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Introduction: Speaker diarization is an essential preprocessing step for

diagnosing cognitive impairments from speech-based Montreal cognitive

assessments (MoCA).

Methods: This paper proposes three enhancements to the conventional

speaker diarization methods for such assessments. The enhancements tackle

the challenges of diarizing MoCA recordings on two fronts. First, multi-

scale channel interdependence speaker embedding is used as the front-end

speaker representation for overcoming the acoustic mismatch caused by far-

field microphones. Specifically, a squeeze-and-excitation (SE) unit and channel-

dependent attention are added to Res2Net blocks for multi-scale feature

aggregation. Second, a sequence comparison approach with a holistic view of the

whole conversation is applied to measure the similarity of short speech segments

in the conversation, which results in a speaker-turn aware scoring matrix for the

subsequent clustering step. Third, to further enhance the diarization performance,

we propose incorporating a pairwise similarity measure so that the speaker-

turn aware scoring matrix contains both local and global information across

the segments.

Results: Evaluations on an interactive MoCA dataset show that the

proposed enhancements lead to a diarization system that outperforms

the conventional x-vector/PLDA systems under language-, age-, and

microphone-mismatch scenarios.

Discussion: The results also show that the proposed enhancements can

help hypothesize the speaker-turn timestamps, making the diarization method

amendable to datasets without timestamp information.

KEYWORDS

speaker diarization, speaker embedding, comprehensive scoring, speaker-turn

timestamps, MOCA, dementia detection

1 Introduction

Mild cognitive impairment (MCI) is a memory and cognitive impairment stage in

which patients may notice that their memory or mental function has declined, although

the impairment does not significantly affect their daily activities. Studies have shown that

patients with MCI are at high risk of having dementia, which can quickly develop into
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Alzheimer’s disease (AD; Kantarci et al., 2009). Alzheimer’s Disease

International (ADI) reported in 2015 that there were up to 46

million people with dementia in the world, and this number

is predicted to increase to more than 130 million by 2050

(Prince, 2017). Although no evidence-based medications can be

recommended for the MCI patients (Cooper et al., 2013), the

screening and early identification of the patients with cognitive

impairment is one of the most critical determinants for preventing

and treating dementia and AD.

Cognitive tests are tools for assessing human cognitive

capabilities, with notable examples including Mini-Mental State

Exam (MMSE; Pangman et al., 2000), Mini-Cognitive scale (Mini-

Cog; Borson et al., 2000), and Montreal Cognitive Assessment

(MoCA; Nasreddine et al., 2005). Each of these tests has

specific applications and has been validated for various cognitive

assessments. The MMSE has a short assessment time (5–10 min).

During an MMSE session, a participant is asked to say the date,

count backward, and identify objects in a room. Although MMSE

is simple to use, it lacks the sensitivity to detect MCI (Chapman

et al., 2016). The Mini-Cog is a fast (3 min) cognitive assessment

and is more acceptable by participants. It involves memorizing and

recounting a short list of objects and making a drawing. It is mainly

used for detecting dementia, but there is insufficient evidence to

recommend or against using Mini-Cog as a cognitive screen tool in

community settings (Fage et al., 2015). TheMoCA takes longer and

covers more domains than the MMSE and Mini-Cog, resulting in

higher sensitivity and specificity (Ciesielska et al., 2016). This leads

to its frequent application in the detection of MCI and AD among

the elderly.

Studies have found that the irregularities appeared in patients’

speech and connected language could be due to MCI and AD

(Konig et al., 2018; Mueller et al., 2018), which calls for using

spoken language technologies to detect MCI and AD from patients’

MoCA recordings. Because a MoCA session involves the spoken

dialogs between an assessor and a patient, it is essential to perform

speaker diarization to extract the utterances spoken by the patient

as a first step toward the efficient analysis of the patient’s speech.

Speaker diarization is the process of partitioning an input audio

into homogeneous segments according to the speaker identities.

It answers the question of who spoke when. Figure 1 outlines a

standard diarization framework. In general, the diarization process

consists of the following steps. First, a voice activity detector

(VAD) is applied to remove non-speech parts from the input

audio. Next, speech regions are uniformly partitioned into short

overlapping segments. After that, the segments are mapped to a

fixed-dimensional feature space by a speaker embedding network

such as the x-vector network (Garcia-Romero et al., 2017; Snyder

et al., 2018). Then, a similarity matrix is produced by computing the

PLDA score (Prince and Elder, 2007;Mak and Chien, 2020) of every

segment pair. Finally, agglomerative hierarchical clustering (AHC)

is applied to the similarity matrix to obtain a rich transcription time

mark (RTTM) (Fiscus et al., 2005) format file. The RTTM contains

the speaker identity of each turn and its corresponding timestamps,

i.e., information about when an identified speaker began speaking

and how long the speaker spoke. In other words, given an audio

and the corresponding RTTM, the audio segments of different

speakers can be extracted. A basic problem is how to embed the

speech segments such that different speakers can be embedded

into different regions of the embedding space, regardless of the

speech content. In this work, we propose enhancing the embedding

extraction process, the similarity measures, and the clustering

process in the conventional x-vector–PLDA–AHC pipeline.

The MoCA recordings present special challenges to speaker

diarization. Conventionally, researchers of speaker embeddings

focused on long utterances (over 5 s) due to the large variance

in the x-vectors representation under short-utterance scenarios.

However, the MoCA tests consist mainly of short utterances

in interactive dialogs. Figure 2 gives an example of Cantonese-

based MoCA recordings with diarization results. It is difficult to

extract sufficient information to discriminate speakers under short-

utterance scenarios. This problem is exacerbated by the fact that

the interactive dialogs have backchannel cues and frequent changes

in speaker turns, which lead to a high probability of missing the

speaker change points. An essential requirement of MoCA tests is

that the recording devices should not disturb or affect the patient

during a recording session. Ideally, the patient should not aware the

existence of the devices. Therefore, in practice, MoCA sessions use

far-fieldmicrophones for recording. But this will cause microphone

mismatch because diarization systems are typically trained on

speech recorded by close-talking microphones. The mismatch calls

for a more robust speaker embedding method that is less sensitive

to the microphone types.

