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We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline 
incorporating recently developed methods to improve forward and inverse 
solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) 
and megconnectome-compliant outputs from dataset inputs with varying 
degrees of spatial resolution. The input data can range from low-sensor-density 
electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings 
without structural magnetic resonance imaging (sMRI) to high-density EEG/
MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm 
introduces a numerical quality control of the lead field and geometrical 
corrections to the head and source models for forward modeling. For the 
inverse modeling, we present a Bayesian estimation of the cross-spectrum of 
sources based on multiple priors. We  facilitate ESI in the T1w/FSAverage32k 
high-resolution space obtained from individual sMRI. We validate this feature 
by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human 
Brain Mapping Project (CHBMP) acquired with technologies a decade before 
the HCP MEG and MRI standardized dataset.
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1 Introduction

Over the years, electroencephalogram (EEG) and, more recently, 
magnetoencephalogram (MEG) have emerged as two primary 
techniques for non-invasively measuring brain electrical activity, 
offering an exceptional temporal resolution for neuroscience research 
and clinical applications (Da Silva, 2013). Electrophysiological source 
imaging (ESI) (Baillet et al., 2001; He et al., 2018, 2019, 2020), a set of 
techniques allowing reconstructions across the brain generators of 
MEG/EEG data with earliest instances in MEG (Hämäläinen and 
Ilmoniemi, 1994) and EEG (Pascual-Marqui et al., 1994), has found 
practical application in various brain imaging contexts. ESI has 
advanced connectomics research, offering a robust descriptive 
framework for all neural processes and underlying functional 
networks during resting state or task execution (Engel et al., 2001; 
Varela et al., 2001; Brookes et al., 2012, 2014, 2016; Tewarie et al., 2014, 
2016, 2019a,b; Vidaurre et al., 2017; Vidaurre et al., 2018a,b).

It is widely recognized that the poor spatial resolution of inverse 
solutions must be, insofar as possible, overcome for multimodal 
neuroimaging studies, such as the study of resting-state networks 
employing MEG inverse solutions (Bruns et al., 2000; Tuunanen et al., 
2003; Bruns, 2004; Freeman et al., 2009; Brookes et al., 2011a,b; Cabral 
et al., 2014; Deligianni et al., 2014; Hall et al., 2014; Maldjian et al., 
2014; O’Neill et al., 2015; Tsvetanov et al., 2015; Garcés et al., 2016; 
Tewarie et al., 2016; Coquelet et al., 2017, 2020; Lankinen et al., 2018; 
Engemann et  al., 2020). A successful example is finding a robust 
statistical relation between the power envelope of MEG inverse 
solutions and fMRI time series (Hipp et al., 2012).

Despite being theoretically possible, similar multimodal 
neuroimaging studies are more challenging to achieve when 
employing the EEG inverse solutions due to a more significant effect 
of head conductivity, which causes substantial spatial distortions 
(Kobayashi et al., 2003; Schoffelen and Gross, 2009; Haufe et al., 2013; 
Burle et al., 2015; Colclough et al., 2015, 2016; Bradley et al., 2016; 
Mahjoory et al., 2017; Stokes and Purdon, 2017; Palva et al., 2018; 
Haufe and Ewald, 2019; Marinazzo et al., 2019). This study discusses 
the essential factors associated with EEG ESI distortions and 
introduces a new pipeline facilitating EEG integration with 
multimodal neuroimaging and connectomics research. Although our 
pipeline is helpful for both EEG and MEG data, we validate the EEG 
ESI pipeline employing high-quality HCP MEG as a reference.

1.1 Challenges for reproducible ESI 
research within the connectomics 
framework

The Human Connectome Project (HCP) (Van Essen et al., 2012a,b, 
2013; Glasser et al., 2013; Marcus et al., 2013) has played a pivotal role 
in delivering acquisition and preprocessing standards through an open-
access neuroinformatic facility. This facility includes data and processing 
pipelines for replicable multimodal neuroimaging research comprising 
high-quality MEG data (Larson-Prior et al., 2013). The HCP FieldTrip 
megconnectome pipeline integrates MEG ESI with other HCP 
deliverables such as the extensively preprocessed structural MRI (sMRI) 
(Glasser et al., 2013), functional MRI (fMRI) (Smith et al., 2013), and 
diffusion MRI (dMRI) (Sotiropoulos et al., 2013).

