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Heterogeneous recurrent spiking
neural network for spatio-temporal
classification

Biswadeep Chakraborty* and Saibal Mukhopadhyay

Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA,

United States

Spiking Neural Networks are often touted as brain-inspired learning models for the

third wave of Artificial Intelligence. Although recent SNNs trained with supervised

backpropagation show classification accuracy comparable to deep networks, the

performance of unsupervised learning-based SNNs remains much lower. This

paper presents a heterogeneous recurrent spiking neural network (HRSNN) with

unsupervised learning for spatio-temporal classification of video activity recognition

tasks on RGB (KTH, UCF11, UCF101) and event-based datasets (DVS128 Gesture). We

observed an accuracy of 94.32% for the KTHdataset, 79.58% and 77.53% for theUCF11

and UCF101 datasets, respectively, and an accuracy of 96.54% on the event-based

DVS Gesture dataset using the novel unsupervised HRSNN model. The key novelty of

the HRSNN is that the recurrent layer in HRSNN consists of heterogeneous neurons

with varying firing/relaxation dynamics, and they are trained via heterogeneous spike-

time-dependent-plasticity (STDP) with varying learning dynamics for each synapse.

We show that this novel combination of heterogeneity in architecture and learning

methodoutperforms current homogeneous spiking neural networks.We further show

that HRSNN can achieve similar performance to state-of-the-art backpropagation

trained supervised SNN, but with less computation (fewer neurons and sparse

connection) and less training data.

KEYWORDS

spiking neural network (SNN), action detection and recognition, spike timing dependent

plasticity, heterogeneity, unsupervised learning, Bayesian Optimization (BO), leaky integrate

and fire (LIF)

1. Introduction

Acclaimed as the third generation of neural networks, spiking neural networks (SNNs)

have become very popular. In general, SNN promises lower operating power when mapped to

hardware. In addition, recent developments of SNNs with leaky integrate-and-fire (LIF) neurons

have shown classification performance similar to deep neural networks (DNN). However,

most of these works use supervised statistical training algorithms such as backpropagation-

through-time (BPTT) (Jin et al., 2018; Shrestha and Orchard, 2018; Wu et al., 2018). These

backpropagated models are extremely data-dependent and show poor trainability with less

training data, and generalization characteristics (Tavanaei et al., 2019; Lobo et al., 2020). In

addition, BPTT-trained models need highly complex architecture with a large number of

neurons for good performance. Though unsupervised learning methods like the STDP have

been introduced, they lack performance compared to their backpropagated counterparts. This is

attributed to the high training complexity of these STDP dynamics (Lazar et al., 2006). Therefore,

there is a need to explore SNN architectures and algorithms that can improve the performance

of unsupervised learned SNN.
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This paper introduces a Heterogeneous Recurrent Spiking Neural

Network (HRSNN) with heterogeneity in both the LIF neuron

parameters and the STDP dynamics between the neurons. Recent

works have discussed that heterogeneity in neuron time constants

improves the model’s performance in the classification task (Perez-

Nieves et al., 2021; She et al., 2021b; Yin et al., 2021; Zeldenrust et al.,

2021). However, these papers lack a theoretical understanding of why

heterogeneity improves the classification properties of the network.

Current literature primarily looks into how heterogeneity in neuronal

timescales improves the model performance. They do not study how

heterogeneity can be leveraged to engineer sparse neural networks. In

addition, the previous papers do not study the effect of heterogeneity

on the amount of training data needed for the model. In this paper,

we studied how the heterogeneity in both the neuronal and synaptic

parameters can help us engineer models that can perform well with

less training data and fewer synaptic connections.

Our work also uses a novel BO method to optimize the

hyperparameter search process, making it highly scalable for larger

heterogeneous networks that can be used for more complex tasks

like action recognition, which was not possible earlier. First, we

analytically show that heterogeneity improves the linear separation

property of unsupervised SNN models. We also empirically verified

that heterogeneity in the LIF parameters and the STDP dynamics

significantly improves the classification performance using fewer

neurons, sparse connections, and lesser training data. We use a

Bayesian Optimization (BO)-based method using a modified Matern

Kernel on the Wasserstein metric space to search for optimal

parameters of the HRSNN model and evaluate the performance on

RGB (KTH, UCF11, and UCF101) and event-based datasets (DVS-

Gesture). The HRSNN model achieves an accuracy of 94.32% on

KTH, 79.58% on UCF11, 77.33% on UCF101, and 96.54% on DVS-

Gesture using 2,000 LIF neurons.

2. Related works

2.1. Recurrent spiking neural network

2.1.1. Supervised learning
Recurrent networks of spiking neurons can be effectively trained

to achieve competitive performance compared to standard recurrent

neural networks. Demin and Nekhaev (2018) showed that using

recurrence could reduce the number of layers in SNN models

and potentially form the various functional network structures.