Agglomerative hierarchical clustering (Luxburg, 2007) is a

notable clustering approach to speaker diarization. Bayesian

information criterion is usually used to estimate which couple of

clusters should be merged at each agglomerative iteration. This

leads to a high computational cost when the number of data points

increases. Also, the performance of AHC heavily depends on the

choice of the distance metric (Han et al., 2008). In contrast, spectral

clustering (SC; Luxburg, 2007) does not require a statistical metric

to determine whether two clusters should be merged. Previous

researches have applied SC to infer speaker clusters and achieved

good performance (Iso, 2010; Ning et al., 2010), especially in

speaker diarization tasks (Ning et al., 2006).

This work aims to enhance our age-invariant diarization system

in Xu et al. (2021a) and our scoring method for diarization

in Xu et al. (2021b) for speech-based cognitive assessments.

A speaker embedding extractor, CE-Res2Net (Zhao and Mak,

2021), is used to produce multi-scale channel interdependence

speaker embeddings as front-end representations. Instead of

PLDA, an LSTM-based scoring model (Lin et al., 2019) trained

on the sequential information across short speech segments

is applied for similarity measure. Moreover, a comprehensive

similarity measure is proposed to enhance the diarization

performance further. The measure, a weighted sum of an

LSTM-based similarity score and a cosine-distance score, enables

the speaker-embedding network to capture the local sequential

structure of the speech segments and their global similarity.

The resulting diarization system was applied to a MoCA dataset

comprising 469 older adults, including healthy individuals and

patients with mild to major neurocognitive disorders (NCDs).

It was found that the enhanced embedding can overcome the

acoustic mismatch due to the far-field microphones, that the

LSTM-based model can leverage the ground-truth speaker-turn

information in the training data or the hypothesized timestamps

in the MoCA data, and that the proposed comprehensive
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FIGURE 1

A standard x-vector–PLDA–AHC speaker diarization framework. The speech parts of the audio are extracted as short segments. The segments are

embedded into a space representing the speakers’ characteristics. The similarity between every pair of segments is then computed to form a

similarity matrix, which is then used for agglomerative hierarchical clustering to determine the timestamps of individual speaker turns.

scoring can capture both local and global information across

segments.

From a practical perspective, the proposed diarization method

can serve as a front-end module for spoken-language-based

AD screening tools. Such tools can help clinicians quickly

identify early AD patients for further diagnosis. From a machine

learning perspective, the contributions include applyingmulti-scale

channel interdependence speaker embedding to model the local

dependence within short speech segments and to overcome the

acoustic mismatch in clinic environments. A sequence comparison

approach is proposed to capture the long-term dependence in these

segments for cognitive assessments. Moreover, a comprehensive

similarity measure is proposed to consider both local and global

information across the segments.

Conventional diarization systems are trained to identify

multiple speakers in a conversation, known as speaker-aware. They

do not leverage the sequence of speaker turns and their time

stamp in the training data. The proposed approach goes a step

further by being speaker-turn aware. This awareness means that the

model can learn from the speaker-turn information in the training

data to determine who spoke when in an unseen conversation.

This is achieved by leveraging the time stamp information in the

training data, which enables our system to understand the temporal

aspects of the short segments in a conversation. The utilization of

the time stamp information is one of the key advantages of our

approach over traditional clustering-based diarization approaches.

The approach makes the scoring matrix more relevant to the

diarization task because it encapsulates information about who

is speaking at what time and for how long. This property

makes the proposed approach effective for analyzing speech in

cognitive assessments.

2 Materials and methods

2.1 Diarization system overview

2.1.1 Speaker embedding networks
X-vector is a speaker embedding approach based on

deep neural networks (DNN), which has demonstrated good
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FIGURE 2

Recordings of a Cantonese MoCA session with the diarization results of a dialogue between an assessor and a participant. In the figures, the (top)

panel is speech waveform. The ground truth transcripts are shown in the (middle) panel. The outputs of speaker diarization are shown in the

(bottom) panel, where “A” refers to the assessor and “S” refers to the subject.

performance in both speaker recognition (Snyder et al., 2018)

and speaker diarization (Garcia-Romero et al., 2017). In Kaldi’s

x-vector networks (Povey et al., 2011), MFCCs are extracted

and fed to time-delay layers (Snyder et al., 2017) for frame-level

processing. Then, a statistics pooling layer aggregates over the

frame-level representations at the last time-delay layer into a

segment-level representation, followed by two fully connected

layers and a softmax layer to output the posterior probabilities

of speakers. The penultimate layer’s outputs form the speaker

embeddings called x-vectors.

After the invention of x-vector, researchers have focused on

enriching the speaker’s information in the embedding vectors. The

enhancements include ResNet embedding (Zeinali et al., 2019)

that adds residual connections, DenseNet embedding (Lin et al.,

2020) that leverages inter-layer connections, and ECAPA-TDNN

(Desplanques et al., 2020) that models channel inter-dependencies

and exploits multi-scale features. Also, the mean and standard

deviation computation in the statistics pooling layer has been

enhanced by an attention mechanism (Zhu et al., 2018; Lin and

Mak, 2022).

2.1.2 Conventional similarity measures
Cosine similarity and probabilistic linear discriminant analysis

(PLDA; Ioffe, 2006; Prince and Elder, 2007) are two popular

approaches to measuring the similarities between speech segments

in speaker diarization. Given an audio recording, the waveform

is partitioned into many segments, typically 1.5 s with 0.75 s

overlapping. Then, the speaker embedding vector of each segment

is computed by presenting the acoustic vectors of the segment to the

speaker embedding network. Each embedding vector is compared

with all the others to form a similaritymatrix, which is then past to a

clustering algorithm (see Section 2.1.3) to group similar embedding

vectors into speaker groups.