Integrating ESI with standard neuroinformatic facilities has been 
central for the HCP and other global brain initiatives promoting 

reproducible ESI research associated with connectomics (Reid et al., 
2019). This goal is affected by consistently developing and maintaining 
standard ESI pipelines. Noteworthy among these standardization 
initiatives are the Global Brain Consortium (GBC) (Valdes-Sosa et al., 
2022), the United Kingdom Biobank (UKB) (Miller et al., 2016), the 
Healthy Brain Networks (HBN) (Alexander et  al., 2017), the 
Helmholtz International BigBrain Analytics and Learning Laboratory 
(HIBALL) (Amunts et al., 2016), the Cuba Canada China Axis (CCC-
AXIS) (Evans et al., 2020), and the Cuban Human Brain Mapping 
Project (CHBMP) (Valdes-Sosa et al., 2021). These initiatives have 
outlined three fundamental requirements that align with the goals of 
the HCP:

 • Implementing ESI pipelines to achieve consistent results across 
diverse datasets can cope with the overwhelming number of 
datasets available, thus attenuating the impact of heterogeneity 
and incorporating automated quality control.

 • Producing ESI maps in the sMRI high-resolution HCP T1w or 
MNINonLinear and Native and FSAverage canonical spaces. This 
integration must complement the data-driven or model-driven 
analysis of multimodal image fusion and connectomics with 
adequate spatial and temporal resolution.

 • Producing precise cortical ESI mappings compliant with the 
HCP surface-based processing. This aspect crucially depends 
on the availability of the individual’s MRI for accurate 
registration and labeling, which captures the intricate 
neocortical structural and functional features across individuals 
and neuroimaging modalities.

Many existing clinical or basic neurosciences datasets, including 
MEG, EEG, and sMRI, arise from previously designed acquisition 
protocols, machines, formats, quality standards, and preprocessing. 
Such so-called “legacy datasets” have very diverse levels of spatial 
resolution. The spatial resolution can range from low-sensor-density 
EEG recordings without structural magnetic resonance imaging 
(sMRI) to high-density MEG recordings with an HCP multimodal 
sMRI-compliant protocol. The lack of consistent ESI pipelines that 
cater to such diversity is causing a significant gap in the research, 
hindering reproducibility. Achieving ESI consistency across diverse 
datasets is also essential for normative MEG/EEG procedures (Li et al., 
2022). Extending this normative work on MEG/EEG sensor data to 
the ESI source data poses formidable difficulties with preprocessing 
and harmonization (Reyes et al., 2023).

In what follows, we focus on the particular ESI recommendations 
and consider (a) dissecting the possible quality indicators emerging 
from various forward and inverse modeling ingredients and (b) 
delivering robust forward and inverse modeling pipelines validated 
across sizeable databases since large sample sizes are essential to 
obtain high statistical power. Different ESI pipelines have been 
validated to consider these indicators independently, though not 
necessarily integrated (Bosch-Bayard et al., 2020; Bringas-Vega et al., 
2022; Valdes-Sosa et al., 2022).

1.2 Critical forward model and inverse 
model ingredients for ESI

To proceed, we must conceptualize first the “forward and inverse 
model” terminology (applicable to both MEG/EEG ESI) and the 
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different ingredients involved, which are the basis for obtaining 
inverse solutions, identifying difficulties that hinder reproducible ESI 
research. For an intuitive mathematical exposition, see the definitions 
of forward modeling (De Munck et al., 2012) and inverse modeling 
(Hindriks, 2020) offered elsewhere.

A forward model, which explains the MEG/EEG data from its 
brain sources, comprises three parts:

 I. The source model specifies the geometry and physical nature 
of the MEG/EEG brain generators (Nunez and Srinivasan, 
2006), e.g., a dipolar current source density model with 
normally oriented dipoles distributed in the vertices of the 
cortical mid-thickness a triangular surface mesh.

 II. The head model specifies the geometry and conductivity of the 
different tissues across the whole volume of the head (Vorwerk 
et al., 2014), such as the isotropic and piecewise homogeneous 
volume conductor model of the head tissue, with triangular 
surface meshes defining the boundaries of the cerebrospinal 
fluid, brain, skull, and scalp tissue.

