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Background: Poor glycemic control with elevated levels of hemoglobin 
A1c (HbA1c) is associated with increased risk of cognitive impairment, with 
potentially varying effects between sexes. However, the causal impact of poor 
glycemic control on white matter brain aging in men and women is uncertain.

Methods: We used two nonoverlapping data sets from UK Biobank cohort: 
gene-outcome group (with neuroimaging data, (N  =  15,193; males/females: 
7,101/8,092)) and gene-exposure group (without neuroimaging data, 
(N  =  279,011; males/females: 122,638/156,373)). HbA1c was considered the 
exposure and adjusted “brain age gap” (BAG) was calculated on fractional 
anisotropy (FA) obtained from brain imaging as the outcome, thereby representing 
the difference between predicted and chronological age. The causal effects of 
HbA1c on adjusted BAG were studied using the generalized inverse variance 
weighted (gen-IVW) and other sensitivity analysis methods, including Mendelian 
randomization (MR)-weighted median, MR-pleiotropy residual sum and outlier, 
MR-using mixture models, and leave-one-out analysis.

Results: We found that for every 6.75  mmol/mol increase in HbA1c, there was an 
increase of 0.49 (95% CI  =  0.24, 0.74; p-value  =  1.30  ×  10−4) years in adjusted BAG. 
Subgroup analyses by sex and age revealed significant causal effects of HbA1c 
on adjusted BAG, specifically among men aged 60–73 (p-value  =  2.37  ×  10−8).

Conclusion: Poor glycemic control has a significant causal effect on brain 
aging, and is most pronounced among older men aged 60–73  years, which 
provides insights between glycemic control and the susceptibility to age-related 
neurodegenerative diseases.
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1 Introduction

Hyperglycemia, a characteristic feature of diabetes that is associated 
with adverse effects on brain health, has been demonstrated in multiple 
studies to exert toxicity on neurons (Wium-Andersen et al., 2020). This 
toxicity is attributed to the generation of advanced glycation end 
products, which induce oxidative damage and subsequent neuronal 
injury resulting in cognitive impairment (Gupta et al., 2022). Moreover, 
hyperglycemia has been associated with structural abnormalities in the 
brain, especially in the hippocampus, diminished white matter 
microstructure, and lowered gray matter density (Sharma et al., 2020). 
These factors collectively contribute to an elevated risk of cognitive 
decline and accelerate the aging process of the brain (Crane et al., 2013). 
However, the degree to which poor glycemic control in diabetes is 
associated with accelerated white matter brain aging, and whether this 
differs between men and women, is unknown.

Recently, a method for estimating brain age gap (BAG) was 
introduced, which utilizes machine-learning techniques and magnetic 
resonance imaging (MRI) data to identify variations in brain aging at the 
individual level (Bermudez et al., 2019). The BAG is calculated based on 
the difference between the estimated biological age and the individual’s 
chronological age, serving as an indicator of how much ‘older’ or 
‘younger’ the individual’s brain appears compared to their chronological 
age. White matter, which comprises myelinated long-distance axonal 
projections of neurons and glial cells, plays a significant role in brain 
aging (Hayakawa et al., 2007). Diffusion Tensor Imaging (DTI) is a 
specialized MRI technique that captures the diffusion of water molecules 
within brain, offering valuable information about changes in white 
matter structure related to normal aging (Pierpaoli and Basser, 1996). 
One of the commonly used microstructural measures of white matter 
integrity in DTI is fractional anisotropy (FA), which quantifies the overall 
directionality of water molecule diffusion, enabling the characterization 
of water molecule diffusion along white matter fiber bundles (Basser and 
Pierpaoli, 2011). Previous studies have demonstrated regional reductions 
in FA with aging across the entire brain such as the cerebral hemisphere 
and hippocampus (Zhang et al., 2014).

Brain aging is a complex process influenced by various risk 
factors, including genetic, biological, and environmental factors. 
Among these, hyperglycemia can cause oxidative damage to 
pericytes, which is crucial for the integrity and functionality of the 
blood–brain-barrier (Salameh et al., 2016). This hyperglycemia-
induced oxidative damage has been associated with cognitive 
decline and the development of diseases such as diabetic 
retinopathy and Alzheimer’s disease (Hammes et  al., 2002). 
However, the causal relationship between hyperglycemia and the 
BAG remains unknown. Understanding the impact of glycemic 
control on brain aging and cognitive function is necessary to 
inform the optimal intensity of glycemic control in older adults at 
risk for cognitive impairment, as current clinical guidelines 
advocate for relaxed glycemic targets and tolerance of elevated 
hemoglobin A1c (HbA1c) levels in this population (ElSayed et al., 
2023). Additionally, various measures of brain aging exhibit 
heritability and can be  linked to specific genomic regions. For 

instance, previous research has shown that genes THRB and RARB 
both related to cognitive aging (Song et al., 2023). Importantly, 
numerous studies have reported significant sex differences in 
biological aging. For example, women tend to live longer than men, 
which corresponds to lower biological ages as determined by 
molecular biomarkers (e.g., DNA methylation) (Jylhävä et  al., 
2017). Thus, it is important to examine the impact of hyperglycemia 
(manifest as elevated HbA1c levels) on brain aging separately by sex.

