (K  = 26); Ri  is the mean 

rank across nearest neighbors (26 voxels) at the ith time point; and n
is the total number of time points. For standardization purposes, the 
ReHo value at each voxel was transformed to the standardized Fisher’s 
Z-transformation to obtain the zReHo maps. Spatial smoothing with 
an isotropic 6 mm FWHM Gaussian kernel was performed after ReHo 
calculation (Vedaei et al., 2023).

Voxel-mirrored homotopic connectivity
VMHC is designed to directly compare the interhemispheric 

resting-state FC. This process can also measure the correlations 
between blood oxygen level-dependent (BOLD) time series and reflect 
the communication pattern of information between two cerebral 
hemispheres. VMHC measures the synchrony in spontaneous activity 
between geometrically corresponding interhemispheric regions 
between pairs of symmetric voxels. It is quantified by calculating the 
Pearson correlation coefficient with the time series of each voxel and 
that of its symmetric inter-hemispheric counterpart. After generating 
the VMHC maps, the correlation values were transformed to z-scores 
using Fisher’s z-transform to generate zVMHC maps (Zuo et al., 2010).

Positron emission tomography processing
The PET data were processed using the PETPVE12 toolbox 

incorporated as a part of SPM12 running on MATLAB_R2023a 
(Gonzalez-Escamilla et al., 2017). The processing steps included skull 
stripping and segmentation of anatomical T1-weighted to the GM, 
WM, and CSF; co-registration of PET data to the anatomical 
T1-weighted data using rigid-body transformations; partial volume 
effect correction (PVEc) of PET data to correct the voxel spillage 
caused by low-resolution PET scanners using the Müller-Gärtner 
method (Müller-Gärtner et al., 1992); glucose intensity normalization 
by computing the standard uptake value ratios (SUVR) using the 
whole cerebellar signal in the individual raw PET data as the reference 
signal; normalization of PET data to the MNI template space; and 
spatial smoothing of PVEc PET data with a 6 mm FWHM Gaussian 
kernel (Byrnes et al., 2014).

All rs-fMRI and PET data were parcellated into 116 regions of 
interest (ROIs) according to the Automated Anatomical Labeling 
(AAL) atlas (Tzourio-Mazoyer et al., 2002); therefore, for each metric, 
the average of the intensities from 116 ROIs was extracted and used 
as input features of the ANN algorithm (Zou et  al., 2017; Hao 
et al., 2020).

Proposed classification method

Figure  1 illustrates the framework of mTBI versus HCs 
classification for each single rs-fMRI metric and PET data. Our ANN 
architecture included multiple levels of abstraction, including 
extracting the latent representation features using AE, and hidden 
layers of MLP employing the ReLU function and sigmoid utilized in 
the output layer for binary classification.

For the given rs-fMRI metrics and PET data, first, the mean time 
series of 116 ROIs were extracted as described in the data 
preprocessing section. For generating training and testing datasets, 
each dataset was split in a ratio of 80:20 to training and testing 
datasets. Prior to training the models, each feature in the training 
dataset was scaled using a MinMaxScaler, which modifies the dataset 
in a standardized scale within the range between 0 and 1. In addition, 
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the AE was trained, which takes the mean intensities of ROIs as inputs 
and finds the nonlinear associations among ROIs in an unsupervised 
manner. AE is used in the pre-training stage by extracting compressed 
representations from input data by minimizing the reconstruction 
error. This stage consists of two main modules, namely an encoder and 
a decoder. The encoder maps the data into a low-dimensional latent 
representation by learning the useful structure from the input data, 
while the decoder reconstructs it back to the input data (Figure 2) 
(Suk et al., 2016; Hao et al., 2020).

After building the AE, the encoder weights were conveyed into an 
MLP with three hidden layers to adjust the MLP weights and minimize 
the prediction error into the output layer in a supervised manner. The 

ReLU activation function ( f x x( ) = ( )max )0,  was used in the hidden 
layers of the MLP structure with 62, 32, and 16 nodes, respectively. An 
MLP is a feed-forward neural network structure that maps input 
training data to target labels. As such, in our architecture, the weighted 
sum of all inputs is calculated and then bias is added. Therefore, the 
result is referred to the subsequent layer, and the activation function 
is applied. ReLU used in this study has the advantage to alter the 
non-positive inputs as zero, which act as non-activated nodes. Hence, 
using ReLU, not all the nodes are active at the same time, which makes 
it computationally efficient during the training process (Heinsfeld 
et al., 2018; Thomas et al., 2019).

