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The cerebellum takes in a great deal of sensory information from the periphery 
and descending signals from the cerebral cortices. It has been debated whether 
the paramedian lobule (PML) in the rat and its paravermal regions that project 
to the interpositus nucleus (IPN) are primarily involved in motor execution or 
motor planning. Studies that have relied on single spike recordings in behaving 
animals have led to conflicting conclusions regarding this issue. In this study, 
we tried a different approach and investigated the correlation of field potentials 
and multi-unit signals recorded with multi-electrode arrays from the PML 
cortex along with the forelimb electromyography (EMG) signals in rats during 
behavior. Linear regression was performed to predict the EMG signal envelopes 
using the PML activity for various time shifts (±25, ±50, ±100, and  ±  400  ms) 
between the two signals to determine a causal relation. The highest correlations 
(~0.5 on average) between the neural and EMG envelopes were observed for 
zero and small (±25  ms) time shifts and decreased with larger time shifts in 
both directions, suggesting that paravermal PML is involved both in processing 
of sensory signals and motor execution in the context of forelimb reaching 
behavior. EMG envelopes were predicted with higher success rates when neural 
signals from multiple phases of the behavior were utilized for regression. The 
forelimb extension phase was the most difficult to predict while the releasing of 
the bar phase prediction was the most successful. The high frequency (>300  Hz) 
components of the neural signal, reflecting multi-unit activity, had a higher 
contribution to the EMG prediction than did the lower frequency components, 
corresponding to local field potentials. The results of this study suggest that 
the paravermal PML in the rat cerebellum is primarily involved in the execution 
of forelimb movements rather than the planning aspect and that the PML is 
more active at the initiation and termination of the behavior, rather than the 
progression.
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1 Introduction

For over a century, it has been known that the cerebellum plays a 
vital role in the generation of well-coordinated movements and that 
its injury causes disturbances of voluntary movement (Holmes, 1917). 
While its specific contributions to motor control continue to 
be debated (Ebner et al., 2011), hypotheses focus on its role in motor 
learning (Gilbert and Thach, 1977), timing (Welsh et al., 1995), and its 
instantiation of internal models for prediction and error correction 
(Popa and Ebner, 2019).

Many single-unit recordings in behaving animals have shown 
cerebellar neurons modulate their firing rates during movement and 
this modulation can be  well-correlated to various movement 
parameters (Fuchs et al., 1993; Goossens et al., 2004; Servais et al., 
2004; Schonewille et al., 2006; Bryant et al., 2009). Results indicate that 
PML is a good target for studying correlations between reaching 
behavior and cerebellar activity based on its connectivity patterns 
(Apps and Hawkes, 2009). Moreover, simple spike (SS) activity from 
the rat PML modulates during the trained reaching task (Heck et al., 
2007) and monkey interpositus nucleus, a target of the PML, shows 
increased discharge during reaching and grasping (Kan et al., 1993). 
However, most prior studies were limited to single-unit recordings, 
which do not provide direct insight into the relationships across the 
cells. To look at population activity, one could do simultaneous multi-
unit recording or alternatively look at field potentials during 
movements. This information may be a key to understanding the role 
of cerebellar output, since timing and synchronization are population 
activities, and both theoretical and experimental studies suggest that 
they are vital in shaping cerebellar output (Maex and Schutter, 1998; 
Shin and Schutter, 2006; Schutter and Steuber, 2009; Blenkinsop and 
Lang, 2011; Lang and Blenkinsop, 2011; Person and Raman, 2012; 
Hong et al., 2016; Tang et al., 2016).

To obtain multi-unit recordings in behaving animals, we built 
novel microelectrode arrays using extremely thin (7 μm diameter) 
carbon fibers to record multi-unit activity (MUA) and local field 
potentials (LFPs) from the rat cerebellar cortex with minimal 
disturbance to the neural tissue (Cetinkaya et al., 2018; Cetinkaya, 
2022), and used these arrays to record from the paravermal regions of 
the PML during a reaching task. We were able to predict EMG activity 
from the PML activity, which supports the hypothesis that paravermal 
PML is involved in processing sensorimotor information. 
Furthermore, we  conducted a detailed analysis of the reaching 
behavior considering its phases and sensorimotor content, and 
frequency band contributions of the paravermal PML during behavior.

2 Methodology

2.1 Electrode fabrication

2.1.1 Carbon fiber microelectrode arrays 
(CFMEAs)

The arrays were constructed using carbon fibers (C005711/2, 7 μm 
diam., Goodfellow Cambridge Ltd., England) that were coated with 
2 μm (±50%) parylene-C at a foundry (Specialty Coating Systems, IN) 
at room temperature. Single carbon fibers were cut to 1.5–3 cm under 
a microscope. About 250 μm of the parylene-C coating was removed 
from one end of the filament using a soldering iron heated to the 

parylene-C melting temperature (290°C). The uncoated end of each 
filament was then connected to a pin on a micro-connector (A79022-
001, Omnetics Connector Corporation, MN) using conductive silver 
epoxy (EpoTek, MA). Once 32 filaments were attached to the micro-
connector, the epoxy was cured by placing the entire assembly in an 
oven at 200°C for 10 min. Next, a nine-by-ten matrix was cut from a 
nylon woven mesh sheet with a thread diameter of 37 μm and 31 μm 
hole size (U-CMN-31, Component Supply, TN). Single carbon fibers 
were inserted through the holes in the mesh to form a 4 × 8 array 
(136 μm x 68 μm pitch) with a total footprint of 408 μm (rostrocaudal) 
x 476 μm (mediolateral). The fibers were then fixed in place in the 
mesh with medical epoxy (Figure 1A) (OJ2116 EpoTek, MA). The 
ends of the carbon fibers protruding on the other side of the mesh 
were cut to a length of ~400 μm using a computer-controlled laser 
system (450 nm blue laser, 4 W, Wercan Comp., China). This carbon 
fiber length was chosen to be a little longer than the PC layer depth 
(~250 μm in the rat) to allow for post-implantation tissue growth 
under the electrode substrate that had been observed in prior 
experiments. Reference and ground electrodes were constructed from 
one-centimeter-long Teflon-coated multi-strand stainless steel wires 
(25.4 μm, 793,200, A-M Systems, WA) that were deinsulated for a few 
mm from their ends. Once all fibers and grounds were connected, the 
entire micro-connector assembly was covered with medical epoxy to 
insulate and protect the connections. In vitro impedances of individual 
carbon fibers were measured [2.07 ± 0.45 MΩ, mean ± SD (standard 
deviation)], n = 320 carbon fibers in each array with an analog 
impedance meter (BAK Electronics, IMP-2, FL). If >20% of channels 
had impedances out of the expected impedance range (1–5 MΩ), the 
array was not used for implantation.

FIGURE 1

Implantation of the neural electrode array on the cerebellar cortex 
and EMG electrodes on the forelimb muscles. (A) Neural Electrode 
(CFMEA: carbon fiber microelectrode array). One of the fabricated 
carbon fiber microelectrode arrays with 32 channels (4 × 8). It covers 
an area of 476  μm in the mediolateral direction and 408  μm in the 
rostrocaudal direction. (B) EMG Electrode Implantation Area. The 
forelimb muscles [wrist flexor (ventral), wrist extensor (dorsal), biceps 
(elbow flexor), and triceps (elbow extensor)] that received 
subcutaneous EMG electrodes. (C) Electrode (CFMEA) Position on 
the PML of Rat Cerebellum (red filled box and black dash boxes). Its 
medial edge is ~1  mm from the paravermal vein (PVV) in the 
paramedian lobule (PML) for 6 animals (red box), 0.75  mm, and 
1.25  mm for other animals (dash boxes).
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2.1.2 EMG electrodes
EMG wire electrodes were constructed from 5 cm long Teflon-

coated multi-strand stainless steel wire pairs that were connected to 
an Omnetics connector (A79022-001) and coated with clear medical 
epoxy (EpoTek, OJ2116, MA) for hermetic sealing. The tips of the 
wires were deinsulated for ~2 mm and staggered by 3 mm to enable 
differential recording, and medical epoxy was applied to the very end 
forming a small bead to provide an anchor for suturing to the muscle 
belly epimysially and to prevent the sharp wire ends from causing 
irritation or itching of the overlying skin.

2.2 Animals

All procedures were approved by the Institutional Animal Care 
and Use Committee (IACUC), Rutgers University, Newark, NJ. Eight 
male Long Evans rats (~175 g initial weight) were placed on a food 
restriction diet and then trained on a reach-to-pull task. Once they 
learned the task, they underwent surgery to implant EMG electrodes 
to the forelimb muscles and carbon fiber microelectrode arrays to the 
cerebellum. Following the post-surgical recovery period, neural, 
EMG, and behavioral data were collected while animals performed the 
behavioral task. Food restriction of animals began 3 days before 
training to boost the animals’ attentiveness to training and appetite for 
sugar pellets. Animals were kept on the food restricted diet throughout 
the experiment, except for a period surrounding the implantation 
surgery (from 2 days prior to 4 days after surgery), during which time 
they were on an ad libitum diet. During food restriction, animals were 
initially fed three food pellets per day (LabDiet, 5,001 Rodent Diet, 
~15 g, IN) in addition to receiving ~13.5 g of sugar pellet rewards (Bio-
Serv, F0021, Dustless Precision Pellets, NJ) during each training/
recording session. The animals’ weights were monitored during 
training and recording, and food pellet feeding was adjusted, if 
necessary, to keep their weights within ±20% of their initial weight. 
Animals generally weighed between 180–250 g during the time of 
data collection.