The Mendelian randomization (MR) approach has been developed 
and extensively utilized to investigate causal relationships. MR employs 
genetic variants as instrumental variables (IVs) to infer causal 
relationships between an exposure and an outcome. This approach 
mimics the design principles of a randomized controlled trial in an 
observational setting (Burgess and Thompson, 2015). To ensure the 
validity of MR, genetic variants must satisfy the three key assumptions 
(Didelez and Sheehan, 2007). Firstly, the IVs should be associated with 
the risk factor of interest. Secondly, they should not be associated with 
any confounding factors that might affect the relationship between the 
risk factor and the outcome. Lastly, the IVs should not have a direct 
effect on the outcome; their impact should only occur through their 
influence on the risk factor itself. Two-sample MR extends this 
methodology by utilizing two non-overlapping sets for gene-exposure 
and gene-outcome analyses. Comparing to one-sample MR, it avoids 
the risks associated with the “winner’s curse” phenomenon (Jiang et al., 
2023) and minimizes weak instrument biases (Lawlor, 2016).

Here, we examine the causal relationship between hyperglycemia 
and BAG using a two-sample MR analysis. We utilize data from the UK 
Biobank (UKBB), a large-scale prospective cohort study. The exposure 
variable used in our analysis is HbA1c, which provides an assessment 
of the average blood glucose level over approximately 3 months. 
We employ a machine-learning approach using FA as a measure of 
white matter integrity to predict brain age and calculate 
BAG. We hypothesized that individuals with elevated HbA1c levels 
would exhibit an increased BAG, suggesting potential impairment of 
brain microstructure. To further explore the differences between 
different age and sex groups, we conduct sex-stratified and age-stratified 
analyses. By considering the specific needs and vulnerabilities of 
different groups, we can tailor interventions to effectively promote brain 
health and enhance cognitive function across the lifespan.

2 Materials and methods

2.1 UK biobank cohort

The UKBB is a large prospective study that recruited approximately 
500,000 participants aged 37 to 73 between 2006 and 2010, collecting 
comprehensive genetic, clinical, and phenotypic details (Ganna and 
Ingelsson, 2015). We utilized glycemic data from the first assessment 
period (2006–2010) and neuroimaging data from the second 
assessment visits (2014 and after) of the UKBB to ensure data quality 
and minimize the impact of common loss to follow-up issues. 
We conducted rigorous quality control (Excluding non-European or 
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incomplete genotype individuals: N = 16,455) measures and focused 
our analyses on European ancestry with complete genotype data.

We included adults 37–73 years old with and without type 2 
diabetes (T2D). To minimize the potential confounding effects of 
diabetes medication use in the MR analysis, we  further excluded 
individuals who were taking diabetes medications (e.g., metformin, 
glipizide, and glimepiride; Supplementary Table S1) or receiving 
insulin injections prior to the baseline measurement. Finally, 
participants with brain injury, brain cancer, and mental illness were 
excluded (Supplementary Table S2) to minimize the impact of those 
conditions on FA measurements and accurately estimate normal brain 
aging using the adjusted BAG (Pfefferbaum et al., 2000).

2.2 Hyperglycemia (exposure) phenotype

This study focused on HbA1c (UKBB data field 30,750), a measure 
of average glycemia over approximately 3 months, as a key indicator 
of hyperglycemia (Sherwani et  al., 2016). Individuals who self-
reported a history during the first visit of type 1 diabetes, gestational 
diabetes, or diabetes diagnosed before the age of 18 were excluded 
(Peters et  al., 2021). We  further excluded individuals receiving 
glucose-lowering pharmacotherapy at the time of the first visit. 
Figure 1 provides a flow chart illustrating the number of participants 
obtained after applying the exclusion and inclusion criteria.

2.3 Neuroimaging data

We employed diffusion magnetic resonance imaging (dMRI) data 
for the 30,063 individuals who had both available genotype data and 
dMRI measurements (Figure  1), which were obtained through the 
UKBB’s imaging protocol and pipeline (Conroy et al., 2019). A total of 
39 regional white matter integrity assessments as measured by FA were 
derived from the dMRI data, and the mean value of each white matter 
FA tract was assessed (see Supplementary Table S3 for more details).