In the output layer, the sigmoid activation function was executed 
with a single node to obtain the probability of belonging to the patient 
group and particularly being used for binary classification. A logistic 
function maps the input to a value between 0 and 1 interpreted as the 
probability of the input being labeled to the positive class. The sigmoid 
function is given in the following equation (Eq. 3):

 
f z

e-z( ) =
+

1

1

.

 
(3)

In the multimodality architecture, the AE-learned features were 
independently obtained from each metric and then concatenated into 
a single long vector of input data to the MLP model. The framework 
of the multimodality architecture is shown in Figure  3. The 
multimodality model applied for the sets of data included a 
combination of the whole rs-fMRI metrics as well as adding PET to 
the rs-fMRI metrics (Zhou et al., 2019).

Model training and performance

We performed an end-to-end training through a mini-batch size 
of 1 and 500 epochs to ensure that training was converged at the end 

FIGURE 1

The proposed workflow for single modality mTBI classification based on rs-fMRI metrics and PET data.

FIGURE 2

The structure of the autoencoder consisting of an encoder and a 
decoder.
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(Hazarika et al., 2022). To prevent the model from overfitting, the 
early stopping technique was employed during training to monitor 
the performance of the model during each epoch and to terminate 
the training process when the model performance started to 
deteriorate (Zhang et al., 2019). The patience parameter was set to 
five epochs to evaluate the improvement in model performance. 
Therefore, the best model was saved at the last epoch where an 
improvement was observed, which is just before the start of the 
5-epoch without further improvements. Moreover, the cross-entropy 
loss function or log loss function was used to estimate the 
dissimilarity between the predicted probability distribution and the 
true binary labels. The binary cross-entropy loss function is given in 
the following equation (Eq. 4):

L W b
N

y H x y H
n

N
n w b n n w b,( ) = − ( ) + −( ) −( ) ( )









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=
∑1

1 1

1

ln ln ,, , xn

 
(4)

where N  is the number of samples; xn and yn  are the input and 
corresponding label of the nth sample; Hw b, (.) is the function learned 
by the neural network; and H xw b n, ( ) corresponds to the output of the 
neural network given the input xn. During the training process, the 
model aims to minimize the binary cross-entropy loss by adjusting its 
parameters through the optimization algorithm (Zou et al., 2017). The 
Adam optimizer with a learning rate of 0.001 was applied to optimize 
the model’s parameters based on the gradients computed using the 
cross-entropy loss function (Etminani et al., 2022). In each epoch, 
through forward propagation, the output value of each layer is 
calculated; then, the error is propagated through the backpropagation 
step; and the weight parameters of each layer are adjusted according 
to the residual error (Hazarika et al., 2022).

To evaluate the results obtained by the ANN, the performance of 
the models was quantified on the testing dataset via fivefold 

cross-validation (CV) using the receiver operator characteristic (ROC) 
curve analysis. The corresponding area under the curve (AUC), 
accuracy, sensitivity, specificity, F1-score, recall, and precision were 
obtained (Kingma and Ba, 2015). The equations of the scores are given 
as follows (Eq. 5–11):
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FIGURE 3

The proposed workflow for multimodality mTBI classification fusing high-level features of each single metric extracted in the first layer of the model.
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where x y x y x yn n1 1 2 2, , , , , ,( ) ( ) … ( ){ } are the sequential coordinates 
connection formed the ROC curve. Furthermore, the true positive 
(TP), false negative (FN), true negative (TN), and false positive (FP) 
correspond to the number of mTBI correctly classified, the number of 
mTBI predicted to be HCs, the number of HCs correctly classified, 
and the number of HCs predicted to be mTBI, respectively.

Given the limited number of samples, CV was used to reuse data 
five times by dividing each dataset to five parts. In each CV 
experiment, four of them were used as the training set, and one as a 
test set. Hence, in each experiment, the scores were measured 
independently of the test sets, and the average of the scores was 
recorded for each model (Hazarika et al., 2022).

The most discriminative features

The most important ROIs were determined as the most frequently 
selected features in the single modality models, which can potentially 
be used as imaging biomarkers in the clinical diagnosis of mTBI. For 
each single metric, the features were ranked based on the weight 
matrix generated in the first layer of the ANN (AE as encoder). In each 
fold, the top 10 ROIs for each imaging metric were selected based on 
the summation of absolute values along the row in the weight matrix 
for each ROI. Finally, the features with the highest selection frequency 
among fivefold CV were defined as the top 10 ROIs for single rs-fMRI 
metrics and PET measurements (Zhou et al., 2019).

