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The cerebellum plays a central role in motor control and learning. Its

neuronal network architecture, firing characteristics of component neurons,

and learning rules at their synapses have been well understood in terms of

anatomy and physiology. A realistic artificial cerebellum with mimetic network

architecture and synaptic plasticity mechanisms may allow us to analyze

cerebellar information processing in the real world by applying it to adaptive

control of actual machines. Several artificial cerebellums have previously been

constructed, but they require high-performance hardware to run in real-time for

real-world machine control. Presently, we implemented an artificial cerebellum

with the size of 104 spiking neuron models on a field-programmable gate array

(FPGA) which is compact, lightweight, portable, and low-power-consumption.

In the implementation three novel techniques are employed: (1) 16-bit fixed-

point operation and randomized rounding, (2) fully connected spike information

transmission, and (3) alternative memory that uses pseudo-random number

generators. We demonstrate that the FPGA artificial cerebellum runs in real-

time, and its component neuron models behave as those in the corresponding

artificial cerebellum configured on a personal computer in Python. We applied

the FPGA artificial cerebellum to the adaptive control of a machine in the

real world and demonstrated that the artificial cerebellum is capable of

adaptively reducing control error after sudden load changes. This is the first

implementation and demonstration of a spiking artificial cerebellum on an

FPGA applicable to real-world adaptive control. The FPGA artificial cerebellum

may provide neuroscientific insights into cerebellar information processing in

adaptive motor control and may be applied to various neuro-devices to augment

and extend human motor control capabilities.
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1 Introduction

The human brain, a sophisticated and complex organ,
possesses remarkable capabilities such as decision-making,
memory formation, visual and auditory processing, language
comprehension, spatial awareness, and motor control functions.
These functions are thought to arise from neural networks in which
a large number of neurons are diversely connected via synapses.
To simulate brain function, neurons have been mathematically
described using either non-spiking or spiking models. Non-spiking
models are predicated on simulating the neuronal firing rate, which
refers to the frequency of electrical impulses, known as spikes,
emitted by neurons. This approach is based on the prevalent belief
that neurons primarily encode information through variations
in their firing rate. A notable example of this type of modeling
is the Convolutional Neural Network, which is widely used in
contemporary AI technology. However, non-spiking models
are limited in their ability to accurately replicate spike-timing-
dependent plasticity (STDP), an essential mechanism for learning
and memory across various regions of the brain, including the
visual cortex (Fu et al., 2002; Yao et al., 2004), somatosensory
cortex (Allen et al., 2003; Celikel et al., 2004), hippocampus (Bi and
Poo, 1998; Wittenberg and Wang, 2006), and cerebellum (Piochon
et al., 2013). Therefore, to construct a neural network modeled
on the brain, it is crucial to accurately simulate STDP. Spiking
neuron models produce spikes to represent their activities, thereby
enabling the representation of STDP. Spiking neural networks
have gained attention in various fields, including those envisioning
general artificial intelligence (AGI) and other specialized AI
applications (Calimera et al., 2013; Pfeiffer and Pfeil, 2018; Yang
and Chen, 2023; Yang et al., 2023). They have also been utilized in
neuromorphic computing to emulate the structure and function of
biological neural circuits efficiently (Boi et al., 2016; Osborn et al.,
2018; Donati et al., 2019; Mosbacher et al., 2020). Contemporary
AI development has primarily focused on mimicking the cognitive
and decision-making functions of the cerebrum in humans and
animals. However, the cerebellum, known for its role in motor
control and learning, has also been recently identified as playing a
part in higher cognitive functions and decision-making (Ito, 2008;
Strick et al., 2009; Liu et al., 2022). Thus, neural networks that
emulate both cerebrum and cerebellar circuits could significantly
enhance the advancement of more intelligent AI and AGI.
Moreover, the cerebellum has been demonstrated to be critical
in the adaptive motor control of various movements, including
eye movements (McLaughlin, 1967; Ito et al., 1970; Miles et al.,
1986; Nagao, 1988), eye blinks (Lincoln et al., 1982; Yeo et al.,
1985), arm reaching (Martin et al., 1996; Kitazawa et al., 1998),
gait (Mori et al., 1999; Ichise et al., 2000), and posture (Nashner,

Abbreviations: CPU, central processing unit; GPU, graphics processing
unit; FPGA, field-programmable gate array; MF, mossy fiber; CF,
climbing fiber; GrC, granule cell; GoC, Golgi cell; MLI, molecular layer
inhibitory interneurons; PkC, Purkinje cell; PF, parallel fiber; STDP, spike-
timing-dependent plasticity; LTD, long-term depression; LTP, long-term
potentiation; FF, flip flop; MUX, multiplexer; DEMUX, demultiplexer; LFSR,
linear feedback shift register; XOR, exclusive or; PD controller, proportional-
derivative controller; PP, membrane potential processor; CP, synaptic
current processor; WP, weighted processor; DP, synaptic conductance
processor; LP, plastic processor; ID, identifier; VHDL, very high speed
integrated circuit hardware description language; ASIC, application-specific
integrated circuit.

1976), among others (Monzée et al., 2004; Leiner, 2010). In the
realm of advanced robotics, an artificial cerebellum should be
highly effective for achieving human-like flexible motor control
and learning. Specifically, an artificial cerebellum that operates
in real-time, maintains compactness, and exhibits low power
consumption, holds potential for applications in neuroprosthetics
and implantable brain-machine interfaces. Such advancements
may provide viable solutions to compensate for impaired motor
functions.

The cerebellar neural network is well-understood regarding its
anatomical connectivity and physiological neuronal characteristics,
as detailed in studies by Eccles et al. (1967) and Gao et al. (2012),
among many others. Since the pioneering theoretical work by Marr
(1969) and Albus (1971), several artificial cerebellums have been
developed. Similar to other neural network models, these artificial
cerebellum models can be classified into two major types: spiking
and non-spiking. A representative non-spiking cerebellar model is
the cerebellar model articulation controller (CMAC), proposed by
Albus (1975). CMAC has demonstrated exceptional performance
and robustness as a non-model-based, nonlinear adaptive control
scheme in controlling a submarine (Huang and Hira, 1992; Lin
et al., 1998) and an omnidirectional mobile robot (Jiang et al.,
2018). Examples of spiking models of the cerebellum include a
model to explain the timing mechanism of eyeblink conditioning
(Medina et al., 2000), and a model for acute vestibulo-ocular
reflex motor learning (Inagaki and Hirata, 2017). Moreover, a
realistic 3D cerebellar scaffold model running on pyNEST and
pyNEURON simulators (Casali et al., 2019), a cerebellar model
capable of real-time simulation with 100k neurons using 4 NVIDIA
Tesla V100 GPUs (Kuriyama et al., 2021), and a Human-Scale
Cerebellar Model composed of 68 billion spiking neurons utilizing
the supercomputer K (Yamaura et al., 2020) have been constructed.
A caveat with these spiking cerebellar models is their resource-
intensive nature compared to non-spiking models due to the
computational demands of simulating spike dynamics in neurons.
Consequently, real-time simulations become challenging without
substantial processing power.