2.2.1 Behavioral task
The training apparatus consisted of a clear plexiglass box (width 

x height x depth, 30 cm x 26 cm x 22 cm) with a food dispenser and 
tray mounted on one wall and a vertically-oriented 20 mm wide slit in 
the opposing wall that ran from the level of the transducer platform 
(~ 3 cm from the chamber floor) to the top of the chamber (Figure 2A). 
A vertical bar (38 mm height, 1 mm radius) (called ‘force bar’ 
throughout the paper) that was connected to a force transducer (Nano 
17, ATI Industrial Automation) was fixed outside the box at a distance 
of 13 mm from the box wall and center-aligned with the slit. The 
animal’s movements during the task were recorded with a video 
camera positioned on the side of the box, between the force bar and 
the slit. The behavioral task was a reach-to-pull task in which the 
animal was trained to extend a forelimb through the slit to reach and 
grab the force bar and pull it with a threshold force of ~0.25 N.

2.2.2 Shaping procedure
In the first session, animals were acclimated to the training/

recording box by placing them in the box for 1–2 h and putting sugar 
pellets in the tray. In the following sessions, sugar pellets were initially 
held with a tweezer behind the force bar to induce the animal to reach 

through the slit and touch the bar. The animal was rewarded for any 
reaching attempt with sugar pellets being placed in the tray (sessions 
2–3). Once the animal’s paw was regularly contacting the force bar, 
sugar pellets were no longer held behind the bar by the experimenter. 
Instead, the force threshold was set to a minimum level so that the 
computerized system released three sugar pellets to the food tray upon 
any contact of the bar and played a tone (883 Hz and 1.3 s duration) to 
signal the delivery of a reward. The threshold force was then 
incrementally increased to ~0.25 N over the next 1–2 sessions. The 
animal’s preferred limb was noted during these initial training 
sessions, and if the animal started using the other limb during the 
recording sessions, the slit was partially blocked to force the animal to 
use the same limb as in the initial training sessions. Forelimb reaches 
were self-initiated, subject only to a 10-s dead-time following each 
reach for which a reward was given. In each session, an animal 
typically initiated ~75 trials. Training sessions typically lasted ~1–2 h 
and ended when the animal stopped making reaches for ~5 min. 
Training sessions were halted, and surgery was performed to implant 
the electrodes when the animal was making >50 successful trials per 
session for 2–3 sessions in a row. The training time was about 2 weeks 
(~5–6 sessions).

2.3 Surgery

Anesthesia was induced with 5% isoflurane (v/v) and maintained 
with 2.0–2.5% isoflurane in 100% oxygen throughout the surgery. The 
animal’s head was fixed in a stereotaxic frame, and the fur in the 
surgical areas was shaved. Petrolatum ophthalmic vet ointment 
(Dechra, TX) was applied to the eyes to prevent dehydration. Blood 
oxygenation level and heart rate were monitored with a pulse oximeter 
attached to the hind paw. Body temperature was regulated at 36.5°C 
using a heating pad underneath the animal and a rectal temperature 
probe. Salix (0.5 mL/kg, IM) was given to avoid brain edema and 
bulging of the cerebellum during surgery. Local analgesic [Marcaine, 
(Bupivacaine HCl), 0.5 mL/kg, 2.5 mg/mL] was injected into the neck 
and head muscles around the incision areas as pre-emptive anesthesia. 
After making an incision to expose the skull from the bregma to the 
lambda and removing the periosteum completely, five to six holes 
were drilled into the skull using a fine drill bit. Metal screws (0–80 × 
1/16, 1.6 mm, PlasticsOne, VA) were coated with a small amount of 
cyanoacrylate (Gluture, WPI, FL) and screwed into the holes. The 
skull was prepared by applying 3% hydrogen peroxide, followed by 
rinsing with normal saline and drying with gauze. The skull top and 
the screw heads were covered with dental acrylic (Ortho-Jet BCA, 
Lang Dental Manufacturing, IL) mixed with Gluture before both 
neural and EMG Omnetics connectors were fixed atop the skull using 
dental acrylic.

2.3.1 EMG electrode implantation
Following fixation of the connectors to the skull, bipolar EMG 

electrodes were implanted to four muscles (wrist flexors, wrist 
extensors, biceps, and triceps, Figure 1B) of the preferred forelimb in 
order to record the activity of muscles that were recruited during the 
task. Four small skin incisions were made to expose the forelimb 
muscles. Before implanting each EMG electrode, the target muscle 
was electrically stimulated using a bipolar electrode (two tungsten 
wires separated by 1–2 mm). Stimuli were delivered using a current 
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pulse generator (Model 2,200, A-M Systems, WA), and twitching of 
the targeted muscle was confirmed visually (wrist flexion/extension 
or elbow flexion/extension). The EMG electrode wire pairs were then 
tunneled subcutaneously from the Omnetics connector to their 
respective muscles with the help of a stainless-steel tube. Wrist flexor 
and extensor EMG electrodes were implanted near the midpoint of 
the forearm on the ventral and dorsal sides, respectively, while biceps 
and triceps EMG electrodes were implanted close to the elbow joint. 
The EMG wires were sutured with 8–0 non-absorbable sutures to the 
muscles epimysially and stimulated through the implanted EMG 
electrodes to reaffirm the muscle function. Finally, the skin incisions 
were closed with 6–0 absorbable sutures.

2.3.2 Neural electrode (CFMEA) implantation and 
monitoring

Six animals were implanted with a single electrode array to the 
PML. In two other animals, two arrays were implanted next to each 
other on the PML. To implant the arrays, the muscles connecting to 
the occipital bone were detached on one side (ipsilateral to the 
preferred forelimb during training), from the suture with the 
interparietal bone down to about 2–3 mm from the foramen magnum, 
and from the midline to ~5 mm lateral. A cranial hole (2 × 2 mm) was 
opened over the PML in the posterior cerebellum using ophthalmic 
rongeurs. The dura was resected mediolaterally along the midline of 
PML. A 4×8 carbon fiber array was implanted by slowly inserting the 
fibers into the PML cortex to a depth of 250–300 μm. The medial edge 
of the array was located ~1.0 mm from the paravermal vein (total 6 
arrays) when a single array was implanted, and ~ 0.75 and ~ 1.25 mm 
when two arrays were implanted next to each other mediolaterally 
(total 4 arrays) (Figure 1C). The carbon fibers extending from the 
Omnetics connector to the implanted array were covered with dental 
acrylic, except for the distal ~5 mm where the wires entered the mesh 

to form the array. Then, the top of the array was covered with 
connective tissue excised from the neck muscles to secure it in 
position. The reference and ground wires were fixed to the skull bone 
using dental acrylic. Finally, the skin incisions were closed with 
absorbable sutures. The skin edges around the connectors were tightly 
sealed to the dental acrylic base that held the connectors. In vivo, 
carbon fiber electrode impedances were measured and stored with 
Trellis software (Ripple Inc., UT) (2.46 ± 3.15 MΩ, n = 320 fibers) 
regularly throughout the recording period. They were concurrently 
monitored with the electrophysiological signals to judge if electrodes 
were failing, which would require an early termination of the study in 
a particular animal. None of the animals used in this paper required 
early termination.

2.4 Data collection

Neural and EMG recordings were collected at a 30 kHz sampling 
rate using a multi-channel head-stage (Grapevine front end nano2, 
Ripple Inc., UT) and amplifier (Scout processor, Ripple Inc., UT). The 
force signal was acquired at a 30 kHz sampling rate via a data 
acquisition card (PCI 6071, National Instruments, TX) controlled by 
a custom-written script in Matlab (Mathworks Inc., MA). Forearm 
movements were captured (initially at 100 frames/s but later at 30 
frames/s due to storage issues) using a video camera (1080p HD 
Webcam C018, TeckNet, UK). All data recordings were synchronized 
using a TTL signal generated by the force transducer when the 
detected force increased above the threshold during a successful 
attempt. The study period (from the date of implantation to the last 
recording date) was 62.9 ± 19 days for all animals (n = 8 animals). A 
session was conducted every 6.4 ± 5.5 days, for a total of 82 sessions 
across all animals. The recording sessions were evenly spread over 

FIGURE 2

Behavioral Task. (A) Recording Setup. (B) A Representative Force Profile. The time windows corresponding to all four phases of the behavior were 
marked. Approximate time points for lifting (L) and extension (E) phases are generated from video images, and for grasping (G) and releasing (R) from 
the force data (n  =  39 trials, eight animals). The start of grasping and end of releasing phases are the timepoints at which it reaches 10% of maximum 
force amplitude. Vertical dash lines separate phases while horizontal dash line indicates baseline force. (C) Four Stages of the Reaching Movement.
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about a period of two months to demonstrate the reproducibility of 
results while tissue encapsulation around the neural electrodes was 
taking place. Each recording session consisted of ~65 trials, where 
each successful trial contained a single pull on the force bar. All data 
signals were recorded for 4 s, centered around the TTL trigger signal 
from the force transducer. Animals generally performed 3–4 trials/
min, and one recording session took around 1–1.5 h, including a brief 
period of isoflurane anesthesia pre- and post-recording (to connect 
and detach the amplifier headstage, respectively), and 
impedance measurement.