Cosine similarity measures the closeness between a pair of

speaker embedding vectors (e.g., xi and xj) by Equation (1), which

is the cosine of the angle between the two vectors:

cosine(xi, xj) =
xi · xj

‖xi‖
∥

∥xj
∥

∥

. (1)

A score close to 1.0 means that the two embeddings are similar. If

the score is larger than a threshold θ , we consider the embeddings

are from the same speaker.

PLDA is a factor analysis technique in which the variability of

speaker embedding vectors can be separately modeled by a within-

speaker covariance matrix and a between-speaker covariance

matrix. The former characterizes non-speaker variability, whereas

the latter captures speaker variability. By separating the speaker

and non-speaker variabilities, a PLDA model can suppress the

non-speaker variabilities when comparing the similarity between

two speaker embeddings. Specifically, given a pair of speaker

embeddings xi and xj, the PLDA model with the model parameter

ω computes a log-likelihood ratio (LLR) score based on the same-

speaker hypothesis H0 and different-speaker hypothesis H1 (Mak

and Chien, 2020), as in Equation (2):

S(xi, xj) = log
p(xi, xj|H0)

p(xi, xj|H1)

=

∫

p(xi, xj, z|ω)dz
∫

p(xi, zi|ω)dzi
∫

p(xj, zj|ω)dzj

=

∫

p(xi, xj|z,ω)p(z)dz
∫

p(xi|zi,ω)p(zi)dzi
∫

p(xj|zj,ω)p(zj)dzj
.

(2)

Note that the speaker factor z is identical to both xi and xj in H0,

whereas they are different in H1. For a Gaussian PLDA model,

the LLR can be computed using Equation (3) (Garcia-Romero and

Espy-Wilson, 2011):

S(xi, xj) =
1

2
xT
i Qxi + xT

i Pxj +
1

2
xT
j Qxj + const, (3)
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where P and Q are trainable parameters and can be defined as in

Equation (4),

P = 3−1Ŵ(3 − Ŵ3−1Ŵ)−1

Q = 3−1 − (3 − Ŵ3−1Ŵ)−1,
(4)

and 3 is calculated using Equation (5),

3 = WWT + 6, Ŵ = WWT. (5)

where W is the speaker loading matrix and 6 is the covariance

matrix representing non-speaker variability. The scores derived

from the PLDA model is considered as similarity scores, which can

be used by clustering algorithms such as AHC.

Compared with the cosine similarity, a PLDA model has

trainable parameters (e.g., P and Q in Equation 3) leveraging

the speaker labels in the training data. Therefore, PLDA is

more effective in discriminating speakers. However, its popularity

waned with the advent of more advanced embedding networks

(Xiang et al., 2019). In addition, cosine similarity and PLDA

scoring assume that speaker embeddings are Gaussian distributed.

Therefore, if the speaker embeddings are distributed irregularly,

both back ends may exhibit performance degradation.

According to Equations (1) and (3), both the cosine

similarity and PLDA do not consider the information from

the neighborhoods of the two speech segments. In other words,

they focus on the pairwise comparisons of the two segments rather

than the temporal structure of the conversation.

2.1.3 Agglomerative hierarchical clustering
The x-vector–PLDA–AHC framework has been used in various

speaker diarization systems (Han et al., 2008; Diez et al., 2019;

Xu et al., 2021a). AHC is an unsupervised clustering and merging

method. To apply AHC, we performed PLDA scoring on all pairs

of segments (x-vectors) for each recording. The PLDA scores were

then used as input to the AHC algorithm for classifying speech

segments by speaker identities. In this work, the baseline systems

were conducted based on this framework.

AHC requires a similarity matrix comprising similarity scores

among all speech segments in a conversation. In this work, AHC is

based on PLDA scores.

2.2 Proposed diarization system

2.2.1 Channel-interdependence enhanced
Res2Net

The channel-interdependence enhanced Res2Net (CE-

Res2Net; Zhao and Mak, 2021) was designed for tackling the

problems of environmental noise and reverberation distortion

in far-field speaker verification. Because the same problems exist

in MoCA recordings, in this work, we applied CE-Res2Net for

speaker embedding. The configuration of the CE-Res2Net is

shown in Figure 3. The squeeze-and-excitation (SE) unit (Hu

et al., 2018) is placed before the convolutional operations of the

Res2block, which rescales the channel activations and facilitates

the convolutional operations to learn multi-scale features.

In conventional speaker embedding, a self-attentive pooling

layer (Okabe et al., 2018; Zhu et al., 2018) assigns a weight et for

FIGURE 3

Structure of the CE-Res2Net and the SE-based Res2block. {ht}
T

t=1

and {ĥt}
T

t=1 denote the frame-level features at di�erent levels. T is

the utterance length. ĥt denotes the last frame-level convolutional

layer’s output.

each frame-level vector ĥt ∈ R
C , whereC is the number of channels

in the last convolutional layer. The weights et ’s are the output

of a trainable network whose input is ĥt ’s. However, this kind of

mechanism assumes that all channels are of equal importance. To

explore the importance of individual channels, the CE-Res2Net

uses channel-dependent attentive pooling (Desplanques et al.,

2020) to compute a scalar score et,c for each channel and each

frame-level vector ĥt at the last convolutional layer’s output shown

in Figure 3. Therefore, given ĥt , the attention network computes et,c
by Equation (6):

et,c = υT
c f (Wĥt), c = 1, . . . ,C, (6)

where υc and W are trainable parameters and f () is a non-linear

function such as ReLU. et,c is then normalized across time by a

softmax function in Equation (7):