Results

Demographic characteristics

Demographic statistical analysis showed no significant difference 
between the age of HCs and the mTBI patient groups (independent 
t-test, p-value = 0.07), as well as in the proportion of male and female 
individuals in the two groups (Chi-squared; χ2 = 2.5, p-value = 0.11) 
(Table 1).

Classification performance

In reporting the classification performance of chronic mTBI 
patients versus HCs, the percentage value of AUC, accuracy, 
sensitivity, specificity, recall, precision, and F1-score was obtained on 
testing datasets for each single modality and multimodality models. 

The list of the scores for single rs-fMRI metrics, PET, and cognitive 
biomarkers as well as the multimodality models, including rs-fMRI 
(DC + fALFF + FCS + ReHo + VMHC) and rs-fMRI + PET 
(DC + fALFF + FCS + ReHo + VMHC + PET), are provided in Table 2. 
Moreover, Figure 4 represents the results of the ROC analysis.

Among imaging modalities, DC showed the highest classification 
performance. The AUC values for single modality models were 87.95, 
81.25, 78.66, 75.13, 78.21, and 72.04% for DC, fALFF, FCS, ReHo, 
VMHC, and PET, respectively. Moreover, we  found that the 
multimodality models outperform the single modality models with 
improved classification scores. The AUC values for the rs-fMRI and 
rs-fMRI + PET models were 92.32 and 93.75%, respectively.

The most discriminative features

Using single modality models, the top 10 ROIs for each metric 
and 4 cognitive biomarkers were identified. The list of the 10 ROIs for 
single metrics is summarized in Table 3 and is shown in Figure 5. 
Among rs-fMRI metrics, the top ROIs for DC were in the superior 
temporal, frontal, and occipital cortices, the angular gyrus, the 
fusiform gyrus, the precentral gyrus, and the postcentral gyrus. For 
fALFF, top ROIs were in the middle temporal and frontal cortices; the 
inferior parietal and occipital cortices; the angular gyrus; and the 
cerebellum insula. Similarly, top ROIs for FCS are located in the 
middle temporal, superior frontal, and inferior occipital cortices, the 
precuneus, caudate, amygdala, the fusiform gyrus, and the paracentral 
gyrus. Moreover, ReHo showed the top ROIs in the middle temporal, 
occipital, inferior and superior frontal, superior parietal cortices, the 
amygdala, the thalamus, the cerebellum, and the anterior cingulate 
gyrus. The top ROIs for VMHC were defined in the middle frontal, 
occipital, inferior parietal cortices, the hippocampus, the cerebellum, 
the paracentral gyrus, and the supramarginal gyrus. For PET modality, 
the top 10 ROIs were in the middle frontal cortex, parahippocampal 
gyrus, pallidum, thalamus, angular gyrus, posterior cingulate, 
calcarine, and vermis.

Discussion

In the need for robust biomarkers to differentiate between chronic 
mTBI patients and HCs, this study proposed a novel automatic 
DL-based method utilizing single and multimodal neuroimaging 
metrics of rs-fMRI and PET. We  developed an ANN architecture 
employing unsupervised feature generation of an AE to extract the 

TABLE 1 Demographic characteristics of participants in the mTBI patient and HC groups.

Demographics HCs (n =  40) mTBI (n =  83) p-value Statistic

Age (year) (SD) 40.32 (9.9) 47.0 (14.02) 0.07a 1.8a

Sex (M/F) 21: 19 31: 52 0.11b 2.5b

Injury-to-imaging interval (95% CI) (months) – 25–38

Single concussion vs. multiple (single: multiple) – 32: 51

HCs, healthy controls; mTBI, mild traumatic brain injury; SD, standard deviation; CI, confidence interval.
ap-value and T-statistic obtained by two-sample t-test.
bp-value and χ2-statistic obtained using Chi-square t-test.
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latent representations and several layers of MLP to distinguish 
between patients and HCs using single metrics and a combination of 
rs-fMRI and PET imaging. In the multimodality model, the potential 
features of rs-fMRI and PET were extracted independently and 
combined into the hierarchical architecture. Considering the 
complicated pathology of mTBI involving brain function alteration, it 
could be challenging to diagnose the patients at a chronic stage by 
relying upon conventional patient screening and structural imaging 
alone. Moreover, each single imaging modality could capture part of 
the neuropathology information related to the brain alteration, and 
hence, a combination of them may provide complementary 
information for the classification of patients from normal cases. Our 
findings illustrated that, although each single imaging modality 
provides robust classification performance, integration of multiple 
neuroimaging data in the multimodality model enhances the 
classification accuracy and is superior to the other state-of-
the-art methods.