Zhang and Li (2019) proposed a spike-train level recurrent SNN

backpropagation method to train the deep RSNNs, which achieves

excellent performance in image and speech classification tasks.

On the other hand, Wang et al. (2021) used the recurrent LIF

neuron model with the dynamic presynaptic currents and trained

by the BP based on surrogate gradient. Some recent works

introduces heterogeneity in the LIF parameters using trainable time

constants (Fang et al., 2021). However, these methods are supervised

learning models and also do not scale with a greater number of

hyperparameters.

2.1.2. Unsupervised learning
Unsupervised learning models like STDP have shown great

generalization, and trainability properties (Chakraborty and

Mukhopadhyay, 2021). Previous works have used STDP for training

the recurrent spiking networks (Gilson et al., 2010). Nobukawa et al.

(2019) used a hybrid STDP and Dopamine-modulated STDP to

train the recurrent spiking network and showed its performance in

classifying patterns. Several other works have used a reservoir-based

computing strategy, as described above. Liquid State Machines,

equipped with unsupervised learning models like STDP and BCM

(Ivanov and Michmizos, 2021) have shown promising results.

2.1.3. Heterogeneity
Despite the previous works on recurrent spiking neural networks,

all these models use a uniform parameter distribution for spiking

neuron parameters and their learning dynamics. There has been

little research leveraging heterogeneity in the model parameters and

their effect on performance and generalization. Recently, Perez-

Nieves et al. (2021) introduced heterogeneity in the neuron time

constants and showed this improves the model’s performance in the

classification task and makes the model robust to hyperparameter

tuning. She et al. (2021b) also used a similar heterogeneity in the

model parameters of a feedforward spiking network and showed it

could classify temporal sequences. Again, modeling heterogeneity in

the brain cortical networks, Zeldenrust et al. (2021) derived a class of

RSNNs that tracks a continuously varying input online.

2.2. Action detection using SNNs

SNNs can operate directly on the event data instead of

aggregating them, recent works use the concept of time-surfaces

(Lagorce et al., 2016; Maro et al., 2020). Escobar et al. (2009)

proposed a feed-forward SNN for action recognition using the mean

firing rate of every neuron and synchrony between neuronal firing.

Yang et al. (2018) used a two-layer spiking neural network to learn

human body movement using a gradient descent-based learning the

mechanism by encoding the trajectories of the joints as spike trains.

Wang W. et al. (2019) proposed a novel Temporal Spiking Recurrent

Neural Network (TSRNN) to perform robust action recognition

from a video. Using a temporal pooling mechanism, the SNN model

provides reliable and sparse frames to the recurrent units. Also, a

continuous message passes from spiking signals to RNN helps the

recurrent unit retain its long-term memory. The other idea explored

in the literature is to capture the temporal features of the input

that are extracted by a reservoir network of spiking neurons, the

output of which is trained to produce certain desired activities based

on some learning rule. Recent research learned video activities with

limited examples using this idea of reservoir computing (Panda

and Srinivasa, 2018; George et al., 2020; Zhou et al., 2020). We

observed that driven/autonomous models are good for temporal

dependencymodeling of a single-dimensional pre-known time series,

but it cannot learn spatio-temporal features together needed for

action recognition. Soures and Kudithipudi (2019) used a the deep

architecture of a reservoir connected to an unsupervised Winner

Take All (WTA) layer, which captures input in a higher dimensional

space and encodes that to a low dimensional representation by the

WTA layer. All the information from the layers in the deep network

is selectively processed using an attention-based neural mechanism.

They have used ANN-based spatial feature extraction using ResNet

but it is compute-intensive. Some of the recent works also study
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the effect of heterogeneity in the neuronal parameters (Perez-Nieves

et al., 2021; She et al., 2021a). Fang et al. (2021) introduced a learnable

leak factor and membrane time constants to introduce heterogeneity

in the neurons.

3. Methods

3.1. Recurrent spiking neural network

SNN consists of spiking neurons connected with synapses. The

spiking LIF is defined by the following equations:

τm
dv

dt
= a+ RmI − v; v = vreset , if v > vthreshold (1)

where Rm is membrane resistance, τm = RmCm is time constant

and Cm is membrane capacitance. a is the resting potential. I is the

sum of current from all input synapses connected to the neuron. A

spike is generated when membrane potential v crosses the threshold,

and the neuron enters refractory period r, during which the neuron

maintains its membrane potential at vreset . We construct the HRSNN

from the baseline recurrent spiking network (RSNN) consisting of

three layers: (1) an input encoding layer (I), (2) a recurrent spiking

layer (R), and (3) an output decoding layer (O). The recurrent layer

consists of excitatory and inhibitory neurons, distributed in a ratio

of NE :NI = 4 : 1. The PSPs of post-synaptic neurons produced

by the excitatory neurons are positive, while those produced by the

inhibitory neurons are negative. We used a biologically plausible LIF

neuron model and trained the model using STDP rules.