αt,c =
exp(et,c)

∑T
τ=1 exp(eτ ,c)

, c = 1, . . . ,C. (7)

Given a set of channel-dependent weights αt,c, the weighted

average of channel c can be obtained using Equation (8):

µ̂c =

T
∑

t=1

αt,cĥt,c. (8)

The weighted mean vector is µ̂ = [µ̂1, µ̂2, . . . , µ̂C]
T. Similar

to self-attentive pooling, the elements of the weighted standard

deviation vector σ̂ = [σ̂1, σ̂2, . . . , σ̂C]
T can be computed by

Equation (9):

σ̂c =

√

√

√

√

1

T

T
∑

t=1

αt,cĥ
2
t,c − µ̂2

c , c = 1, . . . ,C. (9)

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1351848
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnins.2023.1351848

FIGURE 4

Structure of the LSTM-based scoring model. It aims to capture the

sequential information in the concatenated vectors.

By concatenating the weighted mean vector µ̂ and the weighted

standard deviation vector σ̂ , the output of the channel-dependent

attention pooling is obtained.

2.2.2 LSTM-based scoring model
Although PLDA scoring is a prominent method for quantifying

the similarity between short speech segments (typically 1.5 s)

in speaker diarization systems, each PLDA score is based on

the speaker embeddings of two short segments only, ignoring

the remaining segments in a conversation. Because of the

nature of MoCA sessions, each speaker will likely produce a

consecutive sequence of short segments in an assessment session,

i.e., neighboring segments have a higher chance of being produced

by the same speaker. Therefore, instead of treating the segments

independently, as in PLDA scoring, we should have a more holistic

view of the segments. This notion leads to the LSTM-based scoring

(Lin et al., 2019), which aims to capture the sequential information

across the segments.

Given a conversation, we obtain a sequence of speaker

embeddings X = {x1, . . . , xt , . . . , xT}, where xt represents the t-

th segment’s embedding and T is the number of segments. Each

embedding, say xt , is concatenated with all the other embeddings to

form a vector sequence of twice the dimension, as in Equation (10):

Ht =

{[

xt

x1

]

, . . . ,

[

xt

xt

]

, . . . ,

[

xt

xT

]}

. (10)

To exploit the temporal information in Xt , we feed it to a

bidirectional-LSTM network (Huang et al., 2015) to produce the

output, as in Equation (11):

St = fLSTM

([

xt

x1

]

, . . . ,

[

xt

xt

]

, . . . ,

[

xt

xT

])

= [St1, . . . , Stt , . . . , StT].

(11)

The vectors St , t = 1, . . . ,T, are then stacked row-wise to form

a scoring matrix S. Figure 4 shows the structure of an LSTM-

based scoring model. By using Ht in Equation (10) as the input

to the LSTM, each LSTM score in St depends not only on two

embeddings but also on all other embeddings in the conversation

and the sequential information in the concatenated vectors.

The basic idea of the method is to learn a reference similarity

matrix, comprising blocks of ones and zeros. A “1” in the (i, j) entry

of the reference matrix means that the i-th and j-th segments are

produced by the same speaker; otherwise, it is a “0.” The matrix

is formed from the speaker labels and timestamps of who spoke

when in the training data, which is used as the labels for training

the LSTM network.

In Lin et al. (2019), a K-fold cross-validation was applied

to the Callhome dataset because timestamped speaker labels are

available in Callhome. LSTM scoring can leverage the timestamp

information about who spoke when in the training data. The

diarization performance and the impact of utilizing both speaker

labels and timestamp information are revealed in Section 3.

2.2.3 Comprehensive scoring model
The cosine similarity and PLDA focus on pairwise

comparisons, while the LSTM-based scoring captures the

sequential structure in audio signals. To further enhance the

similarity measure, in this work, we propose forming a similarity

matrix that contains both sequential and pairwise information

across the embeddings. The structure of a comprehensive

scoring model is shown in Figure 5. The left branch computes

the similarity scores between one embedding xt and the whole

embedding sequence X, and the right branch calculates the cosine

similarity between any two embeddings in the sequence X. The

scoring matrix is then obtained according to a weighted sum of

the LSTM-based scores and cosine similarity scores. The pairwise

and sequential scorings combination can be implemented using

Equation (12):

St = RL ⊙ fLSTM

([

xt

x1

]

,

[

xt

x2

]

, . . . ,

[

xt

xT

])

+ RC ⊙ cosine
(

{xt , xt , . . . , xt}, {x1, x2, . . . , xT}
)

,

(12)

where RL and RC contain the T-dimensional weights of the two

scoring methods and⊙ is the elementwise product.
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FIGURE 5

Structure of the comprehensive scoring model. It extends the

sequential comparisons in the LSTM-based scoring model by

incorporating cosine similarity into the score computation.

2.2.4 Spectral clustering
Spectral clustering (SC) can be viewed as graph cuts (Luxburg,

2007). The basic idea is to use the spectrum (eigenvalues) of

an affinity matrix to perform dimension reduction. The general

process of spectral clustering consists of three steps. First, a

similarity graph based on all data points is constructed. Second,

the data points are embedded on a low-dimensional space (spectral

embedding), using the eigenvectors of the graph Laplacian. Third, a

classical clustering algorithm (e.g., K-means) is applied to partition

the embeddings.

Specifically, given a scoring matrix S ∈ R
n×n with elements

Sij ≥ 0 and Sii = 0 ∀i, we consider Sij as the weight of the

edge between nodes i and j in an undirected graph. Then, we

compute a Laplacian matrix L = D− S and perform the following

normalization using Equation (13):

Lnorm = D− 1
2 LD− 1

2 , (13)

where D is a diagonal matrix with Dii =
∑

j Sij. Next, we select the

number of clustersK and take theK smallest eigenvalues λ1, . . . , λK
and their corresponding eigenvectors u1, . . . , uK from Lnorm to

form a matrix U = [u1, . . . , uK] ∈ R
T×K using u1, . . . , uK as

columns. Finally, we apply the K-means algorithm to cluster row

vectors y1, . . . , yT inU to formK classes, where yi ∈ class j indicates

that segment i belongs to speaker j.