In recent years, several studies have attempted to develop 
automatic DL-based classification methods incorporating 
neuroimaging data to distinguish between patients with neurological 
and psychiatric disorders and normal subjects. While the body of 
literature on AD, MCI, PD, schizophrenia, MDD, and autism is 
increasingly growing, only a few studies have applied ML algorithms, 
including ANN, to other neuropsychiatric disorders including 
mTBI. Resting-state fMRI and PET data have been used most often in 
DL models achieving high classification accuracies. Xing et al. used 
rs-fMRI data with an FC matrix of 90 ROIs from the AAL atlas as the 
input features of the DL architecture using a convolutional neural 
network (CNN) and reported an accuracy of 66.88% for the 
identification of patients with autism from among HCs 
(Ebrahimighahnavieh et al., 2020). Moreover, a recent study developed 
a deep neural network (DNN) model to discriminate patients with PD 
from HCs using rs-fMRI data. They found the highest accuracy of 
96.4% by employing the DNN binary method, which was superior 
compared to the conventional ML algorithms that achieved 91.4 and 
83.7% accuracy using gradient boost and support vector machine 
(SVM), respectively (Xing et  al., 2019). Moreover, a prior study 
developed a DL model using the CNN architecture to classify subjects 
with sleep behavior disorder (SBD) with and without MCI using 
FDG-PET data and reported a classification accuracy of 70% (Xu 
et  al., 2023). Similar to our study, Zou et  al. incorporated several 
rs-fMRI metrics including fALFF, ReHo, and VMHC into a 3D CNN 
model to differentiate subjects with attention deficit hyperactivity 

disorder (ADHD) from normal subjects and reported a mean 
classification accuracy of 66.04 and 69.15% for single modality and 
multimodality 3D CNN, respectively (Zou et al., 2017). Similarly, 
Ghanbari et  al. employed single and combined rs-fMRI metrics 
including fALFF, ReHo, and VMHC in a classification model of 3D 
CNN to identify patients with schizophrenia from HCs and found the 
accuracy of 72.20, 79.55, 87.63, and 90.91% for fALFF, ReHo, VMHC, 
and multimodality models, respectively (Ryoo et al., 2022). While 
many studies have been carried out on the classification between the 
patient and control groups using conventional ML algorithms, some 
recent studies have shown the capability and superiority of DNN with 
several hidden layers to extract lower-to-higher level information 
through several hidden layers. In the classification of patients with 
schizophrenia using rs-fMRI measures compared SVM and DNN 
models, Kim et al. reported a lower error rate and better performance 
of the DNN model compared to SVM. They also incorporated AE in 
the pre-training step to minimize the reconstruction error of the input 
sample and showed that the average error rate is lower with the 
pre-training AE layer and a minimum of 2–3 hidden layers in the 
DNN. Finally, they concluded that these approaches using DNN 
architectures can be useful in developing diagnostic tools for other 
neuropsychological disorders (Kim et al., 2016). Similar to our study, 
a prior study incorporated stacked AE in the neural network 
architecture to extract the high-level features of the FC pattern among 
116 ROIs of the AAL atlas and finally passed them through the 
softmax function to classify patients with autism from normal cases 
(Wang et al., 2019).

A number of recent studies proposed enhancement of ML 
classification models employing combined data compared to single 
modality models (Kim et al., 2016; Kang et al., 2020; Ghanbari et al., 
2023). Zhou et al. developed a DL classification model using stacked 
AE and MLP to distinguish between patients with AD and MCI and 
HCs by incorporating structural MRI and PET imaging (from 
Alzheimer’s disease neuroimaging initiative (ADNI) dataset), as well 
as genetic data. They showed that each single imaging modality 
provides good classification performance. However, combining 
multiple imaging modalities and genetic data could improve the 
accuracy of the classification model (Zhou et al., 2019). Additionally, 
a previous study in the identification of patients with AD from among 
HCs executed a DL model using structural MRI, PET (from the ADNI 
dataset), and neuropsychological diagnosis and suggested that single-
modality neuroimaging contains partial information about the brain 
alteration. However, the multimodal method may provide 

TABLE 2 Classification performances of the single metrics of rs-fMRI and PET and multimodality models (mean  ±  standard deviation).