 III. The lead field is the numerical approximation to an operator, 
also known as a Green function, which represents the integral 
solution to the quasistatic electric potential or magnetic field 
equation in the head’s medium. The lead field ranges a discrete 
subspace of the Green function’s domain (sources) and 
codomain (EEG or MEG sensors) (Hallez et  al., 2007), 
explaining observations for the electric potential or magnetic 
field resulting from the current source density. This 
approximation, a real-valued matrix, is commonly achieved 
through numerical methods derived from weak integral 
formulations of equations, e.g., Finite Element Method (FEM) 
(Strang et  al., 1974) or Boundary Element Method (BEM) 
(Cheng and Cheng, 2005).

The inverse model is designed to allow the estimation of the latent 
variables (sources) from the EEG/MEG data based on the given 
forward model. An inverse model must address the challenges 
associated with an ill-posed inverse problem (with no unique solution) 
that is further aggravated by severe ill-conditioning. Due to many 
more sources than MEG or EEG sensors in ESI practice, severe 
ill-conditioning arises from a very low-rank lead field operator. The 
inverse model comprises two aspects:

 IV. An inverse solution method is a procedure to find an 
approximated solution to the Hadamard ill-posed inverse 
problem of electromagnetism (Hadamard, 1902). These 
methods are conceived within a particular mathematical 
framework, e.g., Tikhonov regularization (Tikhonov and 
Arsenin, 1977) or Bayesian statistical learning (Wipf and 
Nagarajan, 2009). An inverse solution in either framework 
is summarized by an operator (lead field pseudoinverse) 
minimizing a cost function for the latent current source 
density variables from their MEG/EEG sensor data, 
which also incorporates the lead field.

 V. The physical and mathematical priors integrated into the 
possibly Bayesian cost function formalism lead to particular 
inverse solutions and resolve the lead field ill-condition, e.g., 
Tikhonov regularization function (Vega-Hernández et  al., 
2008) or a priori probabilities (Trujillo-Barreto et al., 2008). 

The priors may encode structural and functional information 
for the neural dynamics mesoscopically described by a current 
source density field in space, time, and frequency domains.

1.3 CiftiStorm: HCP FieldTrip 
megconnectome pipeline compliant in the 
Brainstorm suite

The HCP structural processing pipeline can deliver high-quality 
cortical segmentation and registration in the MNINonLinear/
FSAverage canonical space (Glasser et al., 2013). Such high-quality 
segmentations may facilitate precise source model preprocessing 
across human individuals. The HCP structural pipeline leverages 
surface-based processing with computational geometry methods such 
as multimodal surface matching (Robinson et al., 2014). Achieving 
this segmentation quality requires high-contrast hybrid images from 
the T1 and T2 weighted (T1w/T2w) sMRIs (Van Essen et al., 2012a). 
Since this type of image is not always available, much effort in 
computational geometry has been dedicated to developing flexible 
structural pipelines bridging the quality gap between high-quality 
HCP-like segmentations (from T1/T2w sMRI datasets) and legacy 
segmentations from datasets containing only T1w sMRI. Essential 
concepts and methods on surface-based processing are included in the 
FSL suite (Jenkinson et al., 2012), the FreeSurfer suite (Fischl, 2012), 
and the Ciftify pipeline (Dickie et  al., 2019), an HCP-compliant 
FreeSurfer bundle within the fMRIPrep pipeline (Esteban et al., 2019).

Achieving precision in the ESI analyses is predicated on having 
realistic lead fields (Piastra et  al., 2020). However, lead field 
calculations, rigorously thought, involve tackling the solution for the 
electric potential or magnetic field equation for a highly detailed 
volume conductor model of the head’s medium. This model, which 
must be specified within numerical methods as a conductivity tensor 
field in a very high-resolution three-dimensional (3D) tetrahedral 
mesh, represents the anisotropic and heterogeneous properties of the 
head tissue (Nolte and Dassios, 2005; Dannhauer et al., 2012). The first 
problem is uncertainty, which specifies conductivities at every point 
in this mesh. The second is computational cost and numerical 
instability of the lead field methods in the complex individual 
geometry (Windhoff et  al., 2013; Vorwerk et  al., 2018; Piastra 
et al., 2020).