From here on, we refer to connections between I andR neurons

as SIR connections, inter-recurrent layer connections as SRR, and

R to O as SRO . We created SRR connections using probabilities

based on Euclidean distance, D(i, j), between any two neurons i, j:

P(i, j) = C · exp

(

−

(

D(i, j)

λ

)2
)

(2)

with closer neurons having higher connection probability.

Parameters C and λ set the amplitude and horizontal shift,

respectively, of the probability distribution. I contains excitatory

encoding neurons, which convert input data into spike trains. SIR

only randomly chooses 30% of the excitatory and inhibitory neurons

in R as the post-synaptic neuron. The connection probability

between the encoding neurons and neurons in the R is defined by

a uniform probability PIR, which, together with λ, will be used to

encode the architecture of the HRSNN and optimized using BO. In

this work, each neuron received projections from some randomly

selected neurons inR.

We used unsupervised, local learning to the spiking recurrent

model by letting STDP change each SRR and SIR connection,

modeled as:

dW

dt
= A+Tpre

∑

o

δ

(

t − topost

)

− A−Tpost

∑

i

δ

(

t − tipre

)

(3)

where A+,A− are the potentiation/depression learning rates and

Tpre /Tpost are the pre/post-synaptic trace variables, modeled as,

τ ∗+
dTpre

dt
= −Tpre + a+

∑

i

δ

(

t − tipre

)

(4)

τ ∗−
dTpost

dt
= −Tpost + a−

∑

o

δ

(

t − topost

)

(5)

where a+, a− are the discrete contributions of each spike to

the trace variable, τ ∗+, τ
∗
− are the decay time constants, tipre

and topost are the times of the pre-synaptic and post-synaptic

spikes, respectively.

3.1.1. Heterogeneous LIF neurons
The use of multiple timescales in spiking neural networks has

several underlying benefits, like increasing the memory capacity of

the network. In this paper, we propose the usage of heterogeneous

LIF neurons with different membrane time constants and threshold

voltages, thereby giving rise to multiple timescales. Due to differential

effects of excitatory and inhibitory heterogeneity on the gain and

asynchronous state of sparse cortical networks (Carvalho and

Buonomano, 2009; Hofer et al., 2011), we use different gamma

distributions for both the excitatory and inhibitory LIF neurons.

This is also inspired by the brain’s biological observations, where

the time constants for excitatory neurons are larger than the time

constants for the inhibitory neurons. Thus, we incorporate the

heterogeneity in our Recurrent Spiking Neural Network by using

different membrane time constants τ for each LIF neuron in R.

This gives rise to a distribution for the time constants of the LIF

neurons inR.

3.1.2. Heterogeneous STDP
Experiments on different brain regions and diverse neuronal

types have revealed a wide variety of STDP forms that vary in

plasticity direction, temporal dependence, and the involvement of

signaling pathways (Sjostrom et al., 2008; Feldman, 2012; Korte and

Schmitz, 2016). As described by Pool and Mato (2011), one of the

most striking aspects of this plasticity mechanism in synaptic efficacy

is that the STDP windows display a great variety of forms in different

parts of the nervous system. However, most STDP models used in

Spiking Neural Networks are homogeneous with uniform timescale

distribution. Thus, we explore the advantages of using heterogeneities

in several hyperparameters discussed above. This paper considers

heterogeneity in the scaling function constants (A+,A−) and the

decay time constants (τ+, τ−).

3.2. Classification property of HRSNN

We theoretically compare the performance of the heterogeneous

spiking recurrent model with its homogeneous counterpart using a

binary classification problem. The ability of HRSNN to distinguish

between many inputs is studied through the lens of the edge-of-chaos

dynamics of the spiking recurrent neural network, similar to the case

in spiking reservoirs shown by Legenstein and Maass (2007). Also,

R possesses a fading memory due to its short-term synaptic plasticity

and recurrent connectivity. For each stimulus, the final state of theR,
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FIGURE 1

An illustrative example showing the heterogeneous recurrent spiking neural network structure. First, we show the temporal encoding method based on

the sensory receptors receiving the di�erence between two time-adjacent data. Next, the input sequences are encoded by the encoding neurons that

inject the spike train into 30% neurons in R.R contains a 4 :1 ratio of excitatory (green nodes) and inhibitory (orange nodes), where the neuron

parameters are heterogeneous. The synapses are trained using the heterogeneous STDP method.

i.e., the state at the end of each stimulus, carries themost information.

Figure 1 shows the heterogeneous recurrent spiking neural network

model with heterogeneous LIF neurons and heterogeneous STDP

synapses used for the classification of spatiotemporal data sequences.