Features AUC Accuracy Sensitivity Specificity F1-score Precision Recall

DC 87.95 ± 6.1 91.67 ± 4.0 98.75 ± 0.1 77.14 ± 8.2 94.21 ± 2.8 90.31 ± 5.2 98.75 ± 0.1

fALFF 81.25 ± 2.1 86.67 ± 8.1 95.00 ± 6.8 67.50 ± 2.7 91.01 ± 5.4 88.13 ± 9.4 95.00 ± 6.8

FCS 78.66 ± 7.7 84.17 ± 5.2 93.75 ± 7.2 63.57 ± 1.8 88.94 ± 3.7 85.24 ± 6.6 93.75 ± 7.2

ReHo 75.13 ± 1.5 80.83 ± 7.2 91.32 ± 4.6 58.93 ± 3.3 86.71 ± 5.0 84.42 ± 1.0 91.32 ± 4.6

VMHC 78.21 ± 5.4 85.00 ± 4.2 97.50 ± 8.2 58.93 ± 1.4 89.85 ± 3.6 83.62 ± 5.2 97.50 ± 8.2

PET 72.04 ± 9.6 79.17 ± 5.6 92.65 ± 4.2 51.43 ± 1.9 85.85 ± 3.4 80.49 ± 4.9 92.65 ± 4.2

rs-fMRI 92.32 ± 7.1 94.17 ± 4.7 97.50 ± 6.5 87.14 ± 3.3 95.82 ± 1.7 94.55 ± 6.2 97.50 ± 2.3

rs-fMRI + PET 93.75 ± 3.4 95.83 ± 6.2 100 ± 1.1 87.50 ± 2.1 97.04 ± 1.8 94.38 ± 3.2 100 ± 0.2

AUC, area under the receiver operator curve; DC, degree centrality; fALFF, fractional amplitude of low-frequency fluctuation; FCS, functional connectivity strength; ReHo, regional 
homogeneity; VMHC, voxel mirrored homotopic connectivity; rs-fMRI, resting-state functional magnetic resonance imaging (rs-fMRI = DC + fALFF + FCS + ReHo + VMHC).
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complementary data associated with the patient’s pathology and 
enhance the classification performance by achieving robust diagnostic 
efficacy in discrimination of patients with AD and those with MCI 
(Zhang et al., 2019). Our study extended the findings of the literature, 

proposing that the classification performance can be improved by 
combining multi-level neuroimaging data. We showed that each single 
rs-fMRI metric and PET imaging provides robust classification 
accuracy and combines neuroimaging modalities that can enhance the 

FIGURE 4

Receiving operating characteristic curve (ROC) of the artificial neural network (ANN) model for each single modality and multimodality metrics of rs-
fMRI and PET data; rs-fMRI  =  DC  +  fALFF + FCS  +  ReHo + VMHC; DC, degree centrality; fALFF, fractional amplitude of low-frequency fluctuation; FCS, 
functional connectivity strength; ReHo, regional homogeneity; VMHC, voxel mirrored homotopic connectivity.
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robustness of the classification model. Our results demonstrated the 
highest classification accuracy of 93.75% for the multimodality model 
combining rs-fMRI metrics and PET. Furthermore, our study 
confirmed the findings of the previous studies on the superiority of 
the DL-based methods compared to conventional ML algorithms 
without the need for prior engineering data in feature reduction.

To resolve the black box nature of the ANN model and to identify 
the most discriminative features, the weight matrix generated through 
the encoding step in the first layer of ANN was utilized. Each row in 
the weight matrix corresponds to one ROI (for each imaging metric). 
The top 10 ROIs (for rs-fMRI metrics and PET data) were defined 
corresponding to the largest absolute values along the rows of the 
weight matrix. The top ROIs were widespread and not restricted to 
specific brain areas and networks across the whole imaging data. The 
most common discriminative brain areas among the neuroimaging 
metrics were located in the frontal, temporal, parietal, and occipital 
cortices; the cerebellum; and the sensorimotor and limbic systems.