Henceforth, numerical instability refers to issues encountered in the 
calculation of the formulation matrix for solving partial differential 
equations in weak integral form, a method commonly associated with 
the FEM. The “formulation matrix,” or head model matrix in the context 
of EEG/MEG lead field computations, is inversely proportional to the 
squared distances and directly proportional to the conductivity 
differences at each point within the high-resolution 3D tetrahedral 
mesh. This mesh, derived from discretizing the space, aims to accurately 
represent the physical properties, such as conductivity, within a complex 
geometry (individual head). Unfortunately, several numerical challenges 
arise when calculating the adjoint of a formulation matrix, including 
issues such as low precision, scaling discrepancies, and ill-conditioning. 
Addressing these problems may require exhaustive procedures, 
particularly in cases of intricate geometries.

Therefore, a moderately detailed volume conductor model of the 
head tissue may be  assumed to alleviate the computational cost, 
numerical instability, and uncertainty associated with lead field 
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calculations. These models consider isotropic and piecewise 
homogeneous conductivities of the significant head compartments, 
with enclosed boundaries defined by high-resolution 3D triangular 
meshes. However, numerical instability might persist during the 
calculations of the adjoint matrix associated with the BEM 
(Hamalainen and Sarvas, 1989; Hämäläinen et al., 1993; Riera and 
Fuentes, 1998).

This situation poses a significant challenge, especially when 
dealing with large EEG datasets, as these issues strain the 
computational capacity and currently available quality control 
strategies. Consequently, many opt for alternative approaches, such as 
average forward models (Litvak et al., 2011; Ashburner et al., 2014), 
spherical forward models (Rush and Driscoll, 1969; Schneider, 1974; 
Roth et al., 1993), or homogeneous forward models (Nunez, 1974; 
Jirsa and Haken, 1997; Nunez and Srinivasan, 2006), to mitigate these 
computational and numerical challenges.

The megconnectome pipeline is a successful effort for ESI 
integration within the HCP research framework (Larson-Prior et al., 
2013) that employs the FieldTrip suite (Oostenveld et  al., 2011). 
However, megconnectome is tightly framed within HCP MEG 
standard format, FSAverage source space modeling, magnetic head 
and lead field modeling, and inverse modeling approaches. 
Unfortunately, several restrictions prevent the direct extension of the 
megconnectome pipeline for forward or inverse modeling with diverse 
MEG or EEG datasets.

The Brainstorm suite (Tadel et al., 2011) was produced through a 
broader collaborative effort to set up unrestrictive and easy-to-use 
interfaces to design neuroinformatic tools and pipelines for ESI from 
scratch. Brainstorm has readily incorporated an inclusive 
neuroinformatic ecosystem that includes structural pipelines and 
forward and inverse modeling pipelines for diverse acquisitions, 
including not only for MEG/EEG but also electrocorticogram (ECoG), 
intracranial EEG (iEEG), and functional near-infrared spectroscopy 
(fNIRS). This ecosystem includes and integrates some of the most 
noteworthy neuroinformatic software, such as SPM12, FieldTrip, 
OpenMEEG, and DUNEuro.

We aim to expand efforts within the HCP ESI research 
framework, developing CiftiStorm, a megconnectome-compliant 
pipeline based on the Brainstorm suite. The only available Brainstorm 
pipeline sharing similar functionality to the megconnectome 
pipeline is the reproducible analysis pipeline applied to resting-state 
MEG data from the Open MEG Archive (OMEGA) (Niso et al., 
2019). No other pipeline with the same purpose as CiftiStorm fulfills 
the ESI requirements (Section 1.1). FieldTrip might be an alternative 
to Brainstorm in devising our pipeline, an aspect we  are 
currently evaluating.

We also provide novel tools for analyzing functional 
connectivity data for sensors and sources time series in the 
frequency domain. Specifically, we implement inverse methods to 
estimate the source cross-spectral tensor. This tensor is a 3D array 
(sources × sources × frequencies) in which each frontal slice, a 2D 
array (sources × sources), is the complex-valued Hermitian 
covariance matrix of the Fourier coefficient. This matrix, an 
estimator for the second-order statistical moment of the 
multivariate probability distribution of the Fourier coefficients, 
summarizes all the statistical properties for oscillatory brain 
networks under stationarity and mixing conditions that apply to 
brain activity during resting state or task execution in a current 

source density. Under these conditions, the probability 
distribution of the Fourier transform converges asymptotically to 
the multivariate complex-valued Gaussian distribution (Brillinger, 
1983). This property is akin to principles found in classical 
statistics, particularly those related to the central limit theorems 
of real-valued random variables. In a previous study (Paz-Linares 
et al., 2023a), a statistical test for the complex-valued Gaussian 
distribution produced positive results across the entire frequency 
spectrum of MEG and ECoG example data.