Spectral clustering requires a similarity matrix comprising

similarity scores among all speech segments in a conversation. In

this work, SC is based on the cosine similarity scores and LSTM

scores.

2.3 Experimental setup

2.3.1 MoCA cantonese speech corpus
The JCCOCC Montreal Cognitive Assessment (MoCA)

Cantonese Speech corpus was collected by the CUHK Jockey Club

Centre for Osteoporosis Care and Control. In the corpus, a MoCA

test was conducted for each participant. There are 469 participants

(both genders), each having an interactive spoken dialog session

with an assessor. The average duration of the sessions is 26 min.

The participants cover an age range of 72–100. The recordings

were captured in a quiet office by two smartphones (iPhone 6 and

Samsung Galaxy S6) placing at a distance from the participant,

as shown in Figure 6. All of the 469 conversations were used in

this work.

2.3.2 Evaluation data
Among the 469 MoCA recordings, 256 (named MoCA-256)

have been manually transcribed, and they were used for evaluating

the performance of different diarization systems. The total duration

of the evaluation data is 103.5 h, of which the speech duration of the

assessors and the participants are 33.8 and 18.6 h, respectively.

2.3.3 Training data for speaker embedding
networks

In the experiments, the x-vector extractors and the CE-

Res2Net were trained on the National Institute of Standards and

Technology (NIST) Speaker Recognition Evaluations (SREs) and

the Switchboard (SWB) datasets, including SRE 2004, 2005, 2006,

2008, SWB2 Phases 1, 2, and 3, SWB Cellular1, and SWB Cellular2.

To obtain robust embeddings for diarization, we followed the data

augmentation procedure in the Kaldi recipe and roughly doubled

the size of the original clean data, i.e., using the room impulse

responses (RIR; Ko et al., 2017) and the MUSAN datasets (Snyder

et al., 2015) to create room reverberation and additive noise,

respectively. Note that short utterances (number of frames <400)

and speakers with <8 utterances were excluded. The statistics of

the data for training the speaker embedding networks are shown

in Table 1. We followed the Kaldi’s Callhome recipe1 to train the

speaker embedding networks.

2.3.4 Training data for scoring models
To investigate the performance of different similarity measures,

in addition to the 256 transcribed recordings, we also utilized the

remaining unlabeled2 213 MoCA recordings (called MoCA-213) as

in-domain data to train the scoring models. Because information

of speaker-turn timestamps is required for training the LSTM-

based scoring models, we hypothesized the timestamped speaker

labels of MoCA-213 in our experiments. In addition, we also

used the Callhome portion of NIST SRE 2000 as out-of-domain

1 https://github.com/kaldi-asr/kaldi/tree/master/egs/

callhome_diarization/v2

2 In this work, the term “unlabeled” means there is no annotation, such as

speaker labels and timestamps of who spoke when in the dataset, i.e., it only

has audio files.
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FIGURE 6

Collection of the JCCOCC–MoCA cantonese speech corpus.

TABLE 1 Source of data for training the x-vector extractor and the

CE-Res2Net speaker-embedding network.

Data source No. of
speakers

No. of
hours

No. of
utterances

SRE 2004–2008

SWB and

augmentation

4,979 2,789 62,151 (clean)

184,533

(augmentation)

data for training. Callhome,3 comprising 500 sessions with a total

duration of 18 h, is a significant resource of telephone speech.

The number of speakers per session varies from 2 to 7. Note that

timestamped speaker labels are available in Callhome. Therefore,

we used it to train both the LSTM-based and PLDA scoring models

for performance comparison.

To train the LSTM models, we partitioned a long conversation

into 300-s non-overlapping blocks and created a T × T reference

matrix for each block. In our experiments, T in Equation (11) was

set to 400. Because each speaker-embedding vector represents 0.75

s, the duration of each block in the long utterances is 400× 0.75 =

300 s. The partitioning is to ensure enough temporal information

in the blocks without excessive burden on computation resources.

During scoring, the same partitioning was applied to the test

conversations.

2.3.5 Experimental settings
For SRE and SWB data, we used Kaldi’s energy-based voice

activity detection (VAD) to remove silence regions. For the

JCCOCC–MoCAdata, we used the ASpIRE speech activity detector

(SAD).4 The reason for using two different VADs is that SRE and

SWB contain clean telephone conversations. The signal-to-noise

ratios are very high, and Kaldi VAD can do a good job. On the other

hand, the interactive dialogs in JCCOCC–MoCA were collected by

smartphones placing far away from the participants, causing lower

3 2000 NIST Speaker Recognition Evaluation (LDC2001S97), Disk-8.

4 https://kaldi-asr.org/models/m4

signal-to-noise ratio. As a result, a DNN-based VAD that is more

robust to noise was used for silence removal.

A sliding window of 1.5 s with 0.75 s shift was used to extract

the embeddings in the speech regions of each conversation. Speech

regions <0.5 s were ignored. For each segment (or embedding),

we computed a sequence of 23-dimensional MFCCs using a sliding

window of 25 ms with a frameshift of 10ms; the MFCCs were then

presented to the speaker embedding network to extract a speaker

embedding vector.

We followed the configuration of CE-Res2Net described in

Zhao and Mak (2021). One hundred and ninety-two-dimensional

speaker embeddings were extracted from the affine layer’s output

after the statistics pooling layer. In addition, the LSTM-based

scoring model in our experiments consists of two Bi-LSTM layers

(384–384), followed by two dense layers (64–1). Each Bi-LSTM

layer has 384 nodes including 192 forward nodes and 192 backward

nodes. The first dense layer has 64 nodes with ReLU non-linearity.