The authors showed that the rank of the final state matrix F reflects

the separation property of a kernel: F =
[

S(1) S(2) · · · S(N)
]T

where S(i) is the final state vector ofR for the stimulus i. Each element

of F represents one neuron’s response to all the N stimuli. A higher

rank in F indicates better kernel separation if all N inputs are from N

distinct classes.

The effective rank is calculated using Singular Value

Decomposition (SVD) on F, and then taking the number of

singular values that contain 99% of the sum in the diagonal matrix

as the rank. i.e. F = U6VT where U and V are unitary matrices,

and 6 is a diagonal matrix diag (λ1, λ2, λ3, . . . , λN) that contains

non-negative singular values such that (λ1 ≥ λ2 · · · ≥ λN).

Definition: Linear separation property of a neuronal circuit C for

m different inputs u1, . . . , um(t) is defined as the rank of the n × m

matrix M whose columns are the final circuit states xui (t0) obtained at

time t0 for the preceding input stream ui.

Following from the definition introduced by Legenstein and

Maass (2007), if the rank of the matrix M = m, then for the inputs

ui, any given assignment of target outputs yi ∈ R at time t0 can be

implemented by C.

We use the rank of the matrix as a measure for the linear

separation of a circuit C for distinct inputs. This leverages the

complexity and diversity of nonlinear operations carried out by C on

its input to boost the classification performance of a subsequent linear

decision-hyperplane.

Theorem 1: Assuming Su is finite and contains s inputs, let

rHom, rHet are the ranks of the n × s matrices consisting of the s

vectors xu (t0) for all inputs u in Su for each of Homogeneous and

Heterogeneous RSNNs respectively. Then rHom ≤ rHet.

Short Proof: Let us fix some inputs u1, . . . , ur in Su so that

the resulting r circuit states xui (t0) are linearly independent. Using

the Eckart-Young-Mirsky theorem for low-rank approximation,

we show that the number of linearly independent vectors for

HeNHeS is greater than or equal to the number of linearly

independent vectors for HoNHoS. The detailed proof is given in the

Supplementary material.

Definition : Given Kρ is the modified Bessel function of the second

kind, and σ 2, κ , ρ are the variance, length scale, and smoothness

parameters respectively, we define the modified Matern kernel on

the Wasserstein metric space W between two distributions X ,

X ′ given as

k
(

X ,X ′
)

= σ 2 2
1−ρ

Ŵ(ρ)

(

√

2ρ
W(X ,X ′)

κ

)ρ

Hρ

(

√

2ρ
(X ,X ′)

κ

)

(6)

where Ŵ(.),H(.) is the Gamma and Bessel function, respectively.

Theorem 2: The modified Matern function on the Wasserstein

metric spaceW is a valid kernel function

Short Proof: To show that the above function is a kernel function,

we need to prove that Mercer’s theorem holds. i.e., (i) the function is

symmetric and (ii) in finite input space, the Grammatrix of the kernel

function is positive semi-definite. The detailed proof is given in the

Supplementary material.

3.3. Optimal hyperparameter selection using
Bayesian Optimization

While BO is used in various settings, successful applications are

often limited to low-dimensional problems, with fewer than twenty

dimensions (Frazier, 2018). Thus, using BO for high-dimensional

problems remains a significant challenge. In our case of optimizing
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HRSNN model parameters for 2,000, we need to optimize a huge

number of parameters, which is extremely difficult for BO. As

discussed by Eriksson and Jankowiak (2021), suitable function priors

are especially important for good performance. Thus, we used a

biologically inspired initialization of the hyperparameters derived

from the human brain (see Supplementary material).

This paper uses a modified BO to estimate parameter

distributions for the LIF neurons and the STDP dynamics. To

learn the probability distribution of the data, we modify the surrogate

model and the acquisition function of the BO to treat the parameter

distributions instead of individual variables. This makes our modified

BO highly scalable over all the variables (dimensions) used. The loss

for the surrogate model’s update is calculated using the Wasserstein

distance between the parameter distributions.

BO uses a Gaussian process to model the distribution of an

objective function and an acquisition function to decide points

to evaluate. For data points in a target dataset x ∈ X and the

corresponding label y ∈ Y , an SNN with network structure V and

neuron parameters W acts as a function fV ,W (x) that maps input

data x to predicted label ỹ. The optimization problem in this work

is defined as

min
V ,W

∑

x∈X,y∈Y

L
(

y, fV ,W (x)
)

(7)

where V is the set of hyperparameters of the neurons in R (Details

of hyperparameters given in the Supplementary material) and W is

the multi-variate distribution constituting the distributions of (i) the

membrane time constants τm−E, τm−I of the LIF neurons, (ii) the

scaling function constants (A+,A−) and (iii) the decay time constants

τ+, τ− for the STDP learning rule in SRR.