When developing CiftiStorm, we considered all the critical aspects 
of forward and inverse modeling described in Section 1.2. As a 
consequence, and as we  demonstrate below, CiftiStorm produces 
compatible ESI results for Human Connectome Project (HCP) MEG 
and Cuban Human Brain Mapping Project (CHBMP) EEG across the 
entire spectrum in the resting state condition.

2 Materials and methods

We now describe the CiftiStorm pipeline, which comprises three 
pipeline modules (Figure  1): structural processing (Section 2.1) 
based on the HCP T1/T2w sMRI or the Ciftify T1w sMRI pipeline; 
forward model processing (Section 2.2) includes geometrical and 
numerical refinements based on our previous work on lead field 
quality control (Riaz et  al., 2023); and inverse model processing 
(Section 2.3) includes our Bayesian statistical learning ESI 
(Paz-Linares et  al., 2023a,b), incorporating geometrical and 
dynamical priori information in the frequency domain. The inverse 
model/solution further develops, in terms of Bayesian algorithms and 
priors, the methodology of variable resolution electromagnetic 
tomographic analysis (VARETA) (Valdes-Sosa et al., 2000; Bosch-
Bayard et al., 2001).

To ensure seamless compatibility with the Human 
Connectome Project (HCP) pipeline environment, we propose 
establishing a well-configured neuroinformatic environment for 
CiftiStorm. The recommended system is a 64-bit Linux operating 
system capable of building all necessary software, with a 
preference for CentOS/RHEL 7. Alternatively, CentOS/RHEL 8/9 
or Fedora 38/39 can be considered. Environment specifications 
entail Python 2.7 and 3.7, including the essential neuroimaging-
in-python libraries. The required software comprises FreeSurfer 
6/7, FSL 6/7, HCP pipelines, Ciftify, Connectome Workbench, 
MATLAB, and Brainstorm toolbox. Additionally, ensure the 
necessary plugins for the SPM, FieldTrip, and EEGLAB toolboxes. 
Minimal hardware specifications encompass 16GB RAM, a 
quad-core CPU, and an 8GB GPU, which expedites the 
eigendecomposition loop within the inverse model pipeline. 
Under these conditions, the processing of a case—encompassing 
sMRI T1w/T2w structural processing, EEG 10–20 system forward 
model processing, and 8 k sources inverse model processing–can 
be completed within 8 h.

2.1 CiftiStorm structural pipeline

2.1.1 Standard
The HCP structural processing pipeline (Glasser et al., 2013) and 

the FreeSurfer suite (Fischl, 2012) implement accurate brain 
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FIGURE 1

The conceptual organization of CiftiStorm. Red boxes highlight the conceptually different pipelines, and yellow boxes highlight the pipeline modules 
within CiftiStorm. In the top row is the definition for Brainstorm inputs within a dataset, which may include individual T1w, T2w, or none of these sMRI 
acquisitions; the MNI-registered sMRI template that better describes the dataset; and the EEG or MEG acquisitions. The modules include the standard 

(Continued)
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segmentations, morphometrics, and labeling across individuals. HCP 
structural processing consists of three main bash modules (“.sh” 
scripts) that leverage critical FreeSurfer and FSL utilities:

 I. The PreFreeSurferPiepeline.sh module generates an 
undistorted “native” structural volume space for each subject, 
the T1w/T2w sMRI high-contrast hybrid image in MNI space 
(Evans et  al., 1993), which is critical for high-quality 
segmentation in the subsequent modules. This module involves 
preprocessing, bias field correction, linear transformation 
(alignment), and registration (voxel-wise) of the T1w and 
T2w sMRI.

 II. The FreeSurferPipeline.sh module, a recon-all pipeline-
compliant, performs segmentation of the brain structures 
from the high-contrast hybrid image. Subcortical and 
cortical structures, such as the white, mid-thickness, pial 
surface (triangular meshes), and thickness volume 
(tetrahedral mesh), are extracted during the segmentation. 
This stage, which involves non-linear transformation and 
registration to the FSAverage canonical space, produces the 
essential surface-based and volume-based outputs 
(structures, morphometrics, and labeling) mapped into the 
T1w/FSAverage (registered) and MNINonLinear/FSAverage 
(non-linearly transformed and registered) spaces.