In recent years, dedicated neuromorphic chips, designed
for real-time computations of spiking neural networks and the
simulation of various network types with synaptic plasticity, have
been developed. These chips offer new possibilities for advanced
neural network modeling. One such chip is the Loihi2, capable
of handling up to 1 million spiking neurons across 128 cores.
Each core has 192 kB of local memory, with 128 kB allocated
specifically for synapses (Davies et al., 2018; Davies, 2023). This
setup allows the simulation of up to 64k synapses per neuron when
using 16-bit precision for synaptic weights. However, each core
is designed to handle a maximum of 8,192 neurons. If a neuron
requires more than 8k synapses, the number of neurons per core
must be reduced. This can lead to inefficiencies, as neuron memory
may remain underutilized. Another notable neuromorphic chip
is the TrueNorth, which can simulate 1 million spiking neurons.
However, it faces limitations with local memory for synaptic
states, providing only 13 kB per core. This restricts each neuron
to have just 256 synapses (Merolla et al., 2014), significantly
fewer than found in cerebellar cortical neurons such as Purkinje
cells. Overall, these neuromorphic chips are constrained by their
memory capacity, which poses challenges for efficiently simulating
complex structures like the cerebellum.
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Field-programmable gate arrays (FPGAs) allow designers
to program configurations of logic circuits with low power
consumption, giving them an edge over central processing unit
(CPUs) and graphics processing unit (GPUs) in developing
specialized and efficient architectures. Several studies have
implemented spiking neural networks including those of the
cerebellum on FPGAs. For instance, Cassidy et al. (2011)
implemented 1 million neurons on a Xilinx Virtex-6 SX475 FPGA-
based neuromorphic system. Neil and Liu (2014) developed a
deep belief network of 65k neurons with a power consumption
of 1.5 W on an FPGA-based spiking network accelerator using
a Xilinx Spartan-6 LX150 FPGA. Luo et al. (2016) implemented
the cerebellar granular layer of 101k neurons on a Xilinx Virtex-7
VC707 FPGA, with a power consumption of 2.88 W. In a similar
vein, Xu et al. (2018) implemented an artificial cerebellum with
10k spiking neurons on a Xilinx Kintex-7 KC705 FPGA, applying
it to neuro-prosthesis in rats with an eye blink conditioning
scheme. Lastly, Yang et al. (2022) implemented a cerebellar network
of 3.5 million neurons on six Altera EP3SL340 FPGAs, with a
power consumption of 10.6 W, and evaluated it by simulating
the optokinetic response. These efforts highlight the significant
role of FPGAs in neuromorphic computing, offering powerful and
efficient solutions for simulating complex neural networks such as
those found in the cerebellum.

One of the potential applications of the artificial cerebellum
is implantable brain-machine interfaces used for neuroprosthesis.
However, the chronic use of such active implanted devices raises
safety concerns, particularly due to thermal effects. Studies have
shown that temperature elevations greater than 3 ◦C above
normal body temperature can induce physiological abnormalities
like angiogenesis and necrosis (Seese et al., 1998), and the
temperature increase due to the power consumption of an
implanted microelectrode array in the brain is estimated to
be 0.029◦C/mW (Kim et al., 2007), suggesting that the power
consumption of hardware implanted in the brain should not exceed
100 mW. From this perspective, even the FPGAs that have been
used to implement cerebellar spiking neural networks (Cassidy
et al., 2011; Neil and Liu, 2014; Xu et al., 2018; Yang et al., 2022),
are not currently suitable for creating devices for this purpose.

In this study, we aim at constructing an artificial cerebellum
that is portable, lightweight, and low power consumption. To
achieve this, we utilized the Xilinx Spartan-6 and employed three
novel techniques to effectively incorporate the distinctive cerebellar
characteristics. First, we reduced the required number of arithmetic
and storage devices while maintaining numerical accuracy. This
was achieved by utilizing only 16-bit fixed-point numbers and
introducing randomized rounding in the computation of numerical
solutions for the differential equations that describe each spiking
neuron model. Second, to facilitate the transmission of spike
information between the computational units of each neuron, we
installed a spike storage unit equipped with a data transmission
circuit. This circuit is fully coupled between the pre- and
postsynaptic neurons, effectively eliminating the latency that is
dependent on the number of neurons and spikes. Third, to further
decrease the number of necessary storage devices, we introduced
a pseudo-random number generator. This serves as a storage
device for storing information about connections between neuron
models. As a result, a cerebellar cortical neural circuit model
consisting of 9,504 neurons and 240,484 synapses was successfully
implemented on the FPGA with low power consumption (< 0.6

W) and operation in real-time (1 ms time step). To validate the
model, we compared the firing properties of a minimum scale
cerebellar neuron network model on the FPGA with the same
model implemented on a personal computer in Python using a 64-
bit floating-point number. This comparison demonstrated that the
model on the FPGA possesses sufficient computational accuracy
to simulate spiking timings. Furthermore, we applied the FPGA
spiking artificial cerebellum for the adaptive control of a direct
current (DC) motor in a real-world setting. This demonstration
showed that the artificial cerebellum is capable of adaptively
controlling the DC motor, maintaining its performance even when
its load undergoes sudden changes in a noisy natural environment.

2 Materials and methods

2.1 Cerebellar spiking neuronal network
model

The artificial cerebellum to be implemented on the FPGA in
the present study is similar to those previously constructed by
referring to anatomical and physiological evidence of the cerebellar
cortex (Medina et al., 2000; Inagaki and Hirata, 2017; Casali et al.,
2019; Kuriyama et al., 2021). Presently, the scale of the artificial
cerebellum (the number of neuron models) is set to ∼104 neurons
which is limited by the specification of the FPGA (XC6SLX100,
Xilinx) used in the current study (see below for more detailed
specs).

2.1.1 Network structure
The artificial cerebellum has a bi-hemispheric structure as

the real cerebellum (Figure 1). Each hemisphere consists of
246 mossy fibers (MF), 8 climbing fibers (CF), 4096 granule
cells (GrC), 369 Golgi cells (GoC), 25 molecular layer inhibitory
interneurons (MLI), and 8 Purkinje cells (PkC). These numbers
were determined so that the model can be implemented and run
in real-time on the FPGA currently employed (see below) while
preserving convergence-divergence ratios of these fiber/neuron
types (Figure 1, purple numbers) as close as those found in the
vertebrate cerebellum (Medina et al., 2000). Note that this number
of GrC (4096) has been demonstrated to be enough to control
real-world objects such as a two-wheeled balancing robot robustly
(i.e., independently of the initial synaptic weight values) (Pinzon-
Morales and Hirata, 2015). In the cerebellar cortical neuronal
network, MFs connect to GrCs and GoCs via excitatory synapses,
and GrCs connect to PkCs, GoCs, and MLIs via excitatory synapses.
GoCs connect back to GrCs via inhibitory synapses, while MLIs
connect to PkCs via inhibitory synapses. PkCs connect to the extra
cerebellar area via inhibitory synapses.

2.1.2 Spiking neuron model
Neurons and input fibers in the artificial cerebellum are

described by the following leaky integrate and fire model (Gerstner
and Kistler, 2002; Izhikevich, 2010) described by Eqs 1–3:

C
dv(t)

dt
= − gL (v (t)− El)+ i (t)+ ispont(t) (1)

v (t) =

{
v (t)+(Vr − Vth) if v (t) > Vth

v (t) otherwise
(2)

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2024.1220908
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1220908 April 22, 2024 Time: 16:16 # 4

Shinji et al. 10.3389/fnins.2024.1220908

FIGURE 1

Structure of the artificial cerebellum. The numeral in orange in the
top-right corner of each neuron represents the total number of
neurons while the ratios indicated in blue between presynaptic and
postsynaptic neurons represent the convergence ratios.

δ (t) =

{
1 if v (t) > Vth

0 otherwise
(3)

where, v(t), i (t), and ispont(t) are the membrane potential, the
input synaptic current, and the current producing spontaneous
firing at time t, respectively. C is the membrane capacitance, and
gL is the leak conductance. When the membrane potential v(t)
exceeds the threshold Vth, it is reset to the resting potential Vr ,
and the unit impulse function δ (t) outputs 1. Otherwise, the unit
impulse function δ (t) outputs 0. The outputs are transmitted to the
postsynaptic neuron and induce postsynaptic current (see Section
“2.1.3 Synapse model”). The current ispont(t) is to simulate the
spontaneous discharge, which is generated by a uniform random
number [0, 2Ispont] to prevent the timing of spontaneous spikes
from becoming the same between neurons. The mean spontaneous
discharge current, Ispont, is shown in the cerebellum model of Casali
et al. (2019). The constants for each neuron/fiber type are listed
in Table 1 which are the same as the previous realistic artificial
cerebellums (Casali et al., 2019; Kuriyama et al., 2021) except that
the parameters of the input fibers were arbitrarily defined so that
their firing frequencies become physiologically appropriate.

2.1.3 Synapse model
The synaptic transmission properties are described by the

following conductance-based synapse model (Gerstner and Kistler,
2002; Izhikevich, 2010) described by Eqs 4, 5:

dgm(t)
dt

=

N∑
n = 0

δn (t) wn+mN −
gm (t)
τsyn

(4)

i (t) = −
M∑

m = 0

gm(t) (v (t)− Em) (5)

where, gm(t) is the synaptic conductance of the m-th postsynaptic
neuron, δn (t) is the unit impulse of the n-th presynaptic neuron
or fiber, and wn+mN is the synaptic transmission efficiency between
the n-th presynaptic neuron or fiber and the postsynaptic neuron.
N is the number of presynaptic neurons. τsyn is the time constant.
Em is the reversal membrane potential which is positive or negative
for excitatory or inhibitory synapse, respectively. As a result, the
sign of the synaptic current i (t) differs between the excitatory
synapse and the inhibitory synapse. M is the number of presynaptic

neuron types. The ratios of the numbers of synaptic connections
between different neuron types were as shown in Figure 1
(Nc1:Nc2) where Nc1 and Nc2 are the numbers of presynaptic
and postsynaptic neurons, respectively. The connections between
presynaptic and postsynaptic neurons are determined by a pseudo-
random number generator described later. The initial values of
synaptic transmission efficiency w of all synapses were assigned
by Gaussian random numbers whose means and variances are
different for different neuron types as listed in Table 2. In the
current model, only parallel fiber (PF, the axonal extensions of
GrC)–PkC synapses undergo synaptic plasticity as described below.
Other synaptic efficacies were fixed at the initial value throughout
the execution. The synaptic constants τsyn and Em were set as shown
in Table 2 based on anatomical and physiological findings (Medina
et al., 2000; Kuriyama et al., 2021).

2.1.4 Synaptic plasticity model
The synapses between the PF and the PkC are the loci where

the memory of motor learning has been proposed to be stored (Ito,
2001; Takeuchi et al., 2008). These include long-term depression
(LTD) and long-term potentiation (LTP). The present model
implements plasticity described by Eqs 6, 7:

dwPF−PkC (t)
dt

= − γLTDsCF (t) qGrC (t)+ γLTPδCF (t) sGrC (t)
(6)

τLTD
dqGrC (t)

dt
= δGrC (t)− qGrC (t) (7)

Here, qGrC represents the average firing rate of the GrC, δGrC (t)
represents the unit impulse of the GrC, and δCF (t) represents
the negation of the unit impulse of the CF. δGrC (t) turns to 1
when a spike fires, otherwise 0. The synaptic weight wPF−PkC(t)
increases or decreases from the initial value 0 in the range of [0,
1]. When the firing of GrC and CF are synchronized, LTD occurs
(Ekerot and Jömtell, 2003). This plasticity model is achieved by
reducing the synaptic transmission efficiency wPF−PkC(t) by the
product of qGrC(t) and the coefficient γLTD = 5.94 × 10−8 when
CF spikes at time t. The average firing rate qGrC is described by
the low-pass filter which has the time constant (τLTD = 100 ms).
On the other hand, LTP is induced when GrC fires and CF does
not fire (Hirano, 1990; Jörntell and Hansel, 2006). This plasticity
model is achieved by increasing the synaptic transmission efficiency
wPF−PkC (t) by the product of δCF (t), δGrC (t), and the coefficient
γLTP = 4.17 × 10−7.

2.2 FPGA implementation

2.2.1 Design of motor control system
The artificial cerebellum was implemented on an FPGA

(XC6SLX100-2FGG484C, Xilinx) attached to an evaluation board
(XCM-018-LX100, Humandata). We used a hardware description
language, VHDL to describe the artificial cerebellum which
is available at [https://github.com/YusukeShinji/Shinji_Okuno_
Hirata_FrontNeurosci_2024]. The left and right hemisphere
models were combined as shown in Figure 2 to control real-
world machines. A proportional-differential (PD) controller that
simulates the pathway outside the cerebellum was implemented on
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TABLE 1 Neuron parameters.

Cell type C
[pF]

gL
[mS]

EL
[mV]

Ispont
[pA]

Vr
[mV]

Vth
[mV]

MF 1.0 0.03 −70 5.0 −80 −55

CF 1.0 0.3 −70 0.015 −80 −55

GrC 3.0 1.5 −65 0.0 −75 −55

GoC 76.0 3.6 −74 36.8 −84 −42

BkC 14.6 1.0 −68 15.6 −78 −53

PkC 620.0 7.0 −62 600.0 −72 −47

TABLE 2 Synapse parameters.

Postsynaptic
neuron

Presynaptic neuron Mean of initial
weight w [pS]

Reversal potential
E [mV]

Time
constant τsyn

[ms]

GrC MF 19.5 0 0.50

GrC GoC 3.9 −70 10.00

GoC MF 171.9 0 0.50

GoC GrC 31.2 0 0.50

PkC GrC 0.0 0 0.50

PkC BkC 3.9 −70 1.60

BkC GrC 3.9 0 0.64

the same FPGA as in the previous models (Pinzon-Morales and
Hirata, 2014, 2015). The output of the cerebellum model R(t) is
described by Eq. 8

TP
dR(t)

dt
= − R (t)+ gP

8∑
m = 1

δm(t) (8)

where δm(t) is the unit impulse representing the spiking output of
the mth PkC, gP = 0.35 is a gain coefficient, and TP = 310 ms is
the time constant of a low-pass filter that describes the relationship
between R (t) and δm(t). The cerebellum model outputs RL (t) and
RR (t) of the left and right hemispheres are linearly summed with
the output of the PD controller to obtain the command value y (t) of
DC motor as described in Eq. 9 where proportional and derivative
parameters of the PD controller multiplied by the error signal E(t)
are GP = 0.00635 and GD = 0.00001, respectively.

y (t) = GP E (t)+ GD (E (t)− E (t −1t ))+ RL (t)− RR (t)
(9)

The Command value y (t) is converted into a pulse-width
modulated (PWM) voltage signal and then fed to the motor to
be controlled. The control object currently tested is a DC motor
(JGA25-370, Open Impulse). As a load was added to the control
object, the same type of DC motor was connected co-axially. The
load was imposed by short-circuiting the DC motor via a relay
circuit controlled by the same FPGA. The produced motion of the
control object in response to a given target speed was measured
by an encoder and fed back through a hole sensor to calculate
the error. The error is sent to the artificial cerebellum as CF
activity which induces PF–PkC synaptic plasticity (see Section
“2.1.4 Synaptic plasticity”). Other input modalities to the artificial
cerebellum via MFs are target speed, error, and the copy of motor
command (efference copy) as in the real oculomotor control system

(Noda, 1986; Hirata and Highstein, 2001; Blazquez et al., 2003;
Huang et al., 2013).

2.2.2 Design of computation, communication,
and memory systems

The differential equations describing the neuron model were
discretized by the Euler method and implemented as digital circuits
shown in Figure 3. Digital circuits that simulate neuron groups in
the model are interconnected to form the cerebellar neural network
shown in Figure 1. Figure 3A is the membrane potential processor
(PP), B is the synaptic current processor (CP), C is the weight
processor (WP), D is the synaptic conductance processor (DP), and
E is the synaptic plasticity processor (LP).

These processors adopted two parallel processing methods to
complete the processing within a time step (1 ms). The first parallel
processing method is pipeline processing used in all the processors
in Figure 3. For example, pipeline processing in WP reduces the
execution time by processing the second synapse at the MUX
simultaneously with the stage of processing the first synapse at
the AND. The second parallel processing method is the parallel
operation of the dedicated processors described above. As shown
in Figure 4, a number of PP, CP, DP, WP, and LP are provided
for parallel processing. Four processors are provided to process
GrCs in parallel due to their large number of neurons. To process
PkCs, 4 WPs, and 4 LPs are provided because PkC has a large
number of synapses despite a small number of neurons (8 neurons).
Three processors are provided to complete GoC processing during
the PkC processing. One processor is provided to complete BkC
processing during PkC processing.

In addition to these parallel processing, we adopted the
following three new methods for implementing the artificial
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FIGURE 2

Structure of the control circuit used in the real-world experiment.

cerebellum efficiently on the FPGA within the limits of the number
of logic blocks and time steps required for actual motor control.

2.2.2.1 Fixed-point arithmetic and randomized rounding

In order to reduce computational cost and memory usage,
16-bit fixed-point numbers were adopted instead of floating-
point numbers in the FPGA. However, round-off errors that
occur in fixed-point arithmetic can degrade the precision of
computation. In order to minimize the accumulation of rounding
errors, randomized rounding was adopted. This method compares
a fraction that is supposed to be rounded up or off with random
numbers. Namely, if the fraction is less than the random number,
it is rounded up while if the fraction is greater than or equal to the
random number, it is truncated. The average rounding of random
numbers is distributed around the fractions and can be rounded
unbiasedly. We employed uniform random numbers generated by a
linear feedback shift register (LFSR). Although an LFSR is a pseudo-
random number generator with periodicity, the bit width of the
LFSR used in this study (32-bit) provides a sufficiently long period
and can keep the bias in randomized rounding small.

2.2.2.2 Fully coupled spike transfer circuit

The memory of the unit impulse δ (t) is frequently referenced
by many processors. Short memory latency is required to take
advantage of parallel processing. Therefore, we designed a parallel
I/O interface composed of sender circuits and receiver circuits. We
used this interface for the transmission of impulses between all
neurons. An example of the interface is the transmission circuit
from GrC to GoC as shown in Figure 5. The interface consists of
sender circuits in the processor of GrC, which is the presynaptic
neuron, and receiver circuits in the processor of GoC, which is the
postsynaptic neuron.

A sender circuit is composed of a counter, a demultiplexer
(DEMUX), and flip-flops (FFs). The number of FFs corresponds
to the number of model neurons simulated in the PP of GrC;
the number is 1024 in this case. When the membrane potential
processing ends and the impulse is generated in the PP, the
DEMUX receives the impulse and stores the event in one of
the FFs depending on the counter output, which represents the
neuron identifier (ID) of the impulse. The total number of impulses

handled by this interface is 4096 because four sender circuits work
in parallel. Here, the ON/OFF state of one wire of the FF output
represents an impulse (whether spiked or not) of one neuron
in a certain 1 ms.

A receiver circuit is composed of an LFSR and a multiplexer
(MUX), which selects one signal from its 4096 input signals
depending on the LFSR output. The LFSR outputs pseudo-random
numbers, each of which represents the ID of the presynaptic neuron
connected to the postsynaptic neuron processed at the period. The
output of the LFSR is updated every 1 clock. One of the GoC
(postsynaptic neuron) processors simulates 123 GoCs and three
GoC processors simulate 369 GoCs in total. Each GoC is connected
to 100 presynaptic GrC neurons, and the IDs of the connected
GrC neurons are determined by the LFSR. Each receiver circuit
repeats the spike read procedure 100× 123 times. When the circuit
completes one cycle of the procedure, the LFSR is reset to the initial
value which varies for each receiver circuit, and the impulse from
the same presynaptic neuron ID is read in the next time step. By
branching receiver circuits, the reading procedure of impulses is
processed in parallel.

2.2.2.3 Pseudo-random number generator to represent
neural connections

In order to reduce memory usage, we adopted a pseudo-
random number generator in place of a memory that stores
information on neural connections. When implementing the
artificial cerebellum on an FPGA, it is necessary to store the
neuron ID of presynaptic and postsynaptic neurons. As shown in
Figure 3C, the ID is used by MUX to output impulses of a desired
neuron group. The memory capacity required for storing the ID
is the product of the number of pre-synaptic neurons, the number
of post-synaptic neurons, and the convergence rate, which is huge
(approx. 40 million bytes). However, the capacity of the internal
RAM, which is the RAM embedded in an FPGA and provides a
much wider bandwidth than the external RAM, is very limited. The
effective use of the internal RAM is the key factor for implementing
many neurons in an FPGA. A large amount of internal RAM should
be used for storing differential equation variables, not for the ID of
neural connections. Because the neural connection in our model
is defined by random numbers that are unchanged through an
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FIGURE 3

Block diagrams of the neural processor. (A–E) Processing devices for membrane potential, synaptic current, synaptic weight, synaptic conductance,
and synaptic plasticity, respectively. The coefficients are defined as follows: α = 1/C, β = 1− gL/C, βsyn = 1− 1/τsyn, αLTD = γLTD /τLTD,
βLTD = 1− 1/τLTD. For the synaptic transmission efficiency w in (C), only the PF-PkC synapse uses the numerical value obtained by calculating LTD
and LTP according to (E). Adder and AND gates are composed of logic circuits in the look-up table (LUT). The DSP slice in the FPGA was used for the
triangular block representing the gain and the multiplication. The LFSR is a linear feedback shift register, each of which outputs a random number
r(t) that differs depending on the initial seed. The flip-flop is a storage element that is constructed by registers contained in the LUT in the FPGA. The
FIFO is a storage element that uses the FPGA’s block RAM in a first-in-first-out format. The multiplexer (MUX) is a data selector. In (C), the MUX
selects the impulse of one neuron from the flip-flop storing impulses of X neurons. In the (A,D,E), randomized rounding is a rounding element that
rounds up if the random number generated by LFSR is smaller than the fraction bits and rounds down otherwise.

operation, we used an LFSR to achieve uniform random numbers
that define neural connections. Since an LFSR is composed only of
XORs and FFs, internal RAMs are unnecessary. Similarly, synaptic
weights that don’t have synaptic plasticity were generated by the
LFSR.

3 Results

3.1 Specifications

The neural network constituting the artificial cerebellum
contains 9,504 neurons (including MFs and CFs) with 240,484
synapses. The hardware resources used for the artificial cerebellum

construction are shown in Table 3. Block memory and Multiplier
are internal RAM and DSP slices in the Spartan-6 FPGA chip.
Distributed memory is RAM that uses look-up tables. At the
FPGA clock frequency of 40 MHz, the calculation time for
each hemisphere of the artificial cerebellum is 0.40 ms. The
entire control circuit, including both hemispheres, completes all
the computation in 1 ms time interval. Considering that the
maximum firing rate of neurons in the cerebellum is about
500 spikes/s (Ito, 2012), 1 ms is fast enough for simulating
the cerebellum. Therefore, real-time operation of the artificial
cerebellum with this configuration is possible. The maximum
power consumption at a clock frequency of 40 MHz and a device
temperature of 25◦C was estimated to be 0.6 W by the Xilinx Power
Estimator.
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FIGURE 4

Processing circuit of the artificial cerebellum. Overlapping frames indicate parallel processing.

FIGURE 5

Structure of the fully coupled spike transfer circuit. The unit impulse δ(t) calculated by the membrane potential processor (PP) is stored in the
flip-flop (FF). The outputs of all FFs of the presynaptic neurons are connected to the multiplexer (MUX) of all weight processors (WP) of the
postsynaptic neuron. By receiving the output of the linear feedback shift register (LFSR), the MUX randomly selects a presynaptic neuron and outputs
the impulse.
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TABLE 3 Specifications of the artificial cerebellum.

Timing issues

Clock frequency 40 MHz

Time step 1 ms

Estimated power consumption in 25◦C

Maximum power consumption 0.6 W

Typical power consumption 0.4 W

Primitive statistics

Membrane
potential
processors

Synaptic
current
processors

Weight
processors

Synaptic
conductance
processors

Synaptic
plasticity
processors

Others Total

Look-up table 22,500 1,318 20,721 3,904 3,972 4,561 56,976

Flip-flop/latch 11,118 556 3,667 2,554 1,572 3,017 22,484

Block memory 22 0 65 98 0 70 255

Distributed memory 0 0 0 272 197 153 622

Multiplier 22 17 90 17 8 6 160

3.2 Simulation to evaluate the
randomized rounding

To evaluate the effect of rounding error, we calculated one
neuron model with the following three methods: (1) Python
with 64-bit floating-point number and half-up rounding, (2)
Xilinx ISE Simulator and 16-bit fixed-point number and half-
up rounding, (3) Xilinx ISE Simulator with 16-bit fixed-point
number and randomized rounding. As a simulation with high
calculation accuracy, we used Python’s float type which is a 64-bit
floating-point number and performed the simulation on a personal
computer.

We simulated one GrC receiving inputs from one GoC and one
MF. The input signals sent from GoC and the MF are impulses
whose firing time is determined by uniform random numbers
generated by an LFSR. The simulation was performed under the
condition that the GoC fires at an average of 31 spikes/s and the
MF fires at an average of 62 spikes/s so that the effects of rounding
error can be easily evaluated. In this simulation, the weight between
GrC and GoC was set to 93.8 pS, and that between GrC and MF was
set to 320.0 pS.

Figure 6 shows the simulation results. The black lines in
the figure plot the results simulated with a 64-bit floating-
point number. Simulations with 16-bit fixed-point numbers cause
rounding errors when computing the differential equations of
synaptic conductance and membrane potential due to the limited
number of digits. As a result, the synaptic conductance computed
with 16-bit fixed-point numbers and half-up rounding does not
converge to 0 nS (Figure 6A, blue line), resulting in the positively
biased membrane potential, and the increased spike frequency
(Figures 6C, E, blue line and cross mark, respectively). In contrast,
using randomized rounding, the synaptic conductance converges
to 0 nS (Figure 6A, light cyan line), the membrane potential
is not biased, and the frequency of spike occurrence is almost
the same as that computed with 64-bit floating-point numbers
(Figures 6C, E, light cyan line and cross mark). The synaptic
conductance computed with a 64-bit floating-point and that

computed with a 16-bit fixed-point number and randomized
rounding are approximately equal. Even if an error occurs in the
computation of synaptic conductance, the conductance computed
with a 16-bit fixed-point number and randomized rounding
converges to 0 nS while no spike comes to the neuron, so the
accumulated error can be canceled. In the simulation computed
with 64-bit floating-point numbers, the mean firing rate of GrCs
during 50 s was 6.58 spikes/s. The mean firing rate difference
between the simulation with 64-bit floating-point numbers and
that with 16-bit fixed-point numbers was 1.64 spikes/s. The mean
firing rate difference between the simulation with 64-bit floating-
point numbers and that with 16-bit fixed-point numbers and
randomized rounding was 0.030 spikes/s. These results assure that
the calculation accuracy can be maintained by using randomized
rounding when computing differential equations that describe a
neuron model with fixed-point numbers.

3.3 Real-world adaptive machine control

In order to evaluate the capability of the artificial cerebellum
in adaptive actuator control in a real-world environment, we
employed a DC motor and imposed a load that varies in intensity
over time. As shown in Figure 2, the FPGA controls the DC motor
via an inverter in the control circuit. The rotation speed of the
controlled object was fed back to the FPGA by the Hall effect sensor.
The rotation speed error, which is calculated by subtracting the
measured speed from the target speed, was input to the MFs and
CFs of the artificial cerebellum.

Another DC motor was connected to the shaft of the controlled
motor to impose a load. During the experiment, the switch in
the circuit was opened to make the Load-OFF state and was
closed to make the Load-On state. The resistance of the switch
was 13.5�. The switch was opened and closed by the signal sent
from the FPGA. The target time course of the rotation speed
was a sine wave with an amplitude of 32 rotations per second
(rps) and a period of 2.048 s. The load was turned on in the
120th cycle, turned off in the 240th cycle, and turned on again in
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FIGURE 6

Simulation of a granule cell to verify the accuracy of randomized rounding. Black lines and cross marks depict a simulation result using a 64-bit
floating-point number and half-up rounding, calculated in Python. Blue lines and cross marks represent a simulation result using a 16-bit fixed-point
number and half-up rounding calculated in the Xilinx ISE Simulator. Cyan lines and cross marks show a simulation result using a 16-bit fixed-point
number and randomized rounding calculated in the Xilinx ISE Simulator. Green and red triangles denote the spike timing of input to a GrC from a
GoC and an MF. Cross marks illustrate the spike timing of the output of the GrC. (A) postsynaptic conductance between the GrC and the GoC.
(B) postsynaptic conductance between the GrC and the MF. (C) postsynaptic current between the GrC and the GoC. (D) postsynaptic current
between the GrC and the MF. (E) membrane potential of the GrC. Dotted lines represent changes in membrane potential during spikes which were
not stored in the FPGA.

the 300th cycle, at which the control of the artificial cerebellum
had been stable.

Figure 7 shows the results of motor control experiments
repeated 10 times each with or without the artificial cerebellum.
Because the initial weights of the synapses between PFs and
PkCs were set to 0, the amount of error was the same with
and without the artificial cerebellum at the beginning of the
experiment. With the artificial cerebellum, the amount of error
started from the same level as the PD controller alone. The
adaptation did not start immediately due to the influence of
noise in the real-world environment. The error started to decrease
from around the 50th cycle due to motor learning in the
artificial cerebellum. When a load was imposed in the 120th cycle,
the error rose sharply but gradually decreased as the artificial
cerebellum adapted to the load. By contrast, the error increased
with a much smaller amount at the timing of Load-Off in the
240th cycle and Load-On in the 300th cycle, demonstrating

generalization in adaptation to both Load-Off and Load-On
states.

Figure 8 shows the rotation speed of the controlled DC motor
and the activities of representative neuron models in the following
four periods: initial period, after learning, just load-on, and after
relearning corresponding to each triangle marked on the horizontal
axis in Figure 7. In the top panels of Figure 8, the black, green,
and magenta lines plot the target speed, the measured speed
controlled without the artificial cerebellum, and the measured
speed controlled with the artificial cerebellum, respectively. In
the initial period (left top panel), the measured speed controlled
with the artificial cerebellum (magenta) was smaller than and
delayed to the target speed (black). This situation was similar
to the speed controlled without the artificial cerebellum (green).
After learning (2nd column from the left, top panel), the measured
speed controlled with artificial cerebellum (magenta) improved the
amplitude and the delay. After load on (2nd to the right column, top
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FIGURE 7

Results of real-world motor control with and without the artificial cerebellum. The magenta and green lines represent the results with and without
the artificial cerebellum, respectively. The solid line and the shaded area indicate the mean and plus-minus 1 standard deviation, respectively, over 10
experiments. The black dashed lines indicate the periods where the load was imposed. The cyan dashed lines denote the periods evaluated in
Figure 8.

panel), the speed controlled with artificial cerebellum (magenta)
decelerated just before it reached the maximum speed. After
relearning (right top panel), the control with artificial cerebellum
(magenta) improved the deceleration just before it reached the
maximum speed, and further improved the delay after switching
the direction of rotation. The raster plots in the 2nd to the bottom
panels of Figure 8 show spike timings of 8 neurons randomly
selected from each neuron type in the left (red) and right (blue)
cerebellar hemispheres. The red and blue lines in these panels
are the average firing rate of the 8 neurons in the left and right
cerebellar hemispheres, respectively. MF and CF firing rates (2nd
and 3rd row, respectively) showed almost the same responses in
all cycles. The firing rate of GrC (3rd row from the top) decreased
significantly in the after-learning period compared to those in
the initial period. The same trend is observed in the relationship
between GrC firing rates in the after-relearning period and those
in the just-load-on period. The firing rates of GoC (3rd row
from the bottom) and MLI (1st row from the bottom) showed
similar changes to those of GrC. Because the initial weights of
the synapse between PF and PkC were 0, the firing rate of PkC
(2nd row from the bottom) showed only a spontaneous firing rate
in the initial period. In the after-learning period, the firing rate
of PkC increased mainly after switching the direction of rotation.
In the just-load-on period, the firing rate of PkC was active and
was similar to that in the after-learning period. In the after-
relearning period, the firing rate of PkC was further increased after
switching the direction of rotation. These results assure that the
FPGA artificial cerebellum may provide useful information as to
signal processing executed in the cerebellar cortical neural network
consisting of these neuron types connected in a manner unique to
the cerebellum while working as an adaptive motor controller in the
real world.

4 Discussion

We implemented for the first time a spiking artificial
cerebellum on an FPGA, which accurately replicated the structure
of cerebellar neural circuitry, including MLIs, and runs in real-time.
We have demonstrated that the spiking neuron model on the FPGA
has sufficient computational accuracy to simulate spiking timings,
as shown in Figure 4. Furthermore, we have shown its capability
as a real-time adaptive controller in real-world experiments, as
shown in Figures 5, 6. In the following, we discuss briefly the
general advantages of the current implementation of an artificial
cerebellum, as well as the three key techniques used in the current
FPGA implementation of the artificial cerebellum. Lastly, we
discuss potential neuroscientific insights gained from this study.

4.1 Advantages of the current
implementation

Neuromorphic chips have been shown to support neural
networks with lower power consumption compared to CPUs and
GPUs. IBM’s TrueNorth integrates 1 million neurons onto a single
chip and can support neural network inference workloads with a
low power consumption of 70 mW (Merolla et al., 2014). Loihi
integrates 128,000 neurons onto a single chip and can support
application demonstrations such as adaptive robot arm control
and visual-tactile sensory perception with less than 1 W (Davies
et al., 2021). Loihi 2 integrates 1 million neurons onto a single
chip and can support the PilotNet SDNN for signal processing
tasks with approximately 74 mW (Shrestha et al., 2024). However,
as outlined in the introduction, these chips may face limitations
in simulating neurons that form extensive synaptic connections,
exemplified by cerebellar PkCs, which establish approximately
200,000 PF connections each. Consequently, the development of an
artificial cerebellum with these contemporary neuromorphic chips
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FIGURE 8

Measured rotation speed of the plant and activities of each neuron type in the real-world adaptive motor control experiment. The left column shows
the initial period, the period after learning, the period after load application, and the period after relearning with load on in one trial. The first row
from the top shows the target speed (black line), the measured speed without the artificial cerebellum (green line), and the measured speed with the
artificial cerebellum (magenta line). The second and subsequent rows from the top show the responses of each type of neuron in the left
cerebellum (blue) and the right (red) hemisphere of the artificial cerebellum. The light vertical line markers indicate the spike timing of 8
representative neurons, while and the dark solid lines indicate their average firing rates.

remains unachieved, presenting challenges in directly comparing
the power efficiency with our FPGA-based artificial cerebellum.

In previous studies (Cassidy et al., 2011; Neil and Liu, 2014; Luo
et al., 2016; Xu et al., 2018; Yang et al., 2022), FPGAs have been
used to build spiking cerebellar models that efficiently compute
spiking neural networks. However, these spiking cerebellar models
are not suited for implantable brain-machine interfaces due to
their high power consumption, which results from the use of high
clock rates or multiple chips. In Table 4, we present the FPGA

implementation of the artificial cerebellum used in this study,
along with a comparison to previous devices. In this study, an
artificial cerebellum was constructed with a network sufficient to
have learning capabilities with lower power consumption than
previous devices, using a single FPGA chip.

Furthermore, FPGA design with VHDL can also be used
for ASIC implementation, which can eliminate unused elements
and redundant wiring. It has been shown that ASIC can reduce
semiconductor area to 1/21, delay to 1/2.1, and power consumption
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TABLE 4 Comparison with previous spiking neural networks on the FPGA.

References Device Model Power
[W]

Time
step
[ms]

Clock
[MHz]

Total
neurons

Total
synapses

Test task of
learning

Cassidy et al.,
2011

Xilinx Virtex-6
SX475 one chip

LIF network None 1 200 1 M 1024 k None

Neil and Liu,
2014

Xilinx Spartan-6
LX150 one chip
&128MB DDR2

RAM

Spiking
deep belief

network

1.5 152 400 65 k 647 k MNIST

Luo et al., 2016 Xilinx Virtex-7
VC707 one chip

Spiking
cerebellar
granular

layer

2.88 1 122 101 k 900 k None

Xu et al., 2018 Xilinx Kintex-7
KC705 one chip

Spiking
cerebellar
network

None 1 31 10 k 146 k Eyeblink
conditioning

in vivo

Yang et al., 2022 Altera Stratix III
EP3SL340 six chips

Spiking
cerebellar
network

10.58 0.2 50 3.5 M 218 M Optokinetic
response

adaptation

This study Xilinx Spartan-6
LX100 one chip

Spiking
cerebellar
network

0.6 1 40 9.5 k 240 k DC motor
adaptive control

to 1/9.0 compared to FPGA in a 90 nm process (Kuon and Rose,
2007). Although the FPGA used in the current study was a spartan-
6 with a 45 nm process and cannot be directly compared, it may be
possible to achieve 65 mW when implemented on an ASIC. This is
below the brain power requirement of 100 mW, which can cause
thermal damage (Kim et al., 2007).

4.2 Three techniques to implement the
artificial cerebellum on the FPGA

4.2.1 Fixed-point arithmetic and randomized
rounding

Computing numerical solutions of differential equations in
fixed-point numbers produces a constant rounding error unless
randomized rounding is used (Figure 4). This type of rounding
error is commonly encountered in first-order lag differential
equations describing the synapse model and the neuron model. The
first-order lag differential equation is expressed by Eq. 10:

τ
dy(t)
dt
= u (t)− y(t) (10)

where u (t) is the input, y (t) is the output, and τ is the time
constant. The formula for rounding half up the binary number
of arbitrary digits n of the first-order lag differential equation
discretized by the Euler method can be expressed by Eq. 11:

y(t +1t) =

⌊
1t
τ u (t)+

(
1− 1t

τ

)
y (t)

2−n
+ 2−1

⌋
2−n (11)

where bxc is the floor function. n is the number of digits
representing the fractional part of y (t). When the input u (t) is
0 and the output y (t) is smaller than the following particular
value, y (t) ceases to change due to a constant rounding error.

This condition is −2−n−1 τ/1t ≤ y(t) < 2−n−1 τ/1t. This
means that the longer the time constant (the closer the coefficient
τ is to 1), the larger the range of rounding errors. For example,
let the coefficient τ/1t be 25 and fixed-point numbers of (1−
1t/τ) and y (t) have the 16-bit fractional part. The fractional
part of the multiplying (1−1t/τ) and y (t) is 32 bits, so it
must be rounded to 16 bits (= n). At this time, the term that
the constant rounding error remains is −2−12

≤ y(t) < 2−12,
which is within 16 bits of significant digits of y (t). In this
way, if the output y(t) matches the condition described above,
it is necessary to perform randomized rounding. In particular,
when computing second-order integration in the synapse model
and the neuron model, randomized rounding should be adopted
because the bias is caused by the constant rounding error in
the first step and the constant rounding error accumulates in
the second step.

Thus far, 16-bit fixed-point numbers and randomized rounding
have been adopted to streamline deep learning operations, and
have shown accuracy comparable to 32-bit floating-point numbers
(Gupta et al., 2015). In FPGA spiking artificial cerebellum, we
showed that 16-bit fixed-point numbers and randomized rounding
can compute spikes with comparable accuracy to 64-bit floating-
point numbers. Hence, fixed-point arithmetic and randomized
rounding are capable of efficient implementations while preserving
arithmetic accuracy. When calculating a differential equation with
an extended time constant and minimal changes per time step,
insufficient bit length in fixed-point numbers can pose a problem.
The changes might occur outside the range accommodated
by the given bit length. Consequently, even with fixed-point
arithmetic that employs randomized rounding, these slow changes
cannot be accurately stored in memory. This limitation results
in significant rounding errors, particularly in scenarios involving
gradual alterations. Nonetheless in the cerebellar neuronal network
model currently implemented, the accuracy and effectiveness

Frontiers in Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2024.1220908
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1220908 April 22, 2024 Time: 16:16 # 14

Shinji et al. 10.3389/fnins.2024.1220908

of learning, potentially impacted by our implementation of
a 16-bit fixed-point number and randomized rounding, should
remain largely unaffected because the time constants of the
neuron models are small enough. This assertion is supported
by the data presented in Figure 6E, which demonstrates that
the spike timings and firing rates of GrCs and other neuron
models are highly comparable to those simulated using 64-bit
floating-point numbers. Given that the neural basis of cerebellar
motor learning is determined by the combined spike timings
and firing rates of GrCs (activity of PFs) and CFs, the impact
of employing a 16-bit fixed-point number and randomized
rounding on the learning’s accuracy and effectiveness is considered
negligible.

4.2.2 Fully coupled spike transfer circuit
In order to achieve efficient communication of impulses, we

designed a fully coupled spike transfer circuit, which is a parallel
input/output interface. The strengths of using this interface for
FPGA implementation of the artificial cerebellum include the
following points.

First, it reduces the time required for spike transfer. Since the
GrC in the cerebellum has PFs connecting to a large number and
variety of neurons over a wide area, memories of the impulse are
accessed at a very high frequency. In our artificial cerebellum, 8
WPs simultaneously access the impulse memories at 40 MHz. If
the event is stored in a memory that is accessible only in serial, the
time required to write/read the impulse increases as a multiplier of
the number of presynaptic and postsynaptic neuron processors. In
this interface, All the impulses are accessible in parallel from the
processors that receive the impulses because all the impulses are
stored in the FFs whose outputs are accessible from any circuits in
the FPGA. In addition, each read-and-write procedure completes in
1 clock, even if the number of neurons is large and there are many
processing circuits for writing and reading. This interface reduces
the spike transfer time drastically.

Second, the spiking neuron model and the FPGA are suitable
for implementing the fully coupled spike transfer circuit. In this
interface, the numbers of the wires and the input ports of the
MUX increase as the number of neurons increases. However,
the increase in the circuit scale can be kept small because
information transferred in this interface is the impulse, which
can be expressed with only 1 bit. On the other hand, FPGA
essentially has many lookup tables including logic circuits and
many wires (the FPGA used in this study has 63,288 lookup tables
with 380,000 wires). Therefore, the interface for a larger number of
presynaptic/postsynaptic neurons is installable in an FPGA.

When scaling up to implement a larger network, the
Multiplexer (MUX) circuit, responsible for reading impulse data
from the Flip-flop, tends to become excessively large. This increase
in size can lead to a delay exceeding one clock cycle. In such
instances, it may be necessary to introduce a delay in subsequent
processes to compensate for the MUX-induced delay.

4.2.3 Pseudo-random number generator to
represent neural connections

As previously stated in Section “2.2.2.3 Pseudo-random
number generator to represent neural connections,” the utilization
of an LFSR as a pseudo-random number generator serves to

conserve memory. However, it should be noted that these pseudo-
random numbers can have an impact on the structure of the
cerebellar network.

The convergence was established as a fixed-point number of
mean values obtained through autopsies. However, due to the
uniform distribution and overlap of the pseudo-random numbers
determining which presynaptic neuron to connect to, it is possible
for the same presynaptic neuron to be selected several times.
As the processing of synapse formation is equal when the same
presynaptic neuron is chosen, this is equivalent to doubling the
weight and decreasing the convergence by one. When the weight
is doubled, the initial value is determined by a random number,
leading to potential bias in rare cases.

Divergence is the sum of some uniformly distributed
pseudo-random numbers. The range of these numbers is
[a, b] = [1, number of presynaptic neurons− 1], with a mean
of µ = (a+ b)/2 and a variance of σ =

(
b− a

)2
/12. When

the number of uniform random numbers (= n) is sufficiently large,
the central limit theorem states that divergence follows a normal
distribution with parameters N(nµ, nσ/12) and lies within the
range [an, bn]. However, it should be noted that the convergence
and divergence present in the cerebellum, as observed through
anatomy, are not constant (Eccles et al., 1967; Ito, 2012), hence the
utilization of pseudo-random numbers in this model. Additionally,
as each PkC receives connections from more than 100,000 GrCs,
this model does not use random numbers and instead assumes
projections from all GrCs.

Furthermore, each MF branches to form 20–30 presynaptic
sites and inputs to various GrCs and GoCs (Eccles et al., 1967).
The axons of GrCs project as PFs over a distance of approximately
2 mm in the cerebellum (Eccles et al., 1967), while the maximum
linear extent of GoC axons is 650 ± 179 µm in the sagittal plane
and 180 ± 40 micrometers in the medial-lateral plane (Barmack
and Yakhnitsa, 2008). Astrocyte axons in the molecular layer of
the cerebellum are approximately 200 micrometers in diameter
(Barmack and Yakhnitsa, 2008). Based on a reported density of
GrCs of 4 × 106 mm3 (Solinas et al., 2010), the granular layer of
this model, containing 4096 GrCs per hemisphere, corresponds to
a cubic volume of 100 micrometers on each side. In the model,
each neuron’s axon is sufficiently long to span the entire volume
of the artificial cerebellum, allowing for the selection of neuronal
connections among all neurons. However, it is important to note
that these neuronal connections are abstracted and described as
random in the model.

4.3 Neuroscientific insights

To comprehend the neuronal circuitry of the cerebellum, it is
necessary to record neuronal activity and synaptic transmission
efficiency. However, due to the high density and large number
of neurons in the cerebellum, measuring neuronal activity and
synaptic transmission efficiency comprehensively is challenging,
even with methods such as calcium imaging. In contrast, real-time
simulation of an artificial cerebellum using an FPGA, coupled with
the capability to record and communicate neural activity, enables
the detailed logging of both neural activity and synaptic weights
within the cerebellum. Moreover, the FPGA-implemented artificial
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cerebellum is capable of simulating the plasticity of multiple
PF-PkC interactions in real-world scenarios. Future applications
involving direct control of actual devices will offer valuable insights
into the regulation of synaptic weights by long-term depression
(LTD) and long-term potentiation (LTP). This research holds
considerable potential implications for the field of neuroscience.

5 Summary and conclusion

We have proposed an architecture designed to efficiently
simulate a key feature of the cerebellum: the presence of a
large number of synapses per neuron. This feature is typically
challenging to simulate with general-purpose spiking neural
network processors. By implementing this architecture on a widely-
used FPGA, we have created an artificial cerebellum comprising
left and right hemispheres, which includes 9,504 neurons and
240,484 synapses. This model incorporates major cerebellar cortical
neuron types and their synaptic connections. Additionally, it is
characterized by low power consumption (less than 0.6 W) and
operates in real-time with a 1 ms time step. We have successfully
verified the operation of the artificial cerebellum, demonstrating
that it learns correctly in real-world conditions. This compact and
low-power artificial cerebellum could be inserted into the brain
with minimal additional effort and applied to neuroprosthesis as
implementable brain-machine interfaces to restore and enhance
cerebellar functions in the future.
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