2.5 Data analysis

All data processing and analysis of neural and EMG signals were 
performed in Matlab. Video analysis was done in Igor Pro (Version 
8.0, WaveMetrics, OR).

2.5.1 The phases of the reach-to-pull behavior
For analysis purposes, a behavior window was defined as starting 

at the time at which the animal lifting its forearm from the floor, 
continuing through the reaching, and grabbing of the force bar, and 
ending when the animal breaks contact with the force bar. This 
behavior window was subdivided into four phases. The first phase is 
the lifting phase, and it starts coincident with the behavior window, 
when the animal removes its forelimb from the floor (Figure 2C, 1st 
image) and ends when the paw reaches the height of the elbow 
(Figure 2C, 2nd image). The extension phase follows immediately 
from the end of the lifting phase and ends when the animal touches 
the force bar (Figure  2C, 3rd image). The decision to divide the 
reaching motion into an early lifting and later extension phase was 
based on video records from individual trials that showed that in some 
trials, there is a slight bend in the trajectory when the paw reaches 
close to elbow level (Figure 3A, arrow). The end of the extension phase 
marks the beginning of the grasping phase, which ends when the bar 
is fully grasped (Figure 2C, 4th image), which, in turn, marks the 
beginning of the releasing phase. Finally, the releasing phase ends 
when the animal’s paw lets go of the bar, which is also the end of the 
behavior window.

2.5.1.1 Determining the timestamps of phases on every trial
The beginning and end of the behavior window, and four phases 

of the reaching movement within this window, were determined using 
a combination of the video records and force profiles. Frame-by-frame 
analysis of the video records for all trials was not physically feasible, 
so the average durations of first two phases were estimated from 
frame-by-frame analysis of a sample of trials. The lifting and extension 
phases lasted for 346 ± 301 ms and 371 ± 447 ms on average, 
respectively [n = 39 trials, sampled from eight animals, Figure 2B. High 
SD can be due to across animal differences or the variations in speed 
(see Figure  3D)]. To simplify the analysis, both phases were 
approximated as 350 ms long. This approximation was validated for a 
limited subset of recording sessions in which frame-by-frame analysis 
was used to exactly mark the movement phases (see section ‘Video-
Based Sessions’).

The force profiles were then used to mark the specific start and 
end times of the grasping and releasing phases (Figure  2B). The 
grasping phase start was set to when the force amplitude rises above 

10% of the maximum and the end was defined as the time of the force 
peak. The releasing phase starts at the force peak and ends when the 
force amplitude drops below 10% of the maximum. The grasping start 
time was then used as a fiduciary point to set both the start of the 
extension phase by subtracting 350 ms from it and the start of the 
lifting phase (and overall behavior window) but subtracting another 
350 ms. Analyses were then performed for each of the four movement 
phases, the entire behavior window (‘All’), and the combined first 
three phases (lifting, extension, and grasping), which we refer to as the 
reaching phase.

2.5.2 Video analysis
Video images were used for four purposes in addition to helping 

define the movement phases described above.

 1 Eliminating Mistrials. Images were used to check whether the 
behavior was performed according to the trained pattern in 
each trial. Each trial’s video recording was monitored, and if a 
trial showed deviations, like using two hands or a mis-triggering 
of the system by touching the force transducer platform rather 
than the bar, it was eliminated.

 2 Reach Trajectory (Displacement Tracing). The paw trajectories 
in x- and y-axes during each trial were measured by analyzing 
the video file (mp4) using Igor Pro (Version 8.0, WaveMetrics, 
OR). The paw trajectories were manually traced in the side 
view video recordings (n = 54 trials from one session of one 
animal) by tracking the point of the stem of the second and 
third digits (Figure 3A blue cross indicates the traced position). 
Displacement was traced frame by frame (30 frames per 
second) in a 60 mm by 60 mm region of interest. The average 
number of frames traced per trial was 113. Tracing started 2–3 
frames before the animal started lifting its paw and completed 
when the animal pulled back its paw to the elbow level after 
releasing the force bar. The force bar tip was assigned as zero 
on both x- and y-axes. Then the paw coordinates were 
converted from pixels to mm, and the traces were resampled 
(250 Hz) to get an equal number of samples in each trial to 
allow us to calculate the average and SD (bin size 5 mm) of 
points along the trajectories (Figures 3A,B). Lastly, they were 
5 Hz low-pass filtered (4th-order Butterworth filter) to 
smoothen them.

 3 Wrist and Elbow Angles. Knuckle, shoulder, elbow, and wrist 
trajectories were traced in time frame-by-frame, similar to 
reach trajectory tracing (n = 19, multiple sessions in three 
animals). Trajectories of different sessions/animals were 
aligned using the force bar location as a reference to account 
for slight day-to-day changes in camera position. The elbow 
and wrist angles were computed from these trajectories. The 
elbow angle was measured between the line that connects the 
elbow to the wrist and the line that connects the elbow to the 
shoulder, while for the wrist angle, the lines were the one 
between the wrist and knuckle and the other one between the 
wrist and the elbow.

 4 Video-Based Sessions. Lifting and the extension phases` 
initiation and termination time points were marked for three 
sessions from three different animals (n = 154 trials) based on 
the definitions in section 2.5.1. The EMG signal prediction was 
performed for a second time using these trial-specific time 
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marks and was compared to the original approach which was 
using average time windows for lifting and extension phases.

2.5.3 Processing of neural signals and artifact 
elimination

2.5.3.1 Differential signal calculation
To get rid of common-mode signals in the neural arrays, 

differential signals were calculated by pairing the 32 electrodes in an 
array to form 16 differential channels. Electrode pairing for differential 
channels was based on their positions in the array as the closest 
neighboring channels in the mediolateral direction (medial channel-
lateral channel).

2.5.3.2 Movement artifact removal
The neural signals further cleared of short duration (<50 ms) 

movement artifacts by removing any noisy portion of a trial that 
exceeded a threshold level of 1,000 μV (signal set to zero), which was 
chosen because extracellular neural activity did not exceed this 
threshold in a typical recording. If a trial had an artifact of > ~ 50 ms, 
it was eliminated from the analysis.

2.5.4 EMG and displacement predictions via linear 
regression

After the elimination of trials with noise artifacts, multiple linear 
regression was applied to the data from each session for each 

recording array separately according to the following steps. Trials of 
each session were divided into 80% training and 20% test sets for 
cross-validation of the beta coefficients (every 5th trial was assigned 
as a test trial).

The following steps were followed for the training set.

2.5.4.1 Splitting signals into different frequency bands
Neural and EMG data were filtered with a 60 Hz offline band-stop 

notch filter. Next, EMG signals were band-pass filtered between 
20–2,000 Hz using 4th-order Butterworth filters. Then, neural signals 
were divided into sub-bands by filtering with one of four band-pass 
filters (30–100 Hz, 100–300 Hz, 300–1,000 Hz, and 1,000–2,000 Hz) 
using 4th-order Butterworth filters to analyze separately the 
relationship of LFPs (lower two frequency ranges) and MUAs (higher 
two frequency ranges) with the EMG signal. Two example neural 
signals (Figures  4C,D) and one’s components (Figure  4E) after 
filtering in these frequency bands are seen in Figure 4. Thus, from 
each electrode array, 64 neural envelopes were generated (16 
differential channels x 4 bands). The definitions of the LFP and MUA 
band frequency ranges vary greatly in the literature. The limits of LFP 
and MUA are generally defined between 0.5–500 Hz (Burns et al., 
2010; Dubey and Ray, 2019; Lévesque et al., 2020; Baumel et al., 2021) 
and 300–10,000 Hz (Heck et al., 2007; Burns et al., 2010; Asan and 
Sahin, 2019; Dubey and Ray, 2019) respectively. Thus, the choices of 
the exact division points of these bands are somewhat arbitrary. To 
test whether our analyses were strongly dependent on our exact 
choices, some analyses were rerun after varying these points slightly 
(see sections 2.5.6 and 3.4).

FIGURE 3

Video Analysis. (A) Simplified paw traces, the average trace (red line), and standard errors (bin size: 5  mm, red bars). The arrow shows a shift in the 
trajectory in some trials around the elbow level. The animal and surroundings were traced from the screenshot on the right. (B) shows all individual 
traces (black) with mean (red line plot) and SD (red bars). The blue vertical line represents the force bar. (C) Paw Tracking. Dorsoventral displacement 
(y-axis) vs. time, and rostrocaudal displacement (x-axis) vs. time. Black portions of the traces are L and E phases, while gray portions are G and R. Note: 
0 is the tip of the force bar in both x- and y-axes that is marked on (A). Blue arrows mark the end position(s) in the y-axis. Red arrows show the varying 
holding times. (D) Prediction correlations [Blue plots are original prediction results while black plots are filtered prediction trace results as in (E)] and 
speed (purple traces) in x- and y-axes. Dots are mean and whisker plots are standard error. (E) Sample x- and y-trace predictions on two trials. Red 
traces are measured trajectories while blue (original) and black (low-pass filtered) are predicted trajectories. These samples were from a test set of 11 
trials. r values for original and filtered prediction traces with their measured x-traces were respectively, 0.32 and 0.42. For the y-traces r values were 
0.24 and 0.36, respectively. y-axis of the plots is the displacement (mm).
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2.5.4.2 Generating EMG and neural envelopes
Following all the steps above, the trials in a session were 

concatenated to form continuous time signals. Next, filtered neural 
and EMG signals were full-wave rectified and low-pass filtered at 5 Hz 
to generate their signal envelopes. Transient filter responses at the start 
and end of the signals (‘edge effect’) were removed by truncating 0.1 s 
extensions of the data at each end, and then they were re-concatenated. 
Finally, the neural and EMG envelopes were down-sampled from 
30 kHz to 1 kHz to reduce computer processing time.