 III. The PostFreeSurferPipeline.sh module produces similar 
surface-based and volume-based outputs mapped into the 
T1w/Native and MNINonLinear/Native. These outputs are 
produced by reversing the previous non-linear transformation 
and registration to the T1w/Native and MNINonLinear/Native 
spaces. This module also generates the Conte69 registered 
mesh (Van Essen et al., 2012a,b), downsampled meshes for 
connectivity analyses, creates the final brain mask, and 
produces myelin maps. The surface spaces are delivered in 
three different resolutions (Glasser et  al., 2013): the native 
mesh for each individual (~136 k vertices), the high-resolution 
Conte-69 registered standard mesh (~164 k vertices), and the 
low-resolution Conte69 registered standard mesh 
(~32 k vertices).

The new certified data format CIFTI, designed to accommodate 
the geometric processing and outputs of the HCP pipelines, is a 
considerable upgrade from its predecessors in NIFTI (Jenkinson, 
2005) and GIFTI (Harwell et al., 2008). This format harmonizes 
volume-based (subcortical) and surface-based (cortical) structural 
or functional data, unifying their coordinate systems for the 
volume-voxel and surface-node locations across all spaces, called 
grayordinates. Moreover, CIFTI is optimized to facilitate seamless 
cross-platform compatibility for the HCP pipelines, particularly 
for matrix and tensor operations, as well as read and write 
disk access.

2.1.2 Legacy
We also include, as an alternative, the HCP-compliant structural 

workflow of the Ciftify pipeline (Dickie et al., 2019). CiftiStorm uses this 
workflow to produce HCP-compliant outputs in two situations: when the 
T2w sMRI is not available and when the T1w sMRI is not available or 
usable. In the last situation, CiftiStorm leverages the MNI-ICBM152 
(Fonov et al., 2011) or MNI-AutoReg (Collins et al., 1994) T1w sMRI 
template to produce HCP-compliant structural outputs. CiftiStorm 
includes two bash modules (“.sh” scripts), freesurfer_recon_all.sh and 
ciftify_recon_all.sh, that can be applied to a complete dataset and obtain 
the structural outputs of each participant:

 I. freesurfer_recon_all.sh: Wrapper script that invokes the 
“recon-all” command line functionality. This functionality is 
the standard FreeSurfer pipeline, a minimal sequence of steps 
in the structural processing of T1w sMRI. In this stage, cortical 
and subcortical structures and morphometrics are produced in 
the T1w/FSAverage and MNINonLinear/FSAverage spaces.

 II. ciftify_recon_all.sh: Wrapper script that invokes the “ciftify_
recon_all” command line functionality. In this stage, 
HCP-compatible outputs are produced in all the spaces: T1w/
Native, T1w/FSAverage, MNINonLinear/Native, and 
MNINonLinear/FSAverage.

Figure  2 illustrates the essential HCP-compatible structural 
deliverables from processing T1/T2w standard data (a) and T1w or 
T1w-template legacy data (b). The deliverables include two 
volumetric outputs and four surface outputs (Figure 2C) leveraged 
for volume-based and surface-based processing of functional images 
(MEG/EEG, fMRI), morphometrics (Figures 2D,E), parcellations 
(Figures  2F,G) used to implement priors modeling, and cortical 
layers (Figure 2H).

The HCP surface-based processing and registration pipeline ensures 
high-quality cortical feature extraction, denoising, and comparable 
interindividual mapping to the MNINonLinear and FSAverage spaces. 
Due to the layered cortical organization (Dale et al., 1999), this type of 
processing exhibits greater accuracy than the volume-based approach in 
extracting structural features (Coalson et al., 2018) or functional features 
(Anticevic et al., 2008). In addition, the surface-based registration has 
improved cortical alignment, across all HCP spaces, individuals, and 
datasets. This improved alignment has increased the statistical power of 
tests on cortical morphometrics, from sMRI, dMRI, fMRI (Brodoehl 
et al., 2020), and MEG/EEG inverse solutions.

2.2 CiftiStorm forward model pipeline

2.2.1 Source model
CiftiStorm ESI follows the surface-based source model processing 

approach in compliance with the HCP megconnectome pipeline 

and legacy modules of an HCP-compatible structural processing pipeline on the second row, the source model, head model, and lead field modules 
of a forward model processing pipeline on the third row, and the prior’s integration and inverse solution modules of an inverse model processing 
pipeline at the fourth row. CiftiStorm incorporates quality control and corrections (blue looped arrows) driven by stringent factors derived from 
processing by the different pipeline modules. Within the scope of our study is the production of highly similar EEG/MEG inverse solutions, illustrated in 
the green box, ensuring broader EEG ESI integration.