Again, BO needs a prior distribution of the objective function

f (Ex) on the given data D1 : k =
{

Ex1 : k, f (Ex1 : k)
}

. In GP-based

BO, it is assumed that the prior distribution of f (Ex1 : k) follows

the multivariate Gaussian distribution, which follows a Gaussian

Process with mean EµD1 : k
and covariance E6D1 : k

. We estimate
E6D1 : k

using the modified Matern kernel function, which is given

in Equation 6. In this paper, we use d(x, x′) as the Wasserstein

distance between the multivariate distributions of the different

parameters. It is to be noted here that for higher-dimensional metric

spaces, we use the Sinkhorn distance as a regularized version of

the Wasserstein distance to approximate the Wasserstein distance

(Feydy et al., 2019).

D1 : k are the points that have been evaluated by the objective

function, and the GP will estimate the mean EµDk : n
and variance

EσDk : n
for the rest unevaluated data Dk : n. The acquisition function

used in this work is the expected improvement (EI) of the prediction

fitness as:

EI (Exk : n) =
(

EµDk : n
− f (xbest )

)

8(EZ)+ EσDk : n
φ(EZ) (8)

where 8(·) and φ(·) denote the probability distribution function

and the cumulative distribution function of the prior distributions,

respectively. f (xbest ) = max f (Ex1 : k) is the maximum value that

has been evaluated by the original function f in all evaluated data

D1 : k and EZ =
EµDk : n

−f (xbest )

EσDk : n
. BO will choose the data xj =

argmax
{

EI (Exk : n) ; xj ⊆ Exk : n
}

as the next point to be evaluated using

the original objective function.

4. Experiments

4.1. Training and inference

We use a network of leaky integrate and fire (LIF) neurons

and train the synapses using a Hebbian plasticity rule called the

spike timing dependent plasticity (STDP). The complete network is

shown in Figure 5. First, to pre-process the spatio-temporal data and

remove the background noise which arises due to camera movement

and jitters, we use the Scan-based filtering technique as proposed

by Panda and Srinivasa (2018) where we create a bounding box

and center of gravity of spiking activity for each frame and scan

across five directions as shown in Figure 2. Hence, the output of

this scan-based filter is fed into the encoding layer, which encodes

this information into an array of the spike train. In this paper,

we use a temporal coding method. Following Zhou et al. (2020),

we use a square cosine encoding method which employs several

cosine encoding neurons to convert real-valued variables into spike

times. The encoding neurons convert each real value to several spike

times within a limited period of encoding time. Each real value

is primarily normalized into [0,π], and then converted into spike

times as ts = T · cos(d + i · π/n), d ∈ [0,π] i = 1, 2, . . . , n,

where ts is the spiking time, T is the maximum encoding time

of each spike, d denotes the normalized data, i is the sequence

number of the encoding neuron, n is the number of encoding

neurons.

The sensory receptors used for the spatial-temporal data

are designed to receive the difference between time-adjacent

data in a sequence. The data in each sequence is processed

as follows:

Ms = ‖[1 (D1,D2) , . . . ,1 (DN−1,DN)]‖ (9)

1 (Dn−1,Dn) =

{

1 if 1 (Dn−1,Dn) ≥ threshold ·max
(

Ms(·)
)

0 else

(10)

whereMS represents a sequence, andDn represents an individual data

in that sequence. If the difference exceeds the threshold, the encoding

neuron will fire at that moment. We use a max-pooling operation

before transferring the spike trains to post-synaptic neurons, where

each pixel in the output max-pooled frame represents an encoding

neuron. This helps in the reduction of the dimensions of the

spike train.

The recurrent spiking layer extracts the features of the

spatio-temporal data and converts them into linearly separable

states in a high-dimensional space. O abstracts the state

from R for classification. The state of R is defined as the

membrane potential of the output neurons at the end of

each spike train converted from the injected spatio-temporal

data. After the state is extracted, the membrane potential of

the output neuron is set to its initial value. After injecting

all sequences into the network, the states of each data are

obtained. A linear classifier is employed in this work to

evaluate pattern recognition performance. Further details

regarding the training and inference procedures are elicited in

the Supplementary material.
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FIGURE 2

Figure showing a flowchart for the input processing and model training. The figure shows selected frames from a video of the UCF101 dataset (Soomro

et al., 2012).