2.4 Genotype data

UKBB utilized two genotyping chips, Affymetrix UK BiLEVE 
Axiom and UKBB Axiom® arrays, to capture over 90 million single 
nucleotide variants (SNV) from ~500,000 participants (Bycroft et al., 
2017). We conducted quality controls (QCs) analysis on the genotype 
data, with further details on the procedures available in 
Supplementary Data 1. After QCs and before MR analysis, a total of 
33,868 genetic variants were retained.

2.5 Potential confounders

We included the following variables as potential confounders in 
our analyses based on recommendations from previous studies 
(Garfield et al., 2021): age, sex, Townsend deprivation index, body 
mass index (BMI), systolic blood pressure, total cholesterol, smoking, 
triglycerides, C-reactive protein, diet, and physical activity (see 
Supplementary Table S4). The descriptive statistics of these variables 
were included in Table 1. In this study, the continuous age variable was 
categorized into three age groups: 37–49, 50–59, and 60–73. 

We  conducted both overall analysis and stratified analysis by 
categorizing participants into sex and age subgroups.

2.6 Analysis overview

Our analysis comprised two steps (see Figures  1B,C). Firstly, 
we developed an approach to estimate adjusted BAG as our outcome 
variable  - using machine learning techniques (e.g., random forest 
(RF)). This approach was implemented with FA data and chronological 
age, employing a training set that only included people without 
diabetes. During this step, we conducted 5-fold cross-validation to 
fine-tune the parameters and optimize the model (Figure 1B). Once 
the optimal model was determined, we applied it to calculate the 
adjusted BAG on a non-overlapping set that included individuals both 
with and without diabetes (i.e., testing set) (Figure 1C).

Secondly, we performed a two-sample MR analysis to examine the 
causal effect of HbA1c on the adjusted BAG. The first sample (referred 
to as the gene-exposure group) included participants with HbA1c but no 
neuroimaging data (N = 279,011). The second sample (referred to as the 
gene-outcome group) is consisted of distinct set of non-overlapping 
participants possessing both HbA1c and neuroimaging data (N = 13,570).

2.7 Adjusted BAG (outcome) computation

We firstly implemented the machine learning model with 39 FA 
measures to estimate a metric indicative of brain age. To identify 
individuals with T2D, we  used the UKBB data fields 41,270 
(Diagnoses- ICD10 Summary Diagnoses) and 20,002 (non-cancer 
illness code, self-reported medical conditions). T2D cases were 
defined as those having an ICD-10 code of E11-X in the UKBB data 
field 41,270 or having a self-reported non-cancer illness code of 1,223 
for type 2 diabetes provided by UKBB data field 20,002 during the first 
visit (He et al., 2021). We excluded individuals without an elicited 
diagnosis of diabetes but with HbA1c levels >6.5% (47.5 mmol/mol) 
or random glucose levels >200 mg/dL during the first visit (Georgakis 
et al., 2021). Additionally, we excluded individuals with T2D who 
received glucose lowering treatment based on Supplementary Table S1.

Participants without diabetes and available neuroimaging data were 
randomly divided into two sets: a training set and a testing set using a 1:1 
ratio (Figure 1). The training set consisted of 14,870 healthy individuals, 
enabling the development of an unbiased brain age prediction model 
applicable to the general population (Man et al., 2021). The testing set 
included 13,304 healthy individuals and 266 individuals with T2D who 
were not receiving pharmacotherapy. The descriptive statistics for both 
the training and testing sets are provided in Table 1.

Within training set, we employed machine learning models with 
an internal 5-fold cross-validation to select optimal parameters using 
RF. Following that, we applied recursive feature elimination (RFE) to 
select the most important FA measures based on their Pearson 
correlation coefficients (R) and mean absolute error (MAE (year)). 
We configured the decision trees to a count of 200, with a maximum 
depth of 10, a minimum branch of 5, and a minimum leaf of 2. The 
best predictive model was determined by comparing its minimum 
MAE and maximum R to those of other parametric models. Moreover, 
to assess the effectiveness of the RF regression method in predicting 
brain age, we compared some machine learning model candidates, 
including RF regression, gradient boosting regression (Friedman, 
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2002), and least absolute shrinkage and selection operator (LASSO) 
(Friedman et al., 2010).