The output layer has one node with sigmoid non-linearity, which

gives similarity scores between 0 and 1.

In general, a stopping threshold is needed in the clustering

algorithms. However, because the number of speakers per

recording is known, such stopping threshold is not needed in our

case.

2.3.6 Performance metrics
We reported the diarization error rate (DER; Fiscus et al., 2006)

of different systems, which is a common performance metric based

on comparing the .rttm file (hypothesis) generated by a diarization

system with the ground-truth .rttm file (annotated). DER is the

sum of the duration of missed speech (MS), false alarm (FA), and

speaker error (SE) divided by the total duration, as computed in

Equation (14):

DER =
Dur(MS) + Dur(FA) + Dur(SE)

Total Duration of Reference Speech
. (14)

In accordance with other studies (Anguera et al., 2012; Garcia-

Romero et al., 2017; Lin et al., 2019), we allowed a non-scoring
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collar of 0.25 s around the reference segment boundaries and

ignored the overlapped segments. Because MS and FA are caused

by VAD errors, we may use SE to compare performance if the same

VAD was used for all systems.

3 Results

This section first demonstrates the effectiveness of multi-scale

channel inter-dependence speaker embedding as front-end speaker

representation. Next, we conduct three baseline systems based on

the x-vector–PLDA–AHC framework. Finally, we investigate the

diarization performance achieved by different back-end scoring

approaches.

3.1 E�ect of multi-scale feature
aggregation

To show the effect of inter-dependence between channels

and channel-dependent attention, we presented ten minutes of a

MoCA recording, including utterances of an assessor (A) and a

subject (S), to different embedding extractors, i.e., Kaldi x-vectors,

Res2net, and CE-Res2Net. The t-SNE (Maaten and Hinton, 2008)

was applied to the speaker emdeddings. The results are shown in

Figure 7 for Classes A and S. We can see that there is no obvious

clusters in the Kaldi x-vectors, and the clusters become more

distinct in Res2Net and CE-Res2Net. Moreover, fewer embeddings

are misclassified in Figure 7C. This means that the CE-Res2net

achieves better performance by introducing SE units and channel-

dependent attention into the network.

3.2 Advanced baseline systems

We constructed three baseline systems based on the evaluation

set (MoCA-256), i.e., using a Kaldi x-vector network, a Res2Net

and a CE-Res2Net for embedding extraction, PLDA for similarity

measures, and AHC for clustering. The SRE data (without

augmentation) was used to train the PLDA models. Table 2 shows

the diarization performance of the baseline systems. The results

based on MoCA-256 show that CE-Res2Net can produce the

best embeddings and achieve the lowest DER among the three

embedding extractors. Therefore, the t-SNE plots in Figure 7 are

supported and we only used CE-Res2Net for embedding extraction

in subsequent experiments.

3.3 Diarization performance comparison

To evaluate the diarization performance of different similarity

measures, we replaced the conventional PLDA scoring with the

LSTM-based scoring and the proposed comprehensive scoring.

We employed in-domain (e.g., MoCA) and out-of-domain (e.g.,

Callhome) data for training the scoring models. Moreover, the

in-domain data with hypothesized labels were utilized. We also

TABLE 2 Diarization performance of the baseline systems (based on

MoCA-256).

System architecture
Performance metrics (%)

DER MS FA SE

Kaldi x-vector + PLDA + AHC 7.37 2.7 1.8 2.9

Res2Net + PLDA + AHC 7.03 2.7 1.8 2.6

CE-Res2Net + PLDA + AHC 6.86 2.7 1.8 2.4

The SRE data was used to train the PLDA models.

applied different clustering algorithms (e.g., AHC and SC) for

comparisons. The diarization performance achieved by different

similarity measures (e.g., PLDA, LSTM, and LSTM+Cosine) based

on different training data and label information is given in Table 3.

Cosine+AHC is used as a baseline for comparison; it achieved a

speaker error rate of 3.7%.

In Case 4 and Case 5, the LSTM and LSTM+Cosine models

were trained using the labeled in-domain data. Specifically, 5-fold

cross-validation was conducted to estimate the performance, i.e.,

the evaluation set (MoCA-256) was randomly partitioned into five

equal-sized subsets. A subset was retained as the test data while

the remaining four subsets were used for training the LSTM and

LSTM+Cosine models. The procedure was repeated five times, and

each subset was used once as the test data. After that, the five-

fold test results were combined to calculate the DER. In contrast,

the labeled out-of-domain (Callhome) and unlabeled in-domain

(MoCA-213) data were used to train the LSTM and LSTM+Cosine

models, respectively, as shown in Cases 1–2 and Cases 6–7. Note

that the corresponding labels (i.e., timestamped speaker labels)

were hypothesized by the advanced baseline system that uses CE-

Res2Net as the speaker embedding network and PLDA for scoring

(see Section 3.2). Specifically, a speaker error rate of 2.3% on the

unlabeled in-domain MoCA-213 dataset was achieved. Therefore,

the training manner in Case 6 and Case 7 is semi-supervised.

The results based on the evaluation set (MoCA-256)

demonstrate that, in Cases 2–7, spectral clustering outperforms

AHC; moreover, comparing the LSTM and LSTM+Cosine

models, the latter achieves better performance. Specifically, with

ground-truth timestamped speaker labels, the in-domain five-fold

cross-validations in Case 4 and Case 5 produce lower DERs

than the other cases. The lowest DER (5.68%) is obtained by

using LSTM-Cosine scoring and spectral clustering in Case 5. In

Case 1, the lack of training data in Callhome may cause poorer

performance than the baseline in Table 2.