4.2. Baseline ablation models

We use the following baselines for the comparative study:

• Recurrent Spiking Neural Network with STDP:

• Homogeneous LIF Neurons and Homogeneous STDP

Learning (HoNHoS)

• Heterogeneity in LIF Neuron Parameters and Homogeneous

STDP Learning (HeNHoS)

• Homogeneous LIF Neuron Parameters and Heterogeneity in

LTP/LTD dynamics of STDP (HoNHeS)

• Heterogeneity in both LIF and STDP parameters (HeNHeS)

• Recurrent Spiking Neural Network with Backpropagation:

• Homogeneous LIF Neurons trained with Backpropagation

(HoNB)

• Heterogeneous LIF Neurons trained with Backpropagation

(HeNB)

5. Results

5.1. Ablation studies

We compare the performance of the HRSNN model with

heterogeneity in the LIF and STDP dynamics (HeNHeS) to the

ablation baseline recurrent spiking neural network models described

above. We run five iterations for all the baseline cases and show

the mean and standard deviation of the prediction accuracy of the

network using 2,000 neurons. The results are shown in Table 1. We

see that the heterogeneity in the LIF neurons and the LTP/LTD

dynamics significantly improve the model’s accuracy and error.

5.2. Number of neurons

In deep learning, it is an important task to design models with

a lesser number of neurons without undergoing degradation in

performance. We empirically show that heterogeneity plays a critical

role in designing spiking neuronmodels of smaller sizes.We compare

models’ performance and convergence rates with fewer neurons inR.

5.2.1. Performance analysis
We analyze the network performance and error when the number

of neurons is decreased from 2,000 to just 100. We report the results

obtained using the HoNHoS and HeNHeS models for the KTH

and DVS-Gesture datasets. The experiments are repeated five times,

and the observed mean and standard deviation of the accuracies

are shown in Figure 3. The graphs show that as the number of

neurons decreases, the difference in accuracy scores between the

homogeneous and the heterogeneous networks increases rapidly.

5.2.2. Convergence analysis with lesser neurons
Since the complexity of BO increases exponentially on increasing

the search space, optimizing the HRSNN becomes increasingly

difficult as the number of neurons increases. Thus, we compare the

convergence behavior of the HoNHoS and HeNHeS models with 100

and 2,000 neurons each. The results are plotted in Figures 4A, B.

Despite the huge number of additional parameters, the convergence

behavior of HeNHeS is similar to that of HoNHoS. Also, it must be

noted that once converged, the standard deviation of the accuracies

for HeNHeS is much lesser than that of HoNHoS, indicating a much

more stable model.

5.3. Sparse connections

SRR is generated using a probability dependent on the Euclidean

distance between the two neurons, as described by Equation (2),

where λ controls the density of the connection, and C is a constant

depending on the type of the synapses (Zhou et al., 2020).

We performed various simulations using a range of values

for the connection parameter λ and synaptic weight scale Wscale.

Increasing λ will increase the number of synapses. Second, theWscale

parameter determines the mean synaptic strength. Now, a greater

Wscale produces larger weight variance. For a single input video, the

number of active neurons was calculated and plotted against the

parameter values for synaptic weightWscale and network connectivity

λ. Active neurons are those that fire at least one spike over the entire

test data set. The results for the HoNHoS and HeNHeS are shown

in Figures 5A, B, respectively. Each plot in the figure is obtained by

interpolating 81 points, and each point is calculated by averaging

the results from five randomly initialized with the parameters

specified by the point. The horizontal axis showing the increase in
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TABLE 1 Table comparing the performance of RSNN with homogeneous and heterogeneous LIF neurons using di�erent learning methods with 2,000

neurons.

Datasets KTH DVS128

Neuron type Homogeneous
STDP

Heterogeneous
STDP

Backpropagation Homogeneous
STDP

Heterogeneous
STDP

Backpropagation

Homogeneous LIF 86.33± 4.05 91.37± 3.15 94.87± 2.03 90.33± 3.41 93.37± 3.05 97.06± 2.29

Heterogeneous LIF 92.16± 3.17 94.32± 1.71 96.84± 1.96 92.16± 2.97 96.54± 1.82 98.12± 1.97

FIGURE 3

Comparison of performance of HRSNN models for the (A) KTH dataset and (B) DVS128 dataset for varying number of neurons. The bar graph (left Y-axis)

shows the di�erence between the accuracies between HeNHeS and HoNHoS models. The line graphs (right Y-axis) shows the accuracies (%) for the four

ablation networks (HoNHoS, HeNHoS, HoNHeS, and HeNHeS).

FIGURE 4

Plots showing comparison of the convergence of the BO with increasing functional evaluations for the (A) KTH and (B) DVSGesture dataset for varying

number of neurons.

λ is plotted on a linear scale, while the vertical axis showing the

variation in Wscale is in a log scale. The figure shows the neurons

that have responded to the inputs and reflect the network’s activity

level. Wscale is a factor that enhances the signal transmission within

R. As discussed by Markram et al. (1997), the synaptic response

that is generated by any action potential (AP) in a train is given as

EPSPn = Wscale × ρn × un, where ρn is the fraction of the synaptic

efficacy for the n-th AP and un is its utilization of synaptic efficacy.