Given by the optimal predictive model, we  computed the 
predicted brain age (B



) and then calculated the BAG (BAG B= −


Y ) 
through the difference between the predicted brain age and the 
chronological age (Y) (Man et al., 2021). Notably, there is systematic 
bias in the BAG estimation, where individuals with a lower 
chronological age are more likely to have an overestimated BAG, while 
those with a higher chronological age are more likely to have an 

underestimated BAG (Supplementary Figure S1). To mitigate this bias, 
we regressed BAG on Y to adjust for the age bias based on a procedure 
from prior literature (Butler et al., 2021). This allowed us to obtain the 
adjusted predicted brain age (Badj



) and the adjusted 
BAG (BAG Badj adj= −



Y).
Additionally, we investigated the relationship between adjusted 

BAG and cognitive functions, including non-verbal reasoning (UKBB 
phenotype code 6333, Duration spent answering each puzzle), verbal 
and numerical reasoning (UKBB phenotype code 20016, Fluid 

FIGURE 1

Study design. (A) Flowchart of our main analysis procedures and the number of subjects included at each step of the analysis. (B) In the training set: (i) 
Utilizing a machine learning algorithm to build an optimum model for predicting brain age. (ii) To minimize estimation bias, the predictive model was 
adjusted, yielding the adjusted predictive brain age. (iii) The outcome variable, adjusted brain age gap (BAG), was computed by subtracting the 
chronological age from the adjusted predictive brain age. (C) In the testing set, the adjusted BAG was estimated using the corrected predictive model 
from (A). The two-sample Mendelian randomization analysis was then employed to evaluate the causal effect of HbA1c on the adjusted BAG and 
fractional anisotropy (FA).
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intelligence score), and processing speed (UKBB phenotype code 
20023, Mean time to identify matches correctly).

2.8 Two-sample MR analysis

We employed a two-sample MR analysis to examine the causal 
relationship between HbA1c on adjusted BAG. A significance level 
of p < 0.05 indicated a significant causal relationship. We conducted 
a GWAS analysis on Hb1Ac using individuals from the gene-
exposure group (N = 279,011), and applied a genome-wide 
significant threshold (p < 5e-8), along with linkage disequilibrium 
clumping using r2 > 0.50 within a 1,000 kb window, to select 
potential IVs for the MR analysis. We  further eliminated IVs 
associated with confounding factors in both the gene-exposure and 
gene-outcome groups (adjusted p-value >0.05 using the Benjamini-
Hochberg false discovery rate method). We  also removed IVs 
associated with our outcome variable from the gene-outcome group 
(N = 13,570, adjusted p-value >0.1). We  performed a gene 
annotation analysis using the Functional Annotation of Variant 

Online Resource (FAVOR) (Zhou et  al., 2023) (https://favor.
genohub.org/, accessed April 26, 2023) to validate selected IVs 
associated with the exposure as reported in previous literature 
based on their functional information.

Given by selected IVs, we performed the two-sample MR analysis 
using generalized inverse variance weighted model (gen-IVW) 
(Burgess et al., 2016) through an R package ‘Mendelian Randomization’ 
(version 0.6.0) (Yavorska and Burgess, 2017). We employed Cochran’s 
Q test and Higgins’s I2 test alongside the MR analysis to assess the 
heterogeneity of causal effects among IVs.

We conducted a series of sensitivity analyses to enhance the 
robustness and reliability of our results, including Inverse variance 
weighted (IVW) (Bowden et  al., 2015), MR-weighted-median 
(Bowden et  al., 2016a), MR-pleiotropy residual sum and outlier 
(MR-PRESSO) (Verbanck et al., 2018), and MR-using mixture models 
(MR-MIX) (Qi and Chatterjee, 2018). MR-PRESSO (Verbanck et al., 
2018) identifies and eliminates outlier IVs during the MR analysis by 
assessing the presence of significant horizontal pleiotropy, which leads 
to MR estimates with reduced variability. MR-MIX employs a mixed 
model to combine IVs with potential horizontal pleiotropy (Qi and 

TABLE 1 Characteristics of Participants in gene-exposure group (MR sample 1), gene-outcome group (MR sample 2 including non-T2D and T2D testing 
dataset) and the non-T2D training dataset (see Figure 1) from UK Biobank.

