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Editorial on the Research Topic

Modern statistical learning strategies in imaging genetics, volume II

As an emerging interdisciplinary study, imaging genetics mainly focuses on using brain

imaging techniques to identify and characterize the effects of genetic variations on brain

function or structure in order to better understand their impact on behavior and different

disease, such as Attention-deficit/hyperactivity disorder (ADHD) (Klein et al., 2017), Autism

(Nisar and Haris, 2023), Parkinson’s disease (Kim et al., 2017), Alzheimer’s disease (Huang

et al., 2017), and among others. Although many biomedical studies, such as the Alzheimer’s

disease neuroimaging initiative (ADNI) study (Mueller et al., 2005), Human Connectome

Project (HCP) (Van Essen et al., 2013), and UK BioBank (UKBB) study (Sudlow et al., 2015),

are being conducted to collect massive datasets with volumes of imaging [like structural

magnetic resonance imaging (MRI), functional MRI, diffusion MRI, and positron emission

tomography (PET)], genetic, neurocognitive, and clinical information from increasingly

large cohorts, it is still challenging for existing statistical learning approaches to integrate

these rich and diverse multi-modal datasets (Huang et al., 2022). These challenges are

usually caused by (i) the high-dimensionality of genotype information and the unknown

dependencies between them; (ii) the high-dimensionality and irregularity of imaging

phenotypes (Liu et al., 2023); and (iii) imaging heterogeneities due to differences in study

design, protocol, environment, population, or other hidden confounders (Huang and Zhu,

2022). For example, existing statistical learning methods using regional-wised summary

statistics as imaging phenotypes may not account for the spatial configurations of imaging

voxels and are sensitive to the choice of region of interest (ROI) atlas, which may cause a

loss of prediction accuracy and even lead to inconsistent results. As a follow-up to our first

volume on this topic (Huang et al., 2022), this Research Topic includes a group of papers

specifically leveraging these massive biomedical datasets to develop new learning approaches

in imaging genetics and uncover novel clinical findings.

Integrating transcriptomic data with imaging genetics allows researchers to explore the

underlying genetic mechanisms that influence variations seen inmedical imaging. It can help

in identifying how gene expression patterns relate to differences observed in brain structure,

function, or other physiological aspects visualized through imaging techniques. Liu Y.

et al. developed an integrative Bayesian scalar-on-image regression model for predicting

cognitive outcomes in Alzheimer’s disease by integrating voxel-level cortical thickness
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measurements derived from T1-weighted MRI along with

transcriptomics (gene expression) features. Compared to the

genetic variants, i.e., single nucleotide polymorphisms (SNPs),

the dependencies of high-dimensional and collinear genetic

features are well preserved in the transcriptomic information

and successfully characterized by a graph Laplacian structure. In

addition, the spatial orientation of the voxels in the brain image was

captured via a tensor representation for the imaging coefficients,

which can uncover patterns and relationships that may be missed

by voxel-wise or ROI-based analysis.

The brain activation phenotype in imaging genetics refers to

the observable characteristics or patterns of brain activity that

are studied in conjunction with genetic variations. It can help in

understanding how genetic differences among individuals might

influence or correlate with specific patterns of brain activation as

observed through various imaging techniques. Jin et al. introduced

a Bayesian hierarchical model for detecting influential genetic

variants and consistent activation regions using the PET and

SNP data from subjects in the ADNI study. They found that

their approach can jointly estimate the brain activation regions

after accounting for external sources of clinical factors and

genetic variation. In particular, it detected important genetic and

demographic factors associated with activation intensities inside

activation regions. Through applying the proposed method to the

AD study, they discovered some important loci correlated to AD-

related brain activation regions, which deserved further biological

investigations.

Finally, studying resting-state functional connectivity (rs-FC)

has become a crucial area of research in the context of psychological

diseases or disorders. Liu X. et al. collected resting-state functional

MRI data from 31 psychological erectile dysfunction (pED) patients

and 31 healthy controls (HCs) and derived the rs-FC to explore

the abnormalities of brain function, as well as their relationships

with sexual behavior and emotion in pED patients. Altered brain

function was found in the medial superior frontal gyrus and

caudate-putamen of pED patients, which were associated with

sexual function and psychological condition. In addition, Li et al.

conducted an image-based meta-analysis to evaluate the effect of

different seed selection on rs-FC. They found that the overlap of

meta-analytic maps across different seeds’ ROIs within the default

mode network is relatively low, whichmeans the choice of seedmay

significantly affect the connectivity results.

Taken together, the studies in this Research Topic include

several advanced statistical learning approaches in imaging

genetics, and exemplify the potential impact of applying these

methods to better understand the roles of brain imaging data and

genetic information in mental health and disease.
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