Hence, it is expected that when the Wscale is large, more neurons

will fire. As λ increases, more synaptic connections are created,

which opens up more communication channels between the different

neurons. As the number of synapses increases, the rank of the final

state matrix used to calculate separation property also increases. The

rank reaches an optimum for intermediate synapse density, and the

number of synapses created increases steadily as λ increases. As λ

increases, a larger number of connections creates more dependencies
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FIGURE 5

Change in the number of active neurons with network sparsity and weight variance, for (A) HoNHoS and (B) HeNHeS. The plot is obtained by

interpolating 81 points, and each point is calculated by averaging the results from 5 randomly initialized HRSNNs.

between neurons and decreases the effective separation ranks when

the number of connections becomes too large. The results for the

variation of the effective ranks with λ and Wscale are shown in the

Supplementary material.

We compare the model’s change in performance with varying

sparsity levels in the connections and plotted in Figures 6A, B for

the HoNHoS and the HeNHeS models. From the figures, we see

that for larger values of λ, the performance of both the RSNNs was

suboptimal and could not be improved by tuning the parameter

Wscale. For a small number of synapses, a larger Wscale was required

to obtain satisfactory performance for HoNHoS compared to the

HeNHeS model. Hence, the large variance of the weights leads to

better performance. Hence, we see that the best testing accuracy

for HeNHeS is achieved with fewer synapses than HoNHoS. It also

explains why the highest testing accuracy for the heterogeneous

network (Figure 6B) is better than the homogeneous network

(Figure 6A), because the red region in Figure 6B corresponds to

higherWscale values and thus larger weight variance than Figure 6A.

5.4. Limited training data

In this section, we compare the performance of the HeNHeS to

HoNHoS and HeNB-based spiking recurrent neural networks that

are trained with limited training data. The evaluations performed on

the KTH dataset are shown in Figure 7 as a stacked bar graph for the

differential increments of training data sizes. The figure shows that

using 10% training data, HeNHeS models outperform both HoNHoS

and HeNB for all the cases. The difference between the HeNHeS

and HeNB increases as the number of neurons in the recurrent layer

NR decreases. Also, we see that adding heterogeneity improves the

model’s performance in homogeneous cases. Even when using 2,000

neurons, HeNHeS trained with 10% training data exhibit similar

performance to HeNB trained with 25% of training data. It is to

be noted here that for the performance evaluations of the cases

with 10% training data, the same training was repeated until each

model converged.

5.5. Comparison with prior work

In this section, we compare our proposed HRSNN model with

other baseline architectures. We divide this comparison in two parts

as discussed below:

• DNN-based Models: We compare the performance and the

model complexities of current state-of-the-art DNN-based

models (Carreira and Zisserman, 2017; Wang Q. et al., 2019; Bi

et al., 2020; Lee et al., 2021; Wang et al., 2021) with our proposed

HRSNN models.

• Backpropagation-based SNN Models: We compare the

performance of backpropagation-based SNN models with

HoNB and HeNB-based RSNN models. We observe that

backpropagated HRSNN models (HeNB) can achieve similar

performance to DNN models but with much lesser model

complexity (measured using the number of parameters).

1. State-of-the-art BP Homogeneous SNN: We compare the

performance of current state-of-the-art backpropagation-

based SNN models (Panda and Srinivasa, 2018; Zheng et al.,

2020; Liu et al., 2021; Shen et al., 2021).

2. State-of-the-art BP Heterogeneous SNN: We compare the

performances of the current state-of-the-art SNN models,

which uses neuronal heterogeneity (Fang et al., 2021; Perez-

Nieves et al., 2021; She et al., 2021a). We compare the

performances and the model complexities of these models.

3. Proposed Heterogeneous Backpropagation Models: We

introduce two new backpropagation-based RSNN models.

These models are the Homogeneous Neurons with

Backpropagation (HoNB) and the Heterogeneous Neurons

with Backpropagation (HeNB). We use our novel Bayesian

Optimization to search for the parameters for both of these

models.

• Unsupervised SNN Models: We also compare the results

for some state-of-the-art unsupervised SNN models with our

proposed HRSNN models.
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FIGURE 6

The variation in performance of the action recognition classification task with network sparsity and weight variance for (A) HoNHoS and (B) HeNHeS. The

plot is obtained by interpolating 81 points, and each point is calculated by averaging the results from 5 randomly initialized HRSNNs.

FIGURE 7

Bar graph showing di�erence in performance for the di�erent models with increasing training data for the KTH dataset. A similar trend can be observed

for the DVS dataset (shown in Supplementary material).

1. Homogeneous SNN Models: We compare the performances

of some of the state-of-the-art unsupervised SNN models

which uses homogeneous neuronal parameters (Meng et al.,

2011; Zhou et al., 2020; Ivanov and Michmizos, 2021).