FIGURE 1 (Continued)
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(Larson-Prior et al., 2013) and fMRI pipeline (Smith et al., 2013). A 
benefit of the surface-based approach is the precise registration across 
individuals and modalities of the intricate cortical structural and 
functional features (Glasser et  al., 2016). A surface-based source 
model assumes that cortical MEG or EEG generators may exist on the 
vertices of a triangular surface mesh. This model is more specific than 
volume-based models when describing the MEG and EEG 
neurophysiological origin (Nunez, 1974; Freeman, 1975; Nunez and 
Srinivasan, 2006), thus increasing ESI precision. Note that the user 
may specify in this model whether the orientation of the sources is 
free or constrained (see Section 2.3.2). Figure  3 illustrates the 
CiftiStorm and megconnectome surface-based source model and 
important morphometrics.

Indeed, the megconnectome individual source model outputs in 
the T1w FSAverage32k space are defined from the FSAverage32k 
spherical mesh. Obtaining these outputs involves initial resampling of 
the FSAverage32k sphere to produce a lower resolution source model, 

typically an 8 k spherical mesh. Registration of the previous 
low-resolution sphere in the HCP spaces and re-meshing, a process 
that rebuilds the mesh topology, leads to the final 8 k meshes. These 
include the T1w FSAverage mesh, which is meant for the forward and 
inverse models in the subject individual space (Figure 3A top row). 
Unfortunately, a problem arises with the distortions in the individual 
geometry due to resampling and remeshing. We illustrate geometrical 
distortions with the first- and second-order surface metrics 
(Figure  3A) that are compared with similar metrics due to the 
resampling and remeshing directly in the individual space (Figure 3B).

We acknowledge that preserving geometry or these metrics might 
not be essential for some forward or inverse models. However, they 
are essential for CiftiStorm for processing EEG head models and lead 
fields involving the brain, cerebrospinal fluid conductivity 
compartments, and inverse solutions involving geometrical 
information (Figure 3B) such as the graph Laplacian prior (Figure 3B 
top row) (Nunez et  al., 1994), depth compensation weighted in 

FIGURE 2

Illustration of the CiftiStorm structural processing pipeline. Top row: (A) the HCP standard PreFreeSurfer, FreeSurfer, and PostFreeSurfer pipeline 
modules that are applied to T1/T2w sMRI, (B) the HCP legacy FreeSurfer and Ciftify pipeline modules that are applied to T1w or sMRI (legacy 
databases), and (C) HCP spaces (volumetric and superficial) in the T1w (MNILinear) or MNINonlinear, and Native or FSAverage32k. Bottom row: 
(D) cortical curvature, (E) thickness, (F) parcellation, (G) volumetric subcortical segmentation, and (H) cortical layers mid-thickness and pial.
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curvature (Figure  3B middle row) (Lin et  al., 2006), or normal 
rotational invariance prior (Figure  3B bottom row) (Haufe et  al., 
2008). Consequently, our strategy for the source processing module is 
illustrated in Figure 3C. Procedures implementing this strategy are 
included in the following MATLAB modules fully developed along 
with CiftiStorm:

 I. fwd_source_model.m performs 8 k resampling and 
remeshing in the T1w FSAverage32k space for the source 
model of each individual. These procedures are carried out 
by a CiftiStorm module leveraging the standard MATLAB 
computational geometry libraries, which are also commonly 
applied within FieldTrip and Brainstorm registration 
pipelines for other purposes.

 II. fwd_interpolant.m builds the interpolant of the inverse 
solution or other ESI metrics between the T1w 8 k mesh and 
the T1w FSAverage32k mesh. This interpolation, a CiftiStorm 
built-in MATLAB module, is a 32kX8k matrix representing the 
weighted average operator with weights defined as the surface-
based geodesic distance. This matrix is defined once for the 
individual. It is used to project any metric, such as vectors 
representing the instances of an inverse solution or a matrix 
representing their second-order statistics.