Case 2 and Case 3 achieve performance comparable with

the baseline even with less training data, which demonstrates

the benefit of using the timestamp information in Callhome.

We utilized unlabeled in-domain data to train the LSTM and

LSTM+Cosine models in Case 6 and Case 7, respectively, and

the DER of both cases are lower than that of the baseline in

Table 2, demonstrating the effectiveness of learning representations

from in-domain data. Note that, the unlabeled in-domain

data (MoCA-213) cannot be used to train the PLDA model

because we cannot be sure the same speaker exists in other

MoCA recordings.
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A B C

FIGURE 7

t-SNE plots of speaker embeddings extracted from di�erent speaker embedding networks. The red and blue markers refer to the speaker

embeddings of an assessor (A) and a subject (S), respectively. It is clear that in (C), the two classes are well-separated, and the number of

misclassifications is smaller. (A) Kaldi x-vectors. (B) Res2Net. (C) CE-Res2Net.

TABLE 3 Diarization performance achieved by di�erent similarity measures based on di�erent training data and label information.

Similarity measure

Case Model Training data Label Info. Clustering SE (%)

1 PLDA Callhome Speaker labels (Ground truth) AHC 3.3

LSTM Callhome Timestamped speaker labels

(Ground truth)

AHC 2.4

2

LSTM Callhome Timestamped speaker labels

(Ground truth)

SC 2.1

LSTM+Cosine Callhome Timestamped speaker labels

(Ground truth)

AHC 2.0

3

LSTM+Cosine Callhome Timestamped speaker labels

(Ground truth)

SC 1.7

LSTM MoCA-256 Timestamped speaker labels

(Ground truth)

AHC 1.5

4

LSTM MoCA-256 Timestamped speaker labels

(Ground truth)

SC 1.3

LSTM+Cosine MoCA-256 Timestamped speaker labels

(Ground truth)

AHC 1.5

5

LSTM+Cosine MoCA-256 Timestamped speaker labels

(Ground truth)

SC 1.2

LSTM MoCA-213 Timestamped speaker labels

(Hypothesized)

AHC 1.8

6

LSTM MoCA-213 Timestamped speaker labels

(Hypothesized)

SC 1.7

LSTM+Cosine MoCA-213 Timestamped speaker labels

(Hypothesized)

AHC 1.6

7

LSTM+Cosine MoCA-213 Timestamped speaker labels

(Hypothesized)

SC 1.5

Note that since the same voice activity detection method was applied across all cases, the missed speech and false alarm error rates are 2.7 and 1.8%, respectively. Bold values is the best

performance in each column.

4 Discussion

4.1 Compared with conformer-based
diarization systems

Recently, both Transformer and Conformer have demonstrated

outstanding performance in NLP and speech tasks. In particular,

Liu et al. (2021) introduced an end-to-end diarization system

based on the Conformer, a combination of convolutional

networks and Transformer to model the short-term and long-

term dependence in speech. The authors further enhance the

diarization performance by adding a spectral-augmentation layer

and sub-sampling layer before the Conformer blocks. Although

the system outperforms those based on Transformer, it shows
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FIGURE 8

System architecture for detecting dementia from spontaneous

Cantonese speech.

TABLE 4 Combination of the category termed “possible dementia” and

the number of participants in the two classes.

Dataset No. of normal No. of possible dementia

MCI NCDs Major NCDs

MoCA-213 164 36

MoCA-256 201 43

limitations in generalizing to real conversations. Jung et al. (2023)

studied speaker embedding extractors for diarization purpose. They

developed special evaluation protocols and data augmentation

methods to improve Conformer-based diarization in complex

scenarios. However, Conformer and Transformer models require

large training sets to achieve good performance, and their training

becomes prohibitory expensively for long utterances. Given the

small size of the MoCA dataset, the proposed approach, which

uses a speaker-embedding network to model the local dependence

within a short speech segment and an LSTM-based model to

capture the long-term dependence in the short speech segments,

offers a more practical solution.

4.2 Diarization and dementia classification

Diarization and dementia classification are two distinct tasks

within the realm of speech and audio processing. Diarization refers

to the process of separating speakers in an audio recording, while

dementia classification aims to identify whether a speaker has

dementia based on their speech patterns. Although the two tasks

are separate, they can be related in the context of analyzing speech

data from individuals with and without dementia. The diarization

process serves as a preprocessing step, separating and labeling the

speech segments for each speaker. Once the audio data have been

segmented, the dementia classification model can be applied to

the participants’ data to determine whether they exhibit signs of

dementia.

In this section, we explore the possibility that diarization

outcomes, achieved through various similarity measures, may

affect the performance of dementia classification. The procedure is

illustrated in Figure 8. For a givenMoCA recording of a participant

R(i), we segmented the recording based on the diarization results

(i.e., timestamp information of different speakers) and extracted n

speech segments belonging to the participant. Feature extraction

(FE; Ke et al., 2022) was then conducted at the segment level.

Specifically, four paralinguistic feature sets, ComparE, Emobase,

IS10, and extended Geneva Minimalistic Acoustic Parameter Set

(eGeMAPS) were extracted, respectively. The ComParE feature set

(Eyben et al., 2010) consists of some generic low-level descriptors

(LLDs) and their statistical functionals to characterize emotion,

including energy, spectral characteristics, mel-frequency cepstral

coefficients (MFCCs), and voicing-related LLDs. The Emobase

feature set (Eyben et al., 2010) is specifically designed for emotion

recognition, comprising MFCCs, fundamental frequency (F0),

F0 envelope, line spectral pairs (LSP), etc. The IS10 (Schuller

et al., 2010) is a feature set utilized for emotion recognition

and bipolar disorder recognition, including PCM loudness, log

Mel-frequency bands, line spectral frequency pairs, F0 envelope,

voicing probability, jitter, and shimmer. The eGeMAPS (Eyben

et al., 2016) contains 88 features that are selected based on

their potential for characterizing physiological changes in voice

production. Regarding dementia detection, Haider et al. (2020)