2.5.4.3 Regression
Beta coefficients of each of the 64 neural channels were calculated 

using Matlab’s built-in regress function (uses multiple linear regression 
model) based on EMG envelopes. The function uses the equation:

 
y xpredicted i ii= ∗=∑ β

1

64

 
(1)

where the dependent variable, y, is the EMG signal; the xi (i = 1–64) 
are the neural signals; βi are the respective regression coefficients.

To test the resulting regression model, the test set’s neural 
envelopes were generated as described for the training set and were 
run through the model to calculate the predicted EMG signals using 
the regression coefficients obtained from the training set. Finally, 

Pearson’s correlation (r) between the predicted and measured EMG 
signals of the test set was calculated for each session as a measure of 
the success of the prediction. To test the significance of the 
correlations, a random signal dataset was generated by replacing both 
EMG and neural data with an offline-generated noise signal of the 
same size, processing and filtering the noise signals the same as was 
done with the neural activity, obtaining the envelopes for these signals, 
performing the regression analysis, and calculating the correlation 
values between the predicted and actual EMG signals (‘chance level’). 
The number of random data sets generated equaled the number of 
actual data sets (n = 47,925).

2.5.4.4 EMG and force outlier elimination
The data were tested in three different scenarios: (1) EMG outlier 

elimination, (2) force outlier elimination, and (3) no outlier 
elimination (all trials are kept). Outlier elimination aimed to ensure 
the repeatability of the behavior and compare these different methods 
in terms of how outliers affect the results. In each dataset, ±2 SD 
amplitude ranges were computed at each time point of the EMG and 
force envelope signals. Outliers were defined as any data point that fell 
above or below 2 SD of the EMG and force signal at any time point 
during the trial. Once a trial is tagged as an outlier, all the data 
collected in that trial, i.e., neural, EMG, and force, were excluded from 
the regression of the respective scenario.

2.5.4.4.1 Displacement prediction
Using the same algorithm, displacements in the x- and y-axes, 

which were generated from the side view video recordings (Figure 3A), 
were also predicted from the synchronously recorded neural data of 
the 32-channel array. The neural data was processed the same way as 
in EMG prediction (section 2.5.4) and the displacement trajectories 
were processed the way it was explained above (section 2.5.2). The 
displacement data and the neural data were synchronized using force 
data as a reference. The time point at which force data exceeding 10% 
of maximum amplitude was synchronized to the frame in which paw 
passing the position of 3 mm behind the force bar, representing the 
first contact of the digits with the force bar. The behavior window was 
determined using displacement traces, the beginning being the frame 
in which lifting from the cage floor starts and the ending being the 
frame in which paw going back into the window and reaching the 
elbow level again.

2.5.5 Regression for different phases of the 
behavior

The multiple linear regression algorithm was applied in each of 
the four time windows separately and to the movement as a whole 
(i.e., the entire behavior window as defined in section 2.5.3 and 
termed ‘All’) to investigate how the representation of the behavior in 
the neural signals varied across the movement phases. Additionally, 
the lifting, extension, and grasping phases were analyzed as a 
combined single phase (called ‘reaching’).

2.5.6 Regression and mutual information analysis 
with time shifts

2.5.6.1 Regression with time shifts
A shifted multiple linear regression algorithm was used to 

investigate how well neural signals predicted EMG signals at various 

FIGURE 4

Frequency content of the signals. (A–B): High end of the neural 
signal spectra, where the signal power declined to −20  dB 
(A) and  −  3  dB (B) of the maximum as a function of frequency, 
averaged from all recording channels in all animals. Panel (A) with 
−20  dB amplitude cut-off, which shows that the high frequency 
components with small amplitudes are lost toward the end of the 
implant times. Signal components at such small amplitudes can still 
be utilized by the regression algorithm. Red is average, shaded area is 
+/− 0.5 SD. Dots are the data points for individual recording 
channels. Inset is the power spectrum [x-axis (kHz); y-axis (dB)]. 
Panel (B) with −3  dB amplitude cut-off, which shows that low-
frequency signals (mainly LFP) were maintained throughout the 
study. (C) Raw sample neural recording with high spike activity, 
(D) Raw sample neural recording with lower frequency components, 
mostly in the LFP band. (E) Same recording in (C) after filtering with 
different bandpass filters to show that each frequency band contains 
different temporal patterns that are utilized by the regression (From 
top to bottom with the order of 30–100  Hz; 100–300  Hz; 300–
1,000  Hz; 1,000–2,000  Hz.). The time calibration bar applies to  
(C–E). The amplitude calibration bar applies to (C,D).

https://doi.org/10.3389/fnins.2024.1232653
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Cetinkaya et al. 10.3389/fnins.2024.1232653

Frontiers in Neuroscience 08 frontiersin.org

latencies. First, the raw EMG data was shifted for different time 
lengths (±25, ±50, ±100, and ± 400 ms) with respect to the neural 
signals. Then, the multiple linear regression described above (section 
2.5.4) was repeated for each shift separately to determine if the 
cerebellar signals encode information about the upcoming or 
preceding EMG activity. To shift in the negative direction in time 
(pre-movement), the amount of time equal to the shift was cut from 
the end of each raw, 4-s long neural signal, and the beginning of raw, 
same length EMG signal. Then their beginnings were aligned. Vice 
versa for positive (post-movement) shift.

2.5.6.2 Mutual information with time shifts
Mutual information (MI) between the measured and the predicted 

EMG envelopes was calculated as a second measure of encoding of 
EMG by cerebellar activity. First, the envelopes of the signals were 
prepared in the same manner as described for the linear regression 
analysis. Next, probability distributions were computed from the 
envelope data sampled at 1 kHz to find the entropies. Then, assuming 
X and Y are two independent variables (in our case, neural and EMG 
envelopes), H(X) and H(Y) are their entropies, and H(X, Y) is the joint 
entropy between two variables, the MI between X and Y can 
be calculated as in (Cover and Thomas, 2005; Srinivasa, 2008):

 MI X Y H X H Y H X Y; ,( ) = ( ) + ( ) − ( ) (2)

The calculation of these parameters is briefly as follows: The 
amplitude of the data is normalized to range between zero to one. The 
optimum bin size is determined based on the size of the data and the 
data is converted into bins of histograms. Then we compared bin data 
of neural and EMG signals and generated their probability matrix, Pxy, 
which is composed of the probabilities of occurrences of every 
combination. Following, marginal probabilities of neural and EMG 
(Px and Py) are found by summing the probability values in this 
matrix. Lastly, the final parameters H(X), H(Y), and H(X, Y) are found 
by calculating the summations of Px, Py, and Pxy, respectively, (Grinsted, 
2024). For each of the 64 neural data (16 differential channels * 4 
frequency bands), an MI value is calculated. Zero MI value indicates, 
no mutual information, while the difference from zero indicates the 
existence of mutual information. For the shift analysis, we calculated 
the MIs of every channel with varying shifts. For every shift, MIs 
averaged across channels, sessions, and arrays.

2.5.7 Contributions of different frequency bands
To find the contribution of a particular neural frequency band to 

the overall prediction of EMG signal, beta coefficients from the training 
set belonging specifically to that frequency band were multiplied by the 
corresponding neural data for that frequency band from the test set 
(Eqs 3, 4. Similarly, for y100-300 Hz, y300-1,000 Hz, and y1,000–2,000 Hz, the i values 
range between 17–32, 18–48, and 49–64 respectively). Then, the 
explained variance values of the resulting time signals were calculated 
for each frequency band. Finally, its relative contribution was calculated 
as a percentage of the total variance. For example, for the 30–100 Hz 
frequency band, the contribution was calculated as in Eq. 5.
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A similar calculation was performed on the MI as an alternative 
measure. In this case, the sum of the MIs over all trials for the specific 
frequency band was divided by that of the sum for all frequencies and 
multiplied by a hundred.
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2.5.8 Clustering neural, and EMG data
To investigate the possibility of sub-patterns in the neural signals 

that were better correlated with the EMG signals, a k-means analysis 
was used. First, 1.5 s (1 s before and 0.5 s after the force maximum) long 
recordings were collected from all arrays and sessions (n = 2,477 for each 
EMG, and n = 12,992 for neural signals). 1 s before force maximum was 
divided into three equal (0.33 s long) time windows as lifting, extension, 
and grasping phases (The reasoning behind this approximation 
approach was that the clustering algorithm requires equal lengths of 
signals). 0.5 s after the force maximum was marked as the releasing 
phase. Following filtering (30–2,000 Hz 4th-order Butterworth band-
pass filter), their envelopes were generated as in section 2.5.4. Then, 
envelopes were normalized to ±1 SD and zero mean using Matlab’s 
built-in normalize function (This function converts envelopes to z-score 
by extracting the average and dividing them to SD). Later, neural, and 
EMG envelopes independently clustered into five (k = 5) clusters using 
the k-means algorithm in Matlab [Optimum cluster number is found to 
be two for all data classes (neural and four EMGs). It was calculated 
using Matlab’s evalclusters function, with Calinski-Harbasz criterion and 
testing the data for between 1–10 clusters. Increased cluster number of 
k = 5 is used in order not to miss the smaller clusters in the data]. Finally, 
within each cluster z-score signals were averaged. The criteria to 
interpret the results was the timing of the increased amplitude or peaks 
of the z-scores (called ‘surge’) with respect to the phases of the reach-to-
pull movement.