Sample distribution characteristics of all samples

Training Set
Gene-outcome group

gene-exposure groupTesting Set

Non-T2D Non-T2D T2D

Number of individuals 14,870 14,870 323 279,011

Age, mean (SD) 54.36 (7.39) 54.30 (7.41) 57.32 (7.18) 56.01 (8.11)

BMI, mean (SD) 26.30 (4.07) 26.28 (3.98) 30.69 (4.97) 27.08 (4.52)

Sex (%)

  Female 8,076 (54.31%) 7,981 (53.67%) 111 (32.41%) 156,373 (56.05%)

  Male 6,794 (45.69%) 6,889 (46.33%) 212 (67.59%) 122,638 (43.95%)

Townsend deprivation index, 

mean(SD)
−1.95 (2.67) −1.96 (2.68) −1.57 (2.94) −1.58 (2.91)

SBP, mmHg; mean (SD) 136.20 (18.70) 136.20 (18.81) 143.70 (18.99) 139.4 (19.60)

Cholesterol, mean(SD) 5.76 (1.06) 5.76 (1.06) 5.38 (1.24) 5.78 (1.10)

Smoking status (%)

  Never 10,964 (66.78%) 9,268 (62.42%) 156 (48.45%) 158,840 (57.11%)

  Previous 4,667 (28.43%) 4,806 (32.37%) 147 (45.65%) 96,295 (34.62%)

  Current 786 (4.79%) 773 (5.21%) 19 (5.90%) 23,017 (8.27%)

Triglyceride, mean(SD) 1.61 (0.93) 1.60 (0.93) 2.36 (1.28) 1.71 (0.99)

C Reactive Orotein, mean(SD) 1.94 (3.32) 2.00 (3.65) 3.20 (4.03) 2.39 (4.03)

Physical activities (%)

  Considered 3,429 (27.58%) 3,545 (28.33%) 66 (27.73%) 66,217 (29.44%)

  Medium 9,004 (72.42%) 8,951 (71.54%) 172 (72.27%) 158,357 (70.41%)

  Poor 16 (0.13%) 16 (0.13%) 0 (0.00%) 339 (0.15%)

Diet (%)

  Considered 5,242 (39.07%) 5,170 (38.31%) 108 (36.99%) 95,471 (37.97%)

  Poor 8,176 (60.93%) 8,326 (61.69%) 184 (63.01%) 155,962 (62.03%)
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Chatterjee, 2018). Additionally, we conducted a leave-one-out analysis 
(LOOA) to detect any potential bias introduced by individual IV and 
to obtain more robust and reliable MR results (Sun et  al., 2020). 
We  also applied MR-Egger and evaluated its reliability using I2 
statistics, which check the ‘NO Measurement Error’ assumption 
(Bowden et al., 2016b).

In addition to the IVs selected from our study, we incorporated 
public GWAS summary statistics from the Sinnott-Armstrong et al. 
on HbA1c (Sinnott-Armstrong et  al., 2021) with our criteria (see 
‘Two-sample MR analysis’ in the Methods section) to select potential 
IVs for the MR analysis.

To assess the impact of medication use on our primary results, 
we included individuals who injected insulin or took medications for 
diabetes (N = 318) into the gene-outcome group (N = 13,888) to 
reperform the MR analysis. On the other hand, to eliminate the 
influence of individuals with T2D, we  conducted an additional 
sensitivity analysis using individuals who were not affected by T2D 
(gene-exposure: N = 273,276; gene-outcome: N = 13,304). Moreover, 
we performed a reverse MR analysis in which we considered adjusted 
BAG as the exposure and HbA1c as the outcome, to examine the 
potential causal direction from adjusted BAG to HbA1c 
(Supplementary Data 2 and Supplementary Data Figure S1). Finally, 
we investigated the causal effect of HbA1c on regional white matter 
FA measures to further confirm the causality between HbA1c and 
adjusted BAG.

3 Results

3.1 Sample characteristics

The training and testing sets exhibited similar distribution in 
terms of socio-demographic aspects such as age, sex, and BMI (see 
more details in Supplementary Figures S2, S3). Similarly, these 
covariates were evenly distributed among the participants used in the 
MR study (Table 1).

3.2 Estimation of white matter BAG

Compared with gradient boosting regression and LASSO 
methods, the RF regression method achieved the best prediction 
performance in brain age prediction (see Supplementary Table S3), 
consistent with previous study (Wang et al., 2021). Our optimal RF 
model attains excellent prediction performance in both the training 
and testing sets: R = 0.97 and MAE (year) = 2.19 for training set (see 
Supplementary Figure S1); R = 0.95 and MAE (year) = 2.66 for 
non-T2D, and R = 0.95 and MAE (year) = 2.62 for T2D in the testing 
set, respectively (see Figure  2A). A total of 26 FA measures was 
selected from this optimal model (Figure  2B; see 
Supplementary Table S3 for their full names and abbreviations). To 
assess the association (not causal relationship) between BAG and 
HbA1c, we performed a regression analysis and found that adjusted 
BAG was significantly associated with HbA1c (β  = 0.0198; 95% 
CI = 0.0029, 0.0367; p-value = 4.00 × 10−2; Supplementary Table S5). 
Additionally, we observed significant associations between increases 
in BAG and decline in cognitive function (see Supplementary Table S6).