A number of brain imaging studies have demonstrated the 
vulnerability of the frontal and temporal lobes in moderate-to-severe 
brain injury. Particularly, frontal regions have been shown to 
be involved in pain processing, including headache associated with 
brain injury (Lu et  al., 2018). In addition, neural activity in the 
temporal region is associated with semantic processing, including 
verbal memory, language, and executive functioning (Zhang and Shi, 
2020). Moreover, the occipital gyrus at the center of the visual cortex 
has been shown to be  at risk of contusion in moderate-to-severe 
TBI. fALFF and ReHo have been commonly used to analyze rs-fMRI 
data investigating the pathophysiological aspects of neuropsychiatric 
disorders. Several studies have shown the alteration of fALFF/ALFF 
in the middle frontal, temporal, and occipital lobes. These studies 
reported that spontaneous neural activity alteration might be linked 

with cognitive impairment, memory, and motor perception 
disturbances in mTBI patients. Indeed, higher fALFF and brain 
metabolism in the cortical areas could reflect the potential 
compensatory response to the damage in patients suffering from an 
injury (Zhan et al., 2016; Konstantinou et al., 2018; Vedaei et al., 2021).

The majority of mTBI studies have consistently reported the 
alteration of brain function in the default mode network (DMN) 
following brain injury. A recent study found increased ReHo in the 
anterior portion of the DMN in adults with sport-related concussion 
(Stephenson et al., 2020). Identical to this result, a previous study 
showed altered ReHo in the frontal, temporal, and parietal lobes, 
limbic regions including the insula correlated with reduced ability to 
perform executive functions in acute mTBI patients (Meier et  al., 
2020). Our findings are in line with the literature demonstrating the 
involvement of the main brain networks including DMN following 
mTBI. The parietal cortex has been also identified as one of the top 
ROIs based on our results. Angular gyrus as the main component of 
the DMN and parietal cortex has been shown to be  linked with 
cognition, visual word forms, and memories (Vedaei et al., 2021). A 
prior study revealed an alteration of ReHo in the right angular gyrus 
in patients with post-traumatic stress disorder (PTSD) compared to 
normal subjects associated with symptom severity of PTSD (Zhan 
et al., 2015).

Cerebellum has also been selected among the top discriminative 
ROIs. The cerebellum has been known to be involved in executive 
control and regulating behavior through the interconnection with 
the basal ganglia and cerebral cortex (Fu et al., 2019). In a study on 
patients with mTBI, Shi et  al. showed the abnormality in the 
cerebellar-temporal connectivity that was linked with motor 
dysfunction and sensory perception in patients after injury (Baillieux 
et al., 2010). The basal ganglia are a group of brain structures linked 

TABLE 3 Top 10 ROIs defined as the most discriminative features among single rs-fMRI metrics and PET data based on the AAL atlas.

fALFF (weight%) FCS (weight%) DC (weight%) ReHo (weight%) VMHC (weight%) PET (weight%)

Frontal_Inf_Tri_L

(10.44)

Amygdala_R

 (9.94)

Angular_R

 (9.81)

Parietal_Inf_R

 (10.38)

Cerebelum_10_L

 (10.64)

Cingulum_Post_R

 (10.43)

Cingulum_Post_L

 (10.01)

Occipital_Inf_R

 (9.87)

Fusiform_R

 (9.76)

Temporal_Pole_

 Mid_L (9.44)

Hippocampus_R

 (10.24)

Pallidum_R

 (10.03)

Cerebelum_10_R

 (9.98)

Caudate_R

 (9.82)

Amygdala_L

 (9.72)

Thalamus_L

 (9.93)

Occipital_Mid_L

 (9.93)

Frontal_Mid_R

 (9.84)

Frontal_Mid_Orb_R

 (9.93)

Precuneus_R

 (9.81)

Frontal_Sup_R

 (9.71)

Occipital_Mid_

 L (9.91)

SupraMarginal_R

 (9.89)

Vermis_10 

 (9.81)

Angular_R (9.80) Frontal_Inf_

 Oper_R (9.75)

Precentral_L 

 (9.65)

Frontal_Inf_Orb_

 L (9.80)

Paracentral_Lobule_L

 (9.87)

ParaHippocampal_R

 (9.67)

Occipital_Inf_R

 (9.79)

Fusiform_L

 (6.68)

Rolandic_

 Oper_R (9.63)

Cerebelum_8_L

 (9.78)

Cerebelum_4_5_L

 (9.78)

Vermis_4_5 (9.67)

Insula_R (9.78) Paracentral_

 Lobule_L (6.67)

Postcentral_R 

 (9.57)

Amygdala_L

 (9.75)

Supp_Motor_Area_L

 (9.56)

Angular_R (9.66)

Parietal_Inf_L

 (9.74)

Precuneus_L 

 (9.64)

Occipital_Sup

 _R (9.55)

Cingulum_Ant_R

 (9.57)