2.5.9 Statistical methods
Most statistical comparisons were made using paired Student’s 

t-tests. One-way ANOVA and pairwise comparison with Bonferroni 
correction were used when appropriate. Other statistical tests are 
noted in the text when used. Means are given with their standard 
errors in the text and figures.
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3 Results

3.1 EMG prediction

3.1.1 Database
A total of ten CFMEAs were implanted in eight animals, and a 

total of 82 recording sessions were made in which the activity from 
one of the arrays was recorded (Table 1). Animals with two arrays 
generally performed two sessions on the same recording day, one for 
each array. A total of 5,595 trials were recorded. Of these, 400 trials 
were eliminated because of visually observable saturation or 60 Hz 
noise in the EMG signals, or incorrect reaching performance, as 
described in the Methods (section 2.5.2). In 291 trials, double reaching 
attempts were found, and each reach was analyzed as a separate trial. 
Thus, a total of 5,486 trials were analyzed (63 ± 29.7 trials per session), 
representing 93% of all trials recorded. When the recording channels 
were visually segregated into LFP recording channels and MUA 
recording channels, 71/160 channels were found to be recording MUA 
activity. These channels were recording high frequency MUA in ~1.5 
sessions (n = 71 trials) on average out of ~8 sessions (mostly earlier 
sessions as seen in Figure  4), that makes MUA ~8% of the 
total database.

3.1.1.1 Prediction of reach-to-pull related EMG signals 
from cerebellar PML activity was demonstrated via cross 
validation

For each CFMEA, the 16 differential channels of neural recordings 
were divided into four frequency bands, and these 64 signals (16 × 4) 
were used in a regression model to predict the EMG signals, as 
described in the methods. The goodness of the model was then tested 
by correlating the predicted and actual EMG signals for each muscle 
for each session. The correlations between the predicted and actual 
EMGs were significantly higher than the chance level. Using all 5,486 
trials, out of 328 linear regressions performed (82 sessions for four 
EMGs), 320  in the training sets (97.6%) and 263  in the test sets 
(80.2%) showed a statistically significant (p < 0.05, t-test for r ≠ 0) 
positive correlation (training set, r  = 0.62.7 ± 0.19; test set 
r = 0.36 ± 0.22).

3.1.1.2 Eliminating force or EMG outliers improve the 
results and ensure repeatability of the movement

Next, either the EMG or force outlier trials (see methods for 
outlier criteria) were eliminated from regression to investigate how 
they affect the correlation results. EMG outlier events were detected 
in 21–23% of the trials (wrist extensor: 1,199/5,486 trials, wrist flexor: 
1,224/5,486 trials, biceps: 1,279/5,486 trials, triceps: 1,214/5,486 
trials). When EMG outlier elimination was used, out of 328 linear 
regressions performed, 328 (100%, r = 0.66 ± 0.18) in the training sets 
and 254 (77.5%, r = 0.34 ± 0.23) in the test sets showed a significant 
positive correlation between the predicted and actual EMGs (p < 0.05, 
t-test for r ≠ 0). Force outliers were found in 687 (12.4%) trials. When 
force outlier elimination was used, out of 328 linear regressions 
performed, 324 (98.7%, r = 0.66 ± 0.20) in the training sets and 261 
(80%, r = 0.38 ± 0.24) in the test sets showed a significant positive 
correlation between the predicted and actual EMGs (p < 0.05, t-test for 
r ≠ 0). Thus, different outlier elimination methods gave similar results, 
and there was a large overlap between the set of trials eliminated by 
different methods. However, the small difference of correlations in the 

test sets between force-outlier elimination and EMG-outlier 
elimination was nearly significant (p = 0.07) in favor of force-outlier 
elimination. Even though the difference between force-outlier 
elimination and no-outlier elimination was not significant (p = 0.34), 
we preferred to use the force-outlier elimination method to maintain 
the repeatability of the movement. Thus, only the force-outlier 
elimination method was used for further analyses.

3.1.1.3 Cerebellar activity predicts both elbow and wrist, 
flexor and extensor EMGs with similar success

The breakdown of sessions with a significant positive correlation 
(r > 0; p < 0.05) between neural and EMG signals were as follows: wrist 
extensor, 62/82; wrist flexor, 61/82; biceps, 65/82; triceps, 64/82. The 
average correlations in the test sets of these sessions were 0.37 ± 0.23 
for wrist extensor, 0.34 ± 0.21 for wrist flexor, 0.42 ± 0.26 for biceps, 
and 0.39 ± 0.25 for triceps (Figure 5A). However, in the best cases, the 
correlations were much higher than these averages. For example, 
when the session with the best correlation from each of the ten 
CFMEAs were averaged for each EMG, r values were as followings: 
wrist extensor 0.53 ± 0.11; wrist flexor 0.85 ± 0.21; biceps 0.63 ± 0.20; 
triceps 0.52 ± 0.26. Figure 5C shows an example of the prediction 
results with high correlation. This suggests that PML signals are able 
to predict the EMG activity quite well in ideal conditions; however, as 
shown by the wide distributions in Figure 5A, the success rates varied 
considerably between arrays and across sessions. To understand the 
underlying factors of this variation, we looked into several possibilities.

3.1.1.4 Prediction success improves over time
When the correlations from all the arrays were averaged to see the 

overall trend in prediction success over time, the fitted line showed a 
positive (0.008–0.022) slope for three out of the four EMGs 
(Figure 5B). When analyzing the arrays individually, 8/10 showed 
positive correlations, and three were significant (p < 0.05). High 

TABLE 1 Summary of the database used in this study.

Database

Label Parameter Count

A Total Number of Implanted Animals 8

B Total Number of Implanted Arrays 10

C Total Session Count Across All Arrays and 

Animals

82

D Total Recorded Trials Across All Sessions, 

Arrays, and Animals

5,595

E Trials Eliminated Because of Noise 400

F Double Reaching Attempts 291

G Total Analyzed Trials 5,486

H Average Trial Count Per Session 63 ± 29.7

I Total Number of Force Outlier Trials 687

J Total Number of EMG Outlier Trials Per 

Muscle (Wrist Extensor/Wrist Flexor/

Biceps/Triceps)

1,199/1,224/1,279/1,214

Total analyzed trials (G) were calculated as D-E + F. Average trial count per session (H) is 
reported as mean ± standard deviation. Force (I) and EMG (J) outlier trials were searched for 
in all trials that were used for analyses (G), and were determined as described in the methods 
(see section 2.5.4).
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correlation values (>0.9) occurred mainly in the second half of the 
study period.

3.1.1.5 Implantation area: higher correlations for arrays 
implanted closer to the paravermal vein

Arrays were implanted in the PML such that the medial edge of 
the array was located at one of three mediolateral distances from the 
paravermal vein: ~0.75, 1.0, and 1.25 mm. Results were grouped 
according to the implant location to assess the dependence of 
correlations on the mediolateral position. On average, arrays at 
0.75 mm predicted all EMGs with higher correlations (Figure 6A). 
We next investigated whether the relative success in predicting the 

EMG activity for different muscles varied across arrays. The success 
rates were similar for the wrist muscles across most of the arrays. 
Correlations with elbow muscles varied most across the arrays 
(Figure 6B). Based on multi-way ANOVA test (comparison between 
r-values vs. array location), the position on the PML was a significant 
factor (p = 0.04).

3.1.1.6 The speed and the target end position variability 
may have decreased the prediction success in 
displacement prediction

Trajectories in x- and y-axes that were generated from the video 
images were tested for their prediction from neural data. The 
investigation on these kinematic parameters of reaching behavior can 
give deeper insight into the reaching task representation in the PML 
activity and the variability in the results that was shown above.

The correlations between predicted and measured displacement 
traces were all statistically significant (n = 20 predictions. Each 
prediction used n = 54 trials from a session of the same animal, for 
each dimension. Same session was analyzed with 20 different 
randomized selections of test set for both x- and y-axes. p < 0.05 was 
for all predictions). The predictions of x-axis traces were nearly 
significantly more successful than y-axis [The average r values for test 
sets were 0.25 versus 0.21 (p = 0.08) while for the training sets 0.51 
versus 0.45, respectively, (p < 10−15)]. The prediction traces showed that 
the model predicted faster changes (Blue plots in Figures 3D,E) while 
measured traces (Red plots in Figure 3E) basically had one major 
event, the onset. To understand the results better, the predicted traces 
were low-pass filtered with a 2 Hz cut-off frequency (Black plots in 
Figures 3D,E), which improved the results (x-trace prediction success, 
average r = 0.31 and y-trace prediction success, average r = 0.27). 
Regardless, in any case x-axis was predicted with higher success.

To investigate the underlying reasons for better predictions in the 
x-axis, we  calculated the average instant speed (Purple plots in 
Figure 3D). The average speed in the x-axis was approximately twice 
as fast as the y-axis (64 mm/s versus 31 mm/s). Another difference was 
the clear variability in the y-axis target end position, than the end 
position in the x-axis (Figure 3C, blue arrows), which was expected 
due to the force bar being a vertical stick and allowing multiple points 
for grabbing.