3.3 Two-sample MR analysis

In our study, we selected 842 genetic variants as IVs according to 
our criteria (see ‘Two-sample MR analysis’ in the Methods section) 
(see a complete list of IVs in Supplementary Table S7; the Manhattan 
plot shown in Supplementary Data Figure S2). We identified these IVs 
that were mapped within previously reported HbA1c-related genes 
such as HK1, ANK1, GCK, and CDKAL1 (Leong and Meigs, 2015) 
using the FAVOR (see Supplementary Table S8).

We observed an overall significant and substantial causal effect of 
HbA1c on adjusted BAG ( β  = 0.49 year/(6.75 mmol/mol); 95% 
CI = 0.24, 0.74; p-value = 1.30 × 10−4, as shown in Figure  3) in our 
two-sample MR analysis. This indicates that an increase in HbA1c 
levels by 6.75 mmol/mol corresponds to a 0.49-year increase in 
brain age.

FIGURE 2

Adjusted BAG and its relationships with T2D status in the testing set. (A) The relationship between the adjusted predicted brain age and chronological 
age in different T2D status (R: coefficients of correlation; MAE: mean absolute error). (B) The selection of twenty-six FA tracts from the predictive 
model for estimation of adjusted BAG, and we colored the FA bundles selected.
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In stratified analyses, we observed that the causal effect of HbA1c on 
adjusted BAG was particularly prominent in males (β



 = 0.84 year/
(6.75 mmol/mol); 95% CI = 0.52, 1.17; p-value = 4.32 × 10−7) and older 
individuals (age ≥ 60, β



 = 1.07 year/(6.75 mmol/mol); 95% CI = 0.63, 1.51; 
p-value = 2.12 × 10−6) (see Table 2 for more details). These results were 

substantiated by sensitivity analyses using different MR methods 
(Supplementary Table S9), LOOA (Supplementary Table S10 and 
Supplementary Figure S4), replication in an independent cohort for IVs 
selection (β



 = 0.36 year/(6.75 mmol/mol); 95% CI = 0.05, 0.68; 
p-value = 0.02, Supplementary Table S9), inclusion of individuals who 

FIGURE 3

Mendelian randomization and the results. (A) The three fundamental instrumental variable (IV) assumptions in the Mendelian randomization (MR) 
analysis: (I) IVs exhibit a significant association with the exposure (i.e., HbA1c); (II) the exposure is not significantly associated with confounders of the 
exposure-outcome association, and (III) IVs have an effect on the outcome variable solely through their influence on the exposure. (B) The causal 
effect estimates with a 95% confidence interval (CI) implemented with different MR methods for HbA1c using the IVs selected based on adherence to 
the three IV assumptions. Gen-IVW (marked with a triangle) is the primary MR method (i.e., weighted generalized linear regression), and the other 
methods (marked with a dot) are the MR methods used in the sensitivity analysis. Different colors represent different group.

TABLE 2 The results of two-sample MR analysis between HbA1c and BAG with/without stratification by sex and age.

Group Number 
(gene-

exposure; 
gene-

outcome)

MR analysis (gen-IVW)

Standardized 
estimate

Lower (95% 
CI)

Upper (95% 
CI)

Estimate 
(6.75  mmol/mol)

p value

Without stratification (gene-exposure p < 5e-8)

HbA1c (842 

IVs)
Whole

N = (279,011; 

13,570)
0.07275129 0.035477893 0.110024687 0.4910712 1.30E-04 ***

With age stratification

HbA1c 37–49 N = (70,860; 3,824) 0.079851175 0.012502386 0.147199965 0.5389954 2.01E-02 *

HbA1c 50–59 N = (94,467; 5,730) 0.008219022 −0.049138158 0.065576202 0.0554784 7.79E-01

HbA1c 60–73 N = (113,684; 4,016) 0.158101865 0.092747876 0.223455853 1.0671876 2.12E-06 ***

With sex stratification

HbA1c Female N = (156,373; 7,184) 0.008465334 −0.046977127 0.063907794 0.057141 7.65E-01

HbA1c Male N = (122,638; 6,386) 0.124858402 0.076441673 0.173275131 0.8427942 4.32E-07 ***

With age by sex stratification

HbA1c 37–49 female N = (38,670; 2,139) 0.109703365 0.015898898 0.203507832 0.7404977 2.19E-02 *

HbA1c 50–59 female N = (53,998; 3,136) −0.042806215 −0.128076578 0.042464148 −0.288942 3.25E-01

HbA1c 60–73 female N = (63,705; 1,909) 0.054434874 −0.046029791 0.154899539 0.3674354 2.88E-01

HbA1c 37–49 male N = (32,190; 1,685) 0.05540717 −0.034840098 0.145654438 0.3739984 2.29E-01

HbA1c 50–59 male N = (40,469; 2,594) 0.068643089 −0.002759449 0.140045626 0.4633409 5.95E-02 ~ .