conducted a comparative study using ComParE, Emobase, and

eGeMAPS. Additionally, these feature sets were benchmarked for

AD recognition performance in the AD Recognition Through

Spontaneous Speech Challenge (ADReSS; Luz et al., 2020), where

the IS10 feature set served as the baseline for AD recognition in

the AD2021 competition (Qin et al., 2021). These four feature sets

were concatenated into a high-dimensional feature vector with a

total dimension of 9,031. Next, we trained a fully-connected neural

network (FCNN) with the structure 9031–2048–128–2 to perform

classification at the segment level, producing a prediction score

p(i, n) for each segment. A dropout layer with a dropout rate of 0.5

was added after each hidden layer in the network to mitigate the

risk of overfitting. The activation function for the hidden layers is

ReLU, while the activation function for the last layer is softmax. An

Adam optimizer with a learning rate of 0.001 was used to optimize

the network’ parameters. The batch size was set to 4, and the

number of epochs was set to 10. Finally, soft voting was employed

to average the prediction scores, yielding the label Y(i) (e.g., normal

or possible dementia) for the recording R(i).

In practice, for dementia detection, we grouped mild

neurocognitive disorders (NCDs), mild cognitive impairment

(MCI), and major NCDs into a single category, termed

possible dementia. We excluded certain participants who

lacked classification labels in the corpus. As a result, the MoCA-213

dataset comprises 164 healthy participants and 36 patients with

possible dementia, while the MoCA-256 dataset includes 201

healthy participants and 43 patients with possible dementia.

Table 4 presents the combination of possible dementia type and

shows the number of participants in the two classes. We utilized

MoCA-213 with hypothesized timestamped speaker labels as

training data for the FCNN classifier. We employed MoCA-256 as
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TABLE 5 Dementia detection performance achieved by di�erent similarity measures based on di�erent scoring models and ground truth timestamp

information.

Diarization Dementia detection

Case Evaluationset Similarity
(scoring model)

Speaker error (%) Accuracy (%) Precision (%) Recall (%) F1(%)

1 MoCA-213 LSTM+Cosine 1.5 78.0 56.7 54.1 54.3

2 MoCA-256 LSTM+Cosine 1.2 77.9 56.4 54.2 54.5

3 MoCA-256 LSTM 1.3 77.5 55.4 53.6 53.8

4 MoCA-256 Timestamp information

(Ground truth)

0 76.5 57.4 56.5 56.8

MoCA-213 with hypothesized timestamped speaker labels were utilized to train the classifiers for all cases. In Case 1, five-fold cross-validation was conducted to evaluate the performance. Bold

values is the best performance in each column.

the test data to evaluate different similarity measures. Additionally,

we incorporated MoCA-256 with ground truth timestamped

speaker labels for performance comparison. Due to the imbalanced

distribution of classes, the overall performance of different cases

was compared using not only classification accuracy but also

F1 scores. The F1 scores serve as an aggregated measure of

performance by computing the harmonic mean of precision

and recall. The dementia classification performance achieved by

different similarity measures is presented in Table 5.

Table 5 reveals that the highest F1 score (56.8%) is achieved

in Case 4, suggesting that the dementia classifier achieves optimal

performance when utilizing ground truth timestamp information

for speaker diarization. In Cases 2 and 3, the classification

performance of MoCA-256 with LSTM+Cosine surpasses that of

MoCA-256 with LSTM, indicating that superior diarization results,

i.e., lower DER, positively impact dementia classification outcomes.

This means that the proposed comprehensive similarity measure

(LSTM+Cosine) benefits dementia classification. Moreover, the

classification performance in Cases 2 and 3 is comparable to that

of Case 4, implying that our predicted timestamp information can

also be utilized for dementia detection, even though it results in

a slight decrease in performance compared to using ground truth

timestamp information.

5 Conclusions

In this paper, we propose a speaker diarization system for

speech-based MoCA recordings. The system incorporates a CE-

Res2Net embedding extractor and a comprehensive scoring model.

To obtain better speaker embeddings, the CE-Res2Net exploits the

inter-dependence between the channels in the last convolutional

layer. The comprehensive scoring model, which learns a weighted

sum of the LSTM-based and cosine similarities, substitutes the

conventional PLDA for similarity measures.

Experimental results based on MoCA data show that by

leveraging both speaker labels and timestamps, the LSTM scoring

model trained on in-domain or out-of-domain data performs better

than the PLDA model. Moreover, by incorporating pairwise cosine

similarity, the proposed LSTM+Cosine scoring model can improve

the diarization performance further. While LSTM+Cosine scoring

requires the timestamp information about who spoke when in

the training data, results show that the LSTM+Cosine model can

tolerate some errors in the timestamps, suggesting that this scoring

approach can leverage unlabeled training data via hypothesizing the

timestamp information.

Speaker diarization is conducted by the first module to facilitate

conversation-based screening of neurocognitive disorders (e.g.,

AD and MCI). Given that the raw MoCA recordings typically

comprise interactive dialogues between the assessors and patients,

the purpose of the diarization is to extract the patients’ speech

segments for further processing. Consequently, the proposed

speaker-turn aware diarization, which can be applied to various

feature extraction methods, serves as a tool for clinicians in

the early detection of cognitive impairments. On the other

hand, one limitation is its inability to perform online (real-

time) diarization, due to the need for hypothesized timestamped

labels as intermediate information. Moreover, the diarization

accuracy could be impacted by varying recording conditions and

background noise, which are commonly found in real-world

clinical settings. Another limitation is that the method becomes

computationally expensive when the conversation lasts for hours.

However, this problem can be solved by manually partitioning the

long recording into several short conversations.
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