To this point, the results show that: (1) there is a significant 
correlation and prediction power between the forelimb EMG signals 
and the PML neural population activity; (2) eliminating force or EMG 
outliers improves the prediction; (3) small differences, in the order of 
0.25 mm, in implantation site can affect the results; (4) forelimb 
kinematics can be predicted from neural data while speed and target 
end position may affect the results.

3.2 EMG predictions in different phases of 
forelimb reaching

For the analyses in this section and the following sections (3.3–
3.5), the dataset was limited to the highest-correlated four sessions of 
each of the ten arrays, so that we  could analyze the relationship 
between cerebellar and EMG activity in detail using datasets in which 
a relationship was clearly present. We next investigated whether the 
neural signals were better correlated with the EMG activity of specific 
phases of the reaching movement by performing the linear regression 

FIGURE 5

Prediction of forelimb EMGs. (A) Distributions (white dots) of the 
correlations between predicted and actual EMGs from all ten 
microelectrode arrays in all sessions (n  =  82 for each EMG) and their 
averages (red dots). (B) The changes in the correlations (between 
predicted and actual EMGs) over time (sessions) for each muscle. 
Dashes are the line fits. Their slopes are: 0.017, 0.022, 0.008, 
and  −  0.007 for wrist flexor, wrist extensor, biceps, and triceps, 
respectively. (C) Sample predictions for one EMG in a session with six 
trials in a test set, separated by vertical dash lines. Black: actual EMG 
envelope, green dash line: predicted EMG envelope.

FIGURE 6

Effect of implant position. (A) Prediction results based on array 
implantation positions (0.75  mm, 1  mm, and 1.25  mm from 
paravermal vein). (B) Prediction correlations for individual arrays. 
Each of ten plots indicate one array. Means (dots) and standard 
errors (whiskers) are shown. Dash lines separate array groups based 
on their implantation positions.
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analysis on each of the four phases individually [lifting (L), extension 
(E), grasping (G), and releasing (R) and on the combined lifting, 
extension, and grasping phases (‘reaching’ phase, RC) and combined 
all four phases, ‘All’ (A)].

The six distinct findings of this section were as follows. First of all, 
merging all phases (A) produced the most robust EMG predictions 
[r = 0.49 ± 0.23 for A in Figure 7A. A was significantly higher than L, E, and 
G phases (p < 3 × 10−4 for all with Bonferroni correction)] in individual 
muscles as it was when they were grouped, and A was similar for all 
muscles (Figure 7B) [For wrist flexor (light pink in Figure 7C), A was 
significantly higher than both L and E (Bonferroni correction p = 0.018 and 
p = 0.0029), and for the biceps (elbow flexors, light gray in Figure 7C) as 
well, A was significantly higher than E (Bonferroni correction p = 0.0135)]. 
Secondly, Combining L, E, and G into RC also created a higher correlation 
on average than each of the four phases alone [For RC in Figure 7A, 
r = 0.41 ± 0.27. The RC phase was significantly higher than the E phase 
(multiple comparison, p = 0.02 with Bonferroni correction)]. RC also had 
higher correlations than the R phase alone for all muscles individually 
except the wrist extensor whose R phase prediction was on par with RC 
phase (Figure 7B).

Third, going into more details, generally among four reach-to-pull 
components (L, E, G, and R), the later parts of the movement (G and 
R while R being more obvious) tended to be predicted better than the 
early parts of the movement (L and E) (Figures 7A,B). Fourth, the 
success of the prediction varied more in very early parts of the 
behavior (L and E) among four EMGs (Figure 7B) [ANOVA between 
four muscles in L phase showed significant difference (p = 0.03), and 
in this phase, elbow extensor (or triceps, dark gray in the figure) was 
significantly better predicted than the wrist flexor (light pink) 
(Multiple comparisons with Bonferroni correction, p = 0.01). 
Meanwhile, in the E phase, the difference among the four muscles was 
nearly significant (ANOVA p = 0.06), specifically the difference 
between wrist extensor and wrist flexor (Multiple comparisons with 
Bonferroni correction p = 0.12)]. This is most striking for flexors, both 
wrist and elbow (Figure 7C).

Fifth, most of the time E phase was the most difficult to predict 
(in Figure 7C, for all muscles except wrist extensors, E phase is the 
minima) while R prediction was generally the best among the four 
phases (in Figure 7C, for all muscles except elbow extensors, R phase 
is the maxima) followed by lifting phase most of the time. The L and 
G phases had intermediate correlation values (0.35 ± 0.31 and 
0.35 ± 0.30 respectively). Sixth, wrist flexor predictions were mostly 
the least successful (light pink in Figure 7B) while elbow muscles was 
generally the most successful.

Arrays were also grouped according to which muscle EMG that 
they best predicted (Figure 7D). The distribution varied with location. 
At 0.75 mm, the arrays best encoded the EMG activity of the flexors 
(biceps or wrist flexor). Arrays at 1 mm represented all four EMGs 
with similar frequency. At 1.25 mm, both arrays were a better predictor 
of the triceps EMG.

3.2.1 Video-based sessions
Lifting and the extension phases were re-analyzed based on their 

trial-specific, precise lifting and extension phase time marks. Average 
lifting and extension phase lengths were respectively, 0.283 ± 0.262 and 
0.444 ± 0.273 ms (n = 154 trials). Most of them showed improved 
prediction success (15/24 increased correlation), but the difference 
was not significant (p = 0.6, t-test).

3.3 Regression and mutual information 
with time shifts

This analysis aimed to get insight into the sensorimotor content of 
the recorded neural signals. If correlations between predicted and 
measured EMGs increased when the measured EMG signals were 
shifted in the negative time direction (i.e., neural activity predicted future 
EMG activity), it would be evidence that the neural activity contained 
pre-movement-related information, and in contrast, if correlations 
increased with positive EMG shifts, it would provide evidence for the 
neural signals encoding post-movement information, perhaps sensory 
feedback caused by the movement (Cerminara et  al., 2015). In this 
analysis, the entire behavior window (from the beginning of the lifting 
phase to the ending of the releasing phase) is used.

3.3.1 PML signals carry both pre-movement and 
post-movement information

The correlations are shown in Figure 8A for various time shifts in 
both directions. Except for ±25 ms shifts, all other time shifts had 
significantly lower correlations than the no-shift case (multiple 
comparison test: pre-movement25 vs. no-shift p = 0.57; post-
movement25 vs. no-shift p = 0.16, other shifts vs. no-shift p < 0.05). 

FIGURE 7

Correlations between predicted and actual EMG envelopes in 
individual phases of the behavior. Linear lines connect the 
consecutive phases. Dots are indicating the means, and the whisker 
plots are standard errors. Note: red asterisk, p  <  0.05, and black 
asterisk p  <  0.1. (A) Correlations for all four EMGs are averaged (red 
plots). (B) Correlations for individual EMGs in each behavioral phase. 
(C) Same as (B), only arranged as flexor/extensor and wrist/elbow 
EMGs. (D) Based on implantation area (0.75  mm, 1  mm, and 1.25  mm 
from the paravermal vein) showing which EMGs were predicted with 
the highest success (r). Numbers indicate the number of arrays. 
Color codes for (B,D) are the same as in (C).
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However, the fact that a significant correlation exists for delays as long 
as 400 ms in either direction [The difference between any and every 
shift and chance level is significant (p < 0.05)] suggests that the PML 
signals contain both post-movement- and pre-movement-related 
information (Figure 8A, short black dashes). The regression analysis 
was repeated with lighter filtering (10 Hz corner frequency instead of 
5 Hz) on the rectified neural and EMG signals for finding the 
envelopes (Figure  8A, long black dash line) to test whether the 
correlations were artifacts due to low corner frequency of the filter, 
because the time constants (1/2πf) for first-order 5 Hz and 10 Hz filters 
are 31.8 ms and 15.9 ms, respectively. The results for correlations with 
5 Hz and 10 Hz filters were similar, except that correlations were 
smaller for all shifts, particularly the ±50 ms shift, with the 10 Hz filter 
(Figure 8A). This suggests that the 5 Hz envelope filter had a negligible 
impact on the regression results, i.e., did not cause false correlations 
for non-zero time shifts. Mutual Information plots (Figure 8B) agree 
with the correlation results (all shifts vs. no-shift p < 0.05, except 
pre-movement and post-movement 25 ms). Thus, the neural data 
contained both pre-movement and post-movement information that 
decreased with increasing time shifts. For both methods, the 
correlations were above the chance level at all time shifts (p < 10−9). In 
addition, both methods overall showed slightly higher values for 
negative (pre-movement) time shifts relative to their corresponding 
post-movement shifts, suggesting a higher level of pre-movement 

information content in the neural signals; however, the differences did 
not reach statistical significance.

3.3.2 Sensorimotor information and the 
representation of EMGs depend on array location

Even though on average the arrays showed the highest correlations 
for the no time shift case, this was not the case for some arrays. Arrays 
were categorized as ‘post-movement’, or ‘pre-movement’ or 
‘synchronized’, depending on which shift produced the best EMG 
prediction (positive, negative, or zero-time shift, respectively). Out of 
ten arrays, one was post-movement, two were pre-movement, and 
seven were ‘synchronized’. This classification appeared to be related to 
the array’s position on the PML (Figure  8C). Arrays classified as 
‘synchronized’ were found at all three implantation distances from the 
paravermal vein. However, both pre-movement arrays were located at 
1 mm, and the only post-movement array was implanted at 1.25 mm.