HbA1c 60–73 male N = (49,979; 2,107) 0.229426417 0.148882193 0.30997064 1.5486283 2.37E-08 ***

~. p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001.
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administered insulin or utilized diabetes medications (β


 = 0.55 year/
(6.75 mmol/mol); 95% CI = 0.32, 0.78; p-value = 4.28 × 10−6; 
Supplementary Table S9 and Supplementary Figure S5), and restricting 
individuals from European ethnic backgrounds without T2D (β



 = 
0.50 year/(6.75 mmol/mol); 95% CI = 0.23, 0.77; p-value = 2.30 × 10−4; 
Supplementary Table S9).

We expanded our sample to include individuals from non-European 
ethnic backgrounds who met our inclusion/exclusion criteria (the gene-
exposure group N = 433,374 individuals and the gene-outcome group, 
N = 14,004 individuals). Within this subgroup, we  re-conducted MR 
analysis, which revealed that elevated HbA1c levels are associated with 
accelerated white matter brain aging (β



 = 0.29 year/(6.75 mmol/mol); 95% 
CI = 0.11, 0.47; p-value = 1.34 × 10−3; see Supplementary Table S9 for more 
details). Our two-sample reverse MR analysis revealed no significant 
evidence of a causal effect, indicating the absence of reverse causality in 
our study (Supplementary Table S11).

In addition, when we altered the outcome variable to regional white 
matter measures, we found significant causal effects of Hb1Ac on the left 
hemisphere of posterior corona radiata (PCR-L) (β



 = −0.0259/
(6.75 mmol/mol); 95% CI = −0.0289, −0.0229; p-value = 1.03 × 10−65) and 
fornix (FX) (β



 = −0.0280/(6.75 mmol/mol); 95% CI = −0.0344, −0.0217; 
p-value = 5.58 × 10−18) (see full results in Supplementary Table S12). In our 
stratified analyses, the causal effects of HbA1c exhibits the most significant 
impact on FX and anterior corona radiata left (ACR-L) across different 
age and sex groups. Particularly, these effects were predominantly found 
in males aged 60–73 years (Supplementary Table S13).

4 Discussion

We investigated the causal effects of HbA1c on adjusted BAG by 
developing innovative computational methods and using large-scale 
data from the UKBB cohort in this study. We identified significant 
causal effects of elevated HbA1c on accelerated neurodegeneration 
during the aging process, as evident by an elevated brain age measured 
in years. Furthermore, stratified analyses revealed age- and 
sex-dependent causal effects of HbA1c on adjusted BAG. Specifically, 
we  observed a significantly negative causal effect of HbA1c on 
adjusted BAG among males in the 60-73-year age group. These 
findings underscore the importance of glycemic control in preventing 
and slowing the progression of cognitive impairment.

Our findings are consistent with previous studies (Gudala et al., 
2013; Jha et al., 2022). For instance, Jha et al. (2022) reported a 1-unit 
increase in HbA1c was associated with a 3.88-year increase in the 
brain age gap. Similarly, we observed that individuals with high levels 
of HbA1c had elevated adjusted brain age values compared to those 
with low levels of HbA1c. Numerous studies have found the 
detrimental effects of elevated HbA1c on neurological health. Diabetes 
is associated with heightened risks of all types of dementia, and 
patients with dementia are more likely to be diagnosed with diabetes 
than patients without dementia (Ohara et al., 2011). Poor glycemic 
control with elevated HbA1c also increases the risks of diabetic 
peripheral neuropathies (DPNs) and autonomic neuropathies (Su 
et  al., 2018). These neurological complications are thought to 
be  mediated by various biological factors, including polyol flux, 
advanced glycation end products (AGEs), oxidative stress, and lipid 
abnormalities (Tesfaye et al., 2010), suggesting that elevated HbA1c 
levels may lead to the acceleration of brain aging through these factors. 

Some study have confirmed that AGEs formed during prolonged 
hyperglycemia can accumulate in brain tissues and contribute to the 
pathogenesis of neurodegenerative diseases (Dei et al., 2002; Srikanth 
et  al., 2011). Furthermore, other studies also confirmed that high 
glucose levels can induce neuronal apoptosis, impair synaptic plasticity, 
and disrupt the blood–brain barrier, ultimately compromising brain 
health (Gispen and Biessels, 2000; Pooja Naik, 2014).