Parietal_Inf_L

 (9.55)

ParaHippocampal_L

 (9.49)

Frontal_Mid_R

 (9.62)

Temporal_Mid_L

 (9.62)

Temporal_Sup_L 

 (9.51)

Parietal_Sup_L (9.55) Frontal_Mid_Orb_

 R (9.41)

Thalamus_R (9.44)

Temporal_Pole_

 Mid_R (9.53)

Frontal_Sup_Orb_R 

(9.60)

Temporal_Pole_

 Sup_R (9.43)

Frontal_Sup_R (9.53) Frontal_Mid_R 

 (9.40)

Calcarine_L (9.31)

ROIs, regions of interest; DC, degree centrality; fALFF, fractional amplitude of low-frequency fluctuation; FCS, functional connectivity strength; ReHo, regional homogeneity; VMHC, voxel 
mirrored homotopic connectivity; R, right; L, left. The corresponding discriminative weights for each ROI are shown as weight% (Supplementary material S1).
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together, with the main part being the limbic system, and have been 
known to modulate cortical–subcortical emotional responses and 
are susceptible to impairment following mTBI (Pierce and Péron, 

2020; Shi et al., 2021). Consistent with this finding, a previous study 
revealed the reduction of FC between the insula and temporal and 
frontal lobes in patients with acute mTBI, as well as its positive 

FIGURE 5

Top 10 ROIs defined as the most discriminative features for each single rs-fMRI metrics and PET data; (A) DC, degree centrality; (B) fALFF, fractional 
amplitude of low-frequency fluctuation; (C) FCS, functional connectivity strength; (D) ReHo, regional homogeneity; (E) VMHC, voxel mirrored 
homotopic connectivity; (F) PET, positron emission tomography. The corresponding discriminative weights for each ROI are shown as weight%.
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correlation with the Montreal Cognitive Assessment (MoCA) test, 
including orientation and abstraction scores (Bruijel et al., 2022). 
Furthermore, connectivity within the cingulate-pallidostriatal-
thalamic-amygdala pathway has been shown to be  linked with a 
top-down mood-regulation circuit. A recent study found a reduction 
in rs-fMRI FC between the frontal regions and limbic regions, 
including the amygdala and thalamus, in mTBI patients compared 
to normal subjects, which was correlated with depressive symptoms 
in the patients (Lu et al., 2020).

Our results are in line with the previous literature demonstrating 
the communication disruption between several brain networks in mTBI 
patients that might interfere with multiple integrative roles, including 
mood regulation, motor control, memory, social cognition, and 
language. A previous study used independent component analysis 
(ICA) comparing rs-fMRI measures in patients with mTBI and HCs. 
The results showed alteration in FC between the brain networks, 
including DMN, limbic system, motor, and visual networks, that could 
be interpreted as the compensatory mechanism in response to an injury 
linked with cognitive dysfunction (Luo et al., 2021). Moreover, Schwedt 
et al. in a study on subjects with post-traumatic headache showed the 
involvement of the frontal cortex, precuneus, and supramarginal gyrus 
in pain processing in headache disorders (Stevens et al., 2012). The 
supramarginal gyrus is a part of the inferior parietal cortex and has 
been shown to be involved in highly integrated tasks, such as motor 
attention, verbal working memory, language, and cognitive evaluation 
of pain, including pain empathy (Schwedt et al., 2017).

An increasing number of studies have reported the engagement 
of various DMN areas in TBI, including the precuneus, posterior 
cingulate, ventral anterior cingulate, and medial prefrontal cortex. All 
these studies suggested that the alteration of brain function in these 
regions might be  correlating with self-awareness, visuospatial 
awareness, consciousness, and post-concussive complaint severity in 
these patients (Zhou et al., 2012; Deschamps et al., 2014; Palacios 
et al., 2017; Lu et al., 2020). As such, interactions between multiple 
brain regions in different brain networks that are known to exist in 
mTBI may seem reasonable.