3.4 Frequency band contributions

3.4.1 High frequencies contribute more to the 
EMG prediction

Different frequency bands in extracellular electrophysiological 
recordings are thought to reflect different aspects of neuronal signal 
processing (e.g., LFPs and spike activity). Therefore, determining the 
relative contributions of each frequency band to the EMG prediction 
could shed light on which components of the cerebellar activity 
contribute to the EMG activity. For both the regression and MI 
models, neural activity was filtered into four frequency bands: 
30–100 Hz, 100–300 Hz, 300–1,000 Hz, and 1,000–2,000 Hz. The 
contribution of each band to the total variance can be determined by 
forcing the coefficients for the other frequencies zero in the regression 
model and rerunning the predictions (Eqs. 3–7, see methods). Of the 
four bands tested, the 300–1,000 Hz band made the largest 
contribution (32 ± 19%) and the 30–100 Hz band contributed the least 
(19 ± 18%) to the EMG predictions based on the signal variances of 
each band (Figure 9A). The difference between all frequency bands 
was significant (ANOVA, p = 5 ×10−9). The differences between 
30–100 Hz and 300–1,000 Hz bands; 30–100 Hz and 1,000–2,000 Hz 
bands; and 100–300 Hz and 1,000–2,000 Hz were significant (multiple 
comparisons, p < 0.0011 for all).

To test whether these differences were sensitive to the specific 
limits of the bands, we reran the analysis after shifting the limits to 
slightly higher (30–120; 120–350; 350–1,100; 1,100–2,200 Hz) and 
lower (30–80, 80–250; 250–900; 900–1,800 Hz) frequencies. The 
changes in the results were not significant (p ranged between 0.1–0.92 
for t-tests). When they were simply divided into low- and high-
frequency bands (30–300 Hz and 300–2,000 Hz), their percentage 
contributions were 42.7 ± 20% and 57.3 ± 20%, respectively, 
(p = 1.5×10−20).

The percent contributions of each frequency band from the MI 
analysis were consistent with the regression results (Figure 9B). The 
300–1,000 Hz band showed the highest MI between the neural and 
EMG envelopes (29 ± 5%). The difference between all frequency bands 
was significant (one-way ANOVA, p = 1.6×10−48), except between the 
100–300 Hz and 1,000–2,000 Hz bands. These results show that overall 
high-frequency components contribute to the prediction of EMG 
signals more than the lower frequencies.

FIGURE 8

Group correlations from linear regression (A) and mutual information 
(B) for forward and backward shifting of neural data in time with 
respect to the EMG signals to determine the post-movement and 
pre-movement content of the neural signal. Whisker plots show the 
standard error. (Using 5  Hz filter: black short dashes, 10  Hz filter: 
black long dashes), while green and orange whisker plots are, 
respectively, pre-movement and post-movement. The blue bars are 
for ‘no shift’ (or ‘synchronized’), while green and orange bars, 
respectively, pre-movement and post-movement. p values between 
±25  ms and no-shift cases do not show significance in both panels. 
The red dash line in (A) indicates the chance level, i.e., predictions 
using random neural signals. (C) Arrays are grouped based on their 
highest correlated shift based on regression as ‘pre-movement’, 
‘post-movement’, or ‘synchronized’. Numbers indicate the number 
of arrays. Color codes are same as in (A,B).
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3.5 EMG and neural signal peaks mark 
behavioral phases

Each set of signal amplitudes was normalized (converted to 
z-scores as explained in Methods), and the signal envelopes from each 
set (neural and four EMGs) were clustered using a k-means algorithm 
into five independent clusters. This clustering was repeated 100 times 
to increase robustness. Examples of the five EMG cluster-means for 
each muscle are shown in Figure 10A (wrist extensor, EC1-5; wrist 
flexor FC1-5; biceps, BC1-5; TC, triceps1-5), and of the neural cluster 
(NC) means in Figure 10B (NC1-5). For all 100 cluster runs, the peak 
times of each of the 25 (five neural and 20 EMG clusters) cluster-
means were used to generate a histogram of their distribution in the 
behavior window (Figure 10C). The histogram shows that the EMG 
profiles (purple bars) had, 1 - a strong peak at the lifting phase, 2 - a 
widespread distribution throughout the middle phases, and 3  - 
another distinct peak during the releasing phase. NC peaks (blue bars) 
occurred at the beginning of each one of the four phases and the 
ending of the last phase. In summary, clustering analysis showed that 
the cooperative work of neural and EMG signals starts, proceeds, and 
terminates the behavior (Figure 10B).

3.5.1 EMG patterns correlate to elbow and wrist 
angles

The signals grouped in the clustering section were further analyzed 
by averaging (without normalization) to determine their overall 
followed trajectories (Figure 11A) during reach-to-pull behavior. The 
elbow and wrist angles were also measured using video recordings to 
investigate the relationships between the recorded EMG trajectories in 
Figure  11A and joint angles (Figures  11B–E) to get a deeper 
understanding of kinematic parameters of the reach-to-pull behavior.

During lifting elbow angle changes the most [Figure 11C, Δθ (the 
maximum angle change) is 37 degrees] which coincides with increased 
triceps activity during the lifting phase in Figure 11A (the fourth plot). 
During the grasping stage, the wrist angle was quite stable (Figure 11E, 
Δθ is 5 degrees), which agrees with the finding in Figure 11A that 
shows increased activity of both wrist extensor (the first plot) and 
wrist flexor (the second plot) to stabilize the wrist angle. The wrist 
angle changed the most during the extension phase (Figure 11E, Δθ 
is 34 degrees) as a result of repositioning the wrist after lifting 
(Figure 11E, Δθ is 17 degrees) and preparing for grasping. There was 
still some elbow angle change during grasping even though it is the 
smallest in all. Both biceps (Figure 11A, the third plot) and triceps 

(Figure 11A, the fourth plot) EMG amplitudes are elevated during the 
lifting, extension, and grasping phases before a sudden dipping at the 
end of the grasping phase. These angle measurements in general agree 
with the EMG profiles.

Lastly, we tested the data for the variability of joint angles during 
three reaching phases, between different trials (Figure 11F). Results 
showed statistically higher SD in early phases (lifting phase 
specifically) compared to the last phase of the reaching, releasing 
phase, in general [Based on ANOVA test, the difference between SDs 
of lifting, extension, and releasing phase elbow angles was significant 
(p < 10−24). Specifically, the lifting phase SD was significantly larger 
than both extension and releasing phases SDs (p < 10−14). Likewise, 
ANOVA between SDs of lifting, extension, and releasing phase wrist 
angles showed a significant difference (p < 10−15), and the difference 
between lifting and both two other phases was significant (p < 10−8)]. 
These results also correlate with phase analysis results in section 3.2, 
which indicated an increased prediction success as phases progressed 
in the behavior window.

4 Discussion

In this study, we recorded the neural activity from the PML of the 
cerebellar cortex with novel multi-electrode arrays, with the rationale 
that a larger number of recording channels could yield more robust 
information that can shed light on the involvement of the cerebellum 
in a motor behavior. In particular, we aimed to record MUA and LFPs 
with these arrays rather than targeting single-cell spiking activity, to 
sample a larger population of neurons for making predictions about 
the ongoing motor act. Our results show the feasibility of obtaining 
recordings from chronically implanted arrays in cerebellar cortex and 
that MUA and field activity can be used to predict aspects of a complex 
goal-oriented motor behavior, reaching to a target.

4.1 EMG predictions

A major goal for this study was to investigate how well 
cerebellar-PML activity could predict EMG activity during reaching 
movements. In our best recordings, we indeed were able to obtain 
strong correlations between PML and EMG activity, and using a 
regression model, we could accurately predict the actual EMG patterns 
from the PML activity (e.g., Figure 5C).

The MUA (300–2,000 Hz) contributed the most to EMG 
predictions even though it had less power than the LFPs in the 
recorded signals. The fact that the contributions from the 30–300 Hz 
band are lower suggests that most of the information is contained in 
the spiking activity of the neurons rather than the LFPs that are 
typically associated with synaptic signals. Although smaller, the 
contributions from the LFP band were not insignificant, which could 
also be originating from the high-frequency cerebellar oscillations 
(150–300 Hz) from the cerebellar cortex (Cheron et al., 2004; Groth 
and Sahin, 2015).

The correlations between the predicted and the measured muscle 
signals suggest the presence of forelimb-related information in the 
PML cortex of the cerebellum. For some animals, the regression 
algorithm predicted signals with correlations as high as 0.8 on average 
over multiple sessions and days. However, the goodness of the 

FIGURE 9

Percent contributions of neural signals in various frequency bands to 
the predicted EMG envelopes based on regression (A) and mutual 
information (B) using signal variances (See Eqs 2, 6–8).
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prediction varied considerably across recordings. This variation has 
multiple sources, at least some of which we  identified. 1- Array 
implantation location on the brain was a factor. In our experiments, 
activity in arrays closer to the paravermal vein had better prediction 
success. The possible involvement of the multizonal cerebellar activity 
in a given motor function (Aoki et  al., 2019) is a challenge while 
sampling related information of a function. Our arrays were covering 
~0.5 × 0.5 mm area on the cerebellar cortex, which were probably 
limited to one or two neighboring zones. 2- Implant age also affected 
the quality of prediction. The data showed that prediction results 
improved over time, which may be attributed to the healing of tissue 
damage after the first trauma caused by implantation. 3- The goodness 
of the predictions varied across muscles. Extensor muscles, specifically 
the triceps (Figure 7B), showed a better success rate for the reaching 
behavior tested in our study while the wrist flexor had the lowest 
prediction success among the four muscles. 4- Lastly, prediction 
success varied between movement phases. The later phases were 
generally better predicted for most muscles, whereas the success in 
predicting EMG activity during the earlier phases varied more. This 
can be due to the variability in the movement trajectories, particularly 
in the earlier phases, that was shown with displacement tracing 
(Figure 3C) and elbow/wrist angle measurement (Figure 11).