2.2.2 Head model and lead field
The fundamental problem behind the EEG lead field calculation 

(valid also for MEG) is to obtain the electric potential produced in the 
head by each brain source, represented as a unitary dipolar current 

FIGURE 3

Megconnectome or CiftiStorm forward and inverse model processing leverage the surface-based source model and metrics. (A) The geometry 
includes triangular meshes (top), curvature or second-order surface metric (middle), and normal or first-order surface metric projected in the Z-axis 
(bottom). (B) Surface-based geometrical information, including the discrete Laplacian prior (top), curvature depth compensation prior (middle), and 
rotational invariance prior (bottom), are to be considered by inverse modeling methods. (C) Shows the prior representation included in our strategy for 
the source processing module, Graph Laplacian (top), curvature depth compensation prior (middle), and rotational invariance (bottom). In addition, a 
typical inverse solution was registered across all HCP spaces and interpolated to high resolution by the CiftiStorm pipeline. The inverse solution is 
shown in (D) the FSAverage32k canonical space, (E) the T1w/Native space, and (F) the MNI-ICBM152 space.

https://doi.org/10.3389/fnins.2024.1237245
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Areces-Gonzalez et al. 10.3389/fnins.2024.1237245

Frontiers in Neuroscience 09 frontiersin.org

element (Turovets et al., 2008; Jochmann et al., 2011; Dannhauer et al., 
2012; Azizollahi et  al., 2016; Vorwerk et  al., 2018). We  adhere to 
standard assumptions about the head medium, considering it to 
be  passive (non-magnetic) and characterized by broadband 
stationarity at all frequencies within the spectra of neural dynamics. 
This assumption leads to the quasistatic regime of electromagnetism. 
In this context, the central problem is the solution to the equation 
governing the electric potential induced in the medium by a current 
source density (Geselowitz, 1967; Vladimirov, 1976). The specification 
of this equation depends on the individual source model, head model 
geometries, and conductivities. Obtaining this information 
necessitates having at least the T1w sMRI for the individual (Akalin 
Acar and Makeig, 2013).

Obtaining the electric potential, which depends significantly on 
the type of head model, can become a computationally intensive and 
error-prone process. There is a tradeoff for head models that balances 
simplicity vs. detail and numerical accuracy/efficiency vs. realism in 
the subsequent lead field calculations. Below, we define the types of 
head models and lead fields CiftiStorm considers.

 • The most straightforward head model is the homogeneous one 
(Nunez, 1974; Nunez et al., 1994; Jirsa and Haken, 1997). This 
idealization assumes equal conductivities for the brain tissue, 
head tissues, and air, substituting a mean field corrected 
conductivity for the actual ones. The essential advantage of this 
type of model is the generation of a smooth (analytic) and 
artifact-free lead field, calculated efficiently with explicit formulas 
for each geometry. It is important to note that the homogeneous 
lead field formula represents the boundary-free solution of the 
Poisson equation. This formula is, in turn, a type of baseline 
solution, the algebraic homogeneous term affecting the realistic 
lead field (with heterogenous conductivities), that must 
be obtained by numerical integration.

 • The head model used for Electrophysiology Source Imaging (ESI) 
is designed with a moderate level of detail and is widely accepted 
for its approach. It bases its calculations on the assumption that 
the conductivities of brain tissue and other head components—
like cerebrospinal fluid, skull, and scalp—are uniform and 
directionally uniform (isotropic) (Hamalainen and Sarvas, 1989; 
Hämäläinen et al., 1993; Riera and Fuentes, 1998). To solve the 
related equations, this model uses the Boundary Elements 
Method (BEM) to numerically address the Poisson equation—a 
specific type of partial differential equation—in a simplified 
(weak) integral form (Fuchs et al., 2002). The accuracy of these 
numerical solutions heavily depends on the head’s geometric 
properties being regular and smooth, which is encapsulated in 
what is known as the head model matrix. This matrix defines the 
electric potential in the head, which is influenced complexly by 
the positions of brain sources and virtual sources near the 
boundaries between different types of tissues. The calculation 
benefits from using these virtual sources—a mathematical 
strategy that simplifies the weak integral formulation—since their 
effects are directly proportional to the differences in electric 
potential and conductivity at each source point (Kybic et  al., 
2005). This approach allows for a more manageable calculation 
of electrical activity within the brain, considering the complex 
interplay between brain source locations and the electrical 
properties of head tissues.

 • As mentioned, a template head model is widely used, 
assuming moderately detailed brain tissue and head tissue 
piecewise homogeneous and isotropic conductivities (as in II