To date, there has been no prospective evidence that intensive 
glycemic control improves cognitive function or prevents cognitive 
impairment (Launer et al., 2011). However, this may be due to the 
heterogeneity of the study population, as we found that the impact of 
HbA1c on brain aging varied widely across different age and sex 
groups, with a more pronounced effect observed in men and older 
adults (age ≥ 60). This may be due to the sex differences in energy 
balance and sex steroids at the molecular, cellular, and tissue levels 
(Tramunt et  al., 2020). Women exhibit specificity in energy 
partitioning, possibly protecting them from visceral and ectopic fat 
accumulation (Karastergiou et  al., 2013). Such heterogeneity is 
consistent with prior animal and molecular studies revealing sex 
differences in glycemic control mechanisms during autonomic 
nervous system (Takahashi et al., 2020) and clinical neuropathy (The 
DCCT Research Group, 1988). We provide new insights into how 
HbA1c contributes to the increased acceleration of brain aging, 
particularly in older men, and exerts differential effects in a 
sex-dependent manner, but its causal effects warrant 
further investigation.

The IVs used in our MR analyses are aligned with previously 
established diabetes-related genes and add to the robustness of our 
analysis (Supplementary Table S7 for a complete list). For instance, 
genes such as TCF7L2 and HK1 located on chromosome 10 have been 
reported to be significantly associated with the risk of diabetes and 
HbA1c levels, respectively. Similarly, genes ABCB11 (chromosome 2), 
ADCY5 (chromosome 3), CDKAL1 (chromosome 6), ANK1 
(chromosome 8), GLIS3 (chromosome 9), and HKDC1 (chromosome 
10) have been linked to various aspects of diabetes, including insulin 
release, glucose levels, β-cell function, and insulin resistance (Leong and 
Meigs, 2015; Roman et  al., 2017). These existing findings provide 
support for the validity of our selected IVs and lend credibility to the 
MR results obtained in our study. In addition, the sensitivity analyses 
conducted in our study confirmed the absence of substantial horizontal 
pleiotropy among the selected IVs. This further strengthens the 
reliability of our MR results, indicating that the estimated causal effects 
of HbA1c on BAG are unlikely to be confounded by pleiotropic effects.

However, it is important to acknowledge several limitations in our 
study. Firstly, the individuals recruited from the UKBB may not 
represent the general population as they are more likely to be “healthy 
volunteers” living in socioeconomically advantaged areas with a lower 
prevalence of obesity, smoking, drinking, and other health problems 
(Fry et al., 2017). This limits the generalizability of our findings and calls 
for additional research that engages a more diverse population. 
Secondly, our study focused on a specific age range (37–73 years) and 
included individuals from a single ethnic background. Thirdly, previous 
studies have been reported that ethnic differences in T2D associated 
with genes such as KCNQ1, NOTCH2, TCF7L2, CDKAL1, and KCNJ11 
(Waters et  al., 2010; Yaghootkar et  al., 2020). After incorporating 
non-European samples into our sensitivity analysis, genetic variants 
mapped on these genes were selected as IVs. However, gen-IVW cannot 
address the ethnic-specific effects of IVs, contributing to the difference 
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observed compared to our main findings. Further studies should 
be incorporated to consider the ethnic-specific effect of IV in the MR 
approaches. The influence of HbA1c on white matter brain aging may 
vary across different age groups and ethnicities. Factors such as dynastic 
effects, assortative mating, social determinants of health, and population 
stratification could potentially confound the causal relationship between 
HbA1c and white matter brain aging in different populations 
(Brumpton et al., 2020; Hwang et al., 2021). Therefore, future studies 
should aim to replicate our findings in diverse ethnic cohorts to examine 
the generalizability of the observed causal effects.

5 Conclusion

In conclusion, our study provides a comprehensive analysis of 
the causal relationship between HbA1c and white matter brain 
aging, demonstrating robust and consistent causal effects using 
sensitivity analyses. By extending previous associations to causal 
inference, our findings contribute to a better understanding of the 
impact of HbA1c on white matter brain aging. Importantly, our 
study highlights the varying effects of HbA1c on different sex and 
age groups, emphasizing the significance of blood sugar control 
strategies to prevent accelerated brain aging in various populations. 
Nevertheless, future research should address the limitations 
mentioned above to advance our understanding of the causal effects 
of HbA1c on brain aging and its implications for 
preventive strategies.
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