2. HRSNNModels: We compare the above models with respect

to our proposed HRSNNmodels using heterogeneity in both

neuronal and synaptic parameters. We compare the model’s

performance and the model’s complexity.

We also compare the average neuronal activation of the

homogeneous and the heterogeneous recurrent SNNs for the same

given image input for a recurrent spiking network with 2,000

neurons. If we consider the neuronal activation of neuron i at time t

to be νi(t), the average neuronal activation ν̄ forT timesteps is defined

as ν̄ =
6

NR−1
i=0 6T

t=0νi(t)

NR

.

The results obtained are shown in Table 2. The table shows

that the heterogeneous HRSNN model has a much lesser average

neuronal activation than the homogeneous RSNN and the other

unsupervised SNN models. Thus, we conclude that HeNHeS induces

sparse activation and sparse coding of information.

Again, comparing state-of-the-art unsupervised learning models

for action recognition with our proposed HRSNN models, we see

that using heterogeneity in the unsupervised learning models can

substantially improve the model’s performance while having much

lesser model complexity.

6. Conclusions

We develop a novel method using recurrent SNN to

classify spatio-temporal signals for action recognition tasks

using biologically-plausible unsupervised STDP learning. We

show how heterogeneity in the neuron parameters and the

LTP/LTD dynamics of the STDP learning process can improve

the performance and empirically demonstrate their impact on
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TABLE 2 Table showing the comparison of the performance and the model complexities for DNN and supervised and unsupervised SNNmodels.

Model MACs/ACs RGB datasets Event
dataset

KTH UCF11 UCF101 DVS

Gesture-

128

Supervised learning method

DNN PointNet (Wang Q. et al.,

2019)

MAC: 152× 109 - - - 95.3

RG-CNN (Bi et al., 2020) MAC: 53× 109 - - - 97.2

I3D (Carreira and

Zisserman, 2017)

MAC: 188× 109 - 90.9 - 96.5

3D-ResNet-34 (Lee et al.,

2021)

MAC: 78.43× 109 94.78 83.72 - -

3D-ResNet-50 (Lee et al.,

2021)

MAC: 62.09× 109 92.31 81.44 - -

TDN (Wang et al., 2021) MAC: 69.67× 109 99.15 98.03 97.4 -

SNN- supervised

(Homogeneous)

STBP-tdBN (Zheng et al.,

2020)

AC: 15.13× 107 - - - 96.87

Shen et al., 2021 AC: 12.14× 107 - - - 98.26

Liu et al., 2021 AC: 27.59× 107 90.16 - - 92.7

Panda and Srinivasa,

2018

AC: 40.4× 107 - - 81.3 -

HoNB (2,000 Neurons) AC: 9.54× 107 94.87 82.89 80.25 97.06

SNN- supervised

(Heterogeneous)

Perez-Nieves et al., 2021 AC: 8.94× 107 - - - 82.9

Fang et al., 2021 AC: 15.32× 107 - - - 97.22

BPTT (She et al., 2021a) AC: 13.25× 107 - - - 98.0

HeNB (2,000 Neurons) AC: 9.18× 107 96.84 88.36 84.32 98.12

Model Number
of
neurons

MACs/ACs/ Avg.
neuron
activation (ν̄)

RGB datasets Event
daset

KTH UCF11 UCF101 DVS
Gesture
128

Unsupervised learning method

DNN -

unsupervised

MetaUVFS (Patravali

et al., 2021)

- MAC: 58.39× 109 90.14 80.79 76.38 -

Soomro and Shah, 2017 - MAC: 63× 109 84.49 73.38 61.2 -

SNN- unsupervised

(Homogeneous)

GRN-BCM (Meng et al.,

2011)

1536 ν̄ = 3.56× 103 74.4 - - 77.19

LSM STDP (Ivanov and

Michmizos, 2021)

135 ν̄ = 10.12× 103 66.7 - - 67.41

GP-Assisted CMA-ES

(Zhou et al., 2020)

500 ν̄ = 9.23× 103 87.64 - - 89.25

RSNN-STDP

unsupervised

(Ours)

HoNHoS 2,000 ν̄ = 3.85× 103 86.33 75.23 74.45 90.33

HeNHeS 500 ν̄ = 2.93× 103 88.04 71.42 70.16 90.15

HeNHeS 2,000 ν̄ = 2.74× 103 94.32 79.58 77.33 96.54
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developing smaller models with sparse connections and trained

with lesser training data. It is well established in neuroscience

that, heterogeneity (De Kloet and Reul, 1987; Shamir and

Sompolinsky, 2006; Petitpré et al., 2018) is an intrinsic property

of the human brain. Our analysis shows that incorporating such

concepts is beneficial for designing high-performance HRSNN for

classifying complex spatio-temporal datasets for action recognition

tasks.
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