In addition to the DMN, other prominent brain networks have 
been reported to be  affected by TBI including the sensorimotor 
network (SMN). The postcentral gyrus and paracentral lobule as 
parts of the SMN are among the top ROIs based on our findings. 
Motor system dysfunction has been implicated in several studies in 
patients suffering from headache following TBI, reflecting neural 
mechanisms in response to pain stimuli (Lu et al., 2018). The SMN is 
involved in sensory processing, motor learning, movement planning, 
and functional activity alteration. The SMN could be correlated with 
the severity of post-concussion symptoms (Amir et  al., 2021). 
Interestingly, it has been proposed that higher executive functioning 
is positively associated with connectivity between the DMN and 
SMN and negatively associated with connectivity between the SMN 
and dorsal attention networks (Reineberg et al., 2018). In general, the 
findings from FDG-PET imaging studies in mTBI patients are 
qualitatively consistent with the results of rs-fMRI studies, 
demonstrating that any alterations of glucose metabolism in several 
brain regions might be characterized as vulnerable after brain injury, 
particularly in the DMN, SMN, frontal and temporal lobes, 
cerebellum, and limbic system (Provenzano et al., 2010; Zhang et al., 
2010; Byrnes et al., 2014).

Taken collectively, our results are in agreement with the literature 
confirming the role of multiple brain hubs and networks in cognitive 
worsening after brain injury. We speculate that abnormality in the 
brain function in specific areas measured by neuroimaging tools 
might be linked with behavioral and executive dysfunction in mTBI 
patients. Considering the complicated pathologic process of mTBI, 
multiple neuroimaging metrics may provide complementary 
information and can be investigated via multimodality classification 
models. Our results confirm the findings from the literature 
suggesting that fusion of multiple modalities can produce more 
powerful classifiers than a single modality. Indeed, the pathological 
changes across the same ROIs could be  investigated using 
multimodalities, which simultaneously eliminates potential noises in 
the individual modality features. However, the high classification 
performance of each single modality proves the effectiveness of one 
imaging modality in the diagnosis of mTBI when just one or a few of 
them are available. Moreover, these findings confirm the distribution 
of the common vulnerable ROIs across the entire brain selected by 
each single imaging classifier. As such, this experiment may represent 
the consistency of the outcomes when individual rs-fMRI metrics 
and PET are utilized (Hao et al., 2016; Li et al., 2019; Hao et al., 2020). 
Additionally, given the enhancement of the classification performance 
of both multimodality models (rs-fMRI and rs-fMRI + PET), 
we speculate that the multimodality of rs-fMRI metrics solely might 
be used in clinical practice in the diagnosis of mTBI without the need 
to combine them with PET, particularly due to the cost of 
nuclear imaging.

Despite the extensive application of DL architectures on 
neuroimaging data and promising results, the clinical application of 
DL aiding in the prediction of brain diseases is still in its early stage. 
Given the need to address the lack of robust biomarkers to identify 
patients at the individual level, our study proposed a novel automatic 
DL method promising to assist in the diagnosis of patients. This 
approach can be extended to more diverse datasets of brain disorders 
and is used as a supplementary software to MRI and PET systems, 
improving the prediction strategy of neurodegenerative and 
psychiatric disorders, particularly in circumstances where there is a 
missing presence of physicians.

Several limitations need to be considered in the interpretation of 
this study. First, given the small sample size, there was the risk of 
overfitting, thereby affecting the generalization of our finding. Future 
studies need to validate our results with larger datasets from two 
classes. Second, the rs-fMRI scan length was relatively small. While 
more recent studies have indicated that longer scans provide better 
reproducibility, we used a 6 min acquisition to maintain consistent 
parameters with our prior studies. However, several studies showed 
that a minimum scan length of 5–7 min is needed for data stability 
(Van Dijk et al., 2010; Birn et al., 2013). Furthermore, the goal of this 
study was primarily to assess the ability of the DL models in the 
classification of mTBIs. As such, future studies may investigate the 
optimal acquisition times and parameters for the use of DL techniques.

Moreover, the proposed algorithm might be applied to different 
patient cohorts, thereby assuring the generalization of this approach 
in the classification of other brain disorders. Finally, given the novelty 
of the application of ML and the DL models in developing diagnostic 
tools in mTBI, further studies are needed to incorporate more 
complicated algorithms and architectures and compare their 
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performance to obtain optimized classifiers that can be used in the 
diagnosis of mTBIs.

Conclusion

The present study provided a comprehensive approach to 
developing an automatic classification tool to classify patients with 
chronic mTBI utilizing DL-based algorithms. We made single and 
multimodality classification architectures employing rs-fMRI and PET 
imaging. Our findings showed relatively high classification 
performance using single neuroimaging metrics. However, the 
multimodality model integrating multiple rs-fMRI and PET 
measurements achieved improved accuracy. These results suggest that 
DNN classifiers might be extended to quantitative imaging biomarkers 
providing a new avenue for the prediction of individual patients in the 
clinical settings.
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