4.2 Variations in phases of forelimb 
reaching

In mice, reaching movements take about 0.5–0.8 s (Becker et al., 
2020). In Gok’s study (Gok and Sahin, 2019), the behavior window 
was divided into two phases, ‘reaching’ (−0.2 s from the center of the 
behavior) and ‘grasping’ (+0.2 s). Here we considered the timepoint at 

which force amplitude exceeds 10% of the maximum force amplitude 
as the beginning of grasping and the ending of the reaching phase. In 
this study, we also investigated the earlier parts of the reaching, i.e., 
lifting and extension. The regression algorithm was applied in each 
one of the four time windows separately, and also as a whole. This 
analysis revealed that the algorithm can predict the lifting and 
releasing behaviors, in general, better than extension.

For the lifting and extension time windows, for most of the data, 
we used an average time window of 0.35 s based on a pilot investigation 
we did to estimate the length of these windows. In three sessions from 
three different animals, we used the video images to trial-specific 
marking of these time windows, and this approach improved the 
prediction success. This shows the variability in these behavioral 
window lengths and the fact that higher prediction success would 
be possible if all the data was analyzed in this manner. However, in the 
current study manually marking these windows was prohibitively time 
consuming. In a future study, using a movement tracking software to 
determine the precise movement phase transitions for every trial, 
more accurate results would likely be achieved.

It has been suggested that the cerebellum is involved chiefly in the 
initiation and termination phases of the movement (Scudder et al., 
2002; Gaffield et al., 2011). Consistent with this, cerebellar activity is 

FIGURE 10

k-means clustering of normalized neural signal, EMG signal, and 
force profile envelopes. (The numbers of signals in each cluster: wrist 
extensor 263, 539, 535, 526, 406; wrist flexor 443, 44, 587, 524, 271; 
biceps 522, 522, 206, 533, 486; triceps 297, 439, 489, 550, 494; 
neural 2,784, 2,298, 2,439, 2,457, 2,982). (A) Each signal type (four 
EMGS and neural data) is clustered into five clusters independent of 
others and the means of the clusters are plotted. Signals capture 
from 1  s before the force peak to 0.5  s after the peak. Behavioral 
phases (approximated) are delineated with the dash lines. Each 
cluster is encoding different parts of the behavior. (B) The histogram 
shows the distribution of cluster peaks over the behavior window. 
Clustering was repeated 100 times. One of them is displayed in (A). 
The cluster peaks mostly occur at the beginning, middle, and end. 
Neural cluster peaks are marked with blue color, which shows a 
homogenous distribution that initiates each one of the four phases 
and terminates the phase.

FIGURE 11

Averaged EMG Traces and Elbow and Wrist Angle Change During 
Behavior. Based on video recordings elbow and wrist angles of three 
reaching phases are measured. (A) Signals are averaged and their SDs 
are calculated (shaded areas). (Since the data is composed of all 
animals and sessions, SDs across them were large. For clarity of 
results, we used 5% SD for EMGs, 1% SD for neural data, and 50% SD 
for force data. And the neural data amplitude is multiplied by five.) 
(B) demonstrates elbow angle (θ1) measurement by tracing shoulder, 
elbow, and wrist. (C) shows the changes in θ1 across video frames 
measured at lifting, extension, and grasping phases. (D) demonstrates 
wrist angle (θ2) measurement by tracing elbow, wrist, and knuckle 
(between the second and third fingers). (E) shows the changes in θ2 
across video frames measured at lifting, extension, and grasping 
phases. Δθ is the maximum angle change among all the traces in 
that plot. (F) Average SDs of wrist and elbow angles in (C,E).
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often best correlated with the duration of the movement [for review, 
see (Lang, 2015)]. The higher prediction correlations for the lifting 
(beginning stage) and releasing (ending) phases in our data support 
this idea in general. Specifically, we found a high level of regression 
success both at the initiation (lifting) and termination (releasing) 
phases for both wrist and elbow flexors and elbow extensor (triceps) 
muscles, although the wrist extensor showed increased prediction 
success in the extension phase.

4.3 Sensory vs. motor content of signals

For optimum motor control of voluntary functions, the 
cerebellum integrates sensory and motor information that it receives 
via its connections from the sensorimotor cortices and with the spinal 
cord. The cerebellum can handle complex movements like reaching 
with its internal models that are dynamically updated through forward 
or feedbacks loops to predict sensory inputs and motor commands in 
an adaptive manner (Kawato and Wolpert, 1998; Wolpert et al., 1998; 
Bell et al., 2008). In this study, shifting the neural signals in the time 
domain with respect to EMG signals in both pre-movement and post-
movement directions resulted in lower, but still statistically significant, 
correlations (Figure 8A), as shown by regression, and substantiated by 
mutual information measure between the neural and EMG signals 
(Figure 8B). Testing with a 10 Hz corner frequency of the envelope 
filter revealed that the observed correlations with time shifts were not 
simply due to the smearing of data in time by the low-pass filter. It 
should be noted that the time shifts considered here are much longer 
than the propagation times that efferent or afferent neural signals 
would take to travel between the CNS and the muscles, which are 
typically ~10–15 ms in the rat. Therefore, the time-shifted correlations 
hint at the generation times of the signals in the cerebellar cortex with 
respect to the muscle activity that can occur with much larger delays 
or advances than their propagation times through the peripheral 
nervous system.

The results can be interpreted as PML carrying both sensory and 
motor information, agreeing with reports on cerebellar neuroanatomy 
suggesting that the cerebellum’s paravermal zones are involved in 
integrating sensory inputs with motor commands to coordinate 
execution of the motor function (Knierim, 2019) through its strong 
connections to M1 and S1 (Evarts and Thach, 1969; Aoki et al., 2019). 
Additionally, when the response to the shifts in positive and negative 
direction was analyzed for individual arrays, the results showed that 
peak correlations were generated at pre-movement shifts for some 
arrays. For others, it was at the post-movement shifts. This result, 
again, is in agreement with the idea that the cerebellar cortex is 
receiving both descending information from the motor cortex and 
ascending sensory information from the periphery. Nevertheless, in 
all cases in Figure  8A except the 400 ms shift, negative shifts 
(pre-movement) showed slightly higher correlations than the 
positive shifts.

However, how, why, or to what extent this coexistence of motor 
and sensory information in the cerebellum occurs is complicated to 
determine. For example, the cerebellum may control movement 
through acquiring the sensory information about the environment 
(Manto et al., 2012). Also, the sensory inputs are generally correlated 
with motor outputs (Paulin, 1993), therefore dissecting motor 
information in the cerebellum is very challenging, especially for the 

period following movement initiation, where it can be a mixture of 
both types of information.

4.4 Implant location on the cortex: 
execution vs. planning

Traditionally, PML paravermal zones are thought to be involved 
in correcting errors during movement execution while the lateral 
cerebellum was believed to plan and initiate the movement (Allen and 
Tsukahara, 1974). It is also known that the C zones in the PML, that 
correspond to paravermal zones, are associated with the forelimb 
reaching (Apps and Hawkes, 2009); they project to the IPN (Apps 
et al., 2018) and contribute to the spatial and temporal coordination 
characteristics during motor execution in trained forelimb reach 
movements (Milak et al., 1997).

Later studies showed that multiple cortical areas might have 
parallel projections to the cerebellum, and the functional distinction 
between the interpositus and lateral nuclei may be less definitive [for 
review, see (Lang, 2015)]. In our data, the lower prediction correlations 
at long time shifts (e.g., 400 ms pre-movement shift) relative to the 
no-shift correlations are in agreement with the idea that the 
intermediate areas (or paravermal zones) of the PML, where 
we performed most of our recordings as well, are primarily involved 
in the execution of the movement rather than its planning (Zhu et al., 
2023). However, the investigation of even earlier stages (earlier than 
400 ms) would address this issue more definitively, considering that 
the preparation phase of the reaching task may start earlier.

4.5 Clusters of patterns

All four EMG traces had at least one cluster with a local peak in 
activity in at least one of the four phases (Figure 10A). This implies 
that each one of the forelimb muscles may become active in different 
phases of the behavior and suggests a large variability in the 
recruitment of these four muscles in a restricted and relatively simple 
behavior in a highly trained animal. However, their collaborative effort 
starts, maintains, and terminates the behavior (Figure  10B). The 
neural signals also show various patterns, some mainly encoding the 
beginning of the behavior, some the middle, and some the end. 
Interestingly, all EMGs and neural data had some clusters with three 
bumps showing activity in multiple phases (Figure 10B). This agrees 
with the reports showing that PC activity had variable patterns during 
the locomotion (Sauerbrei et al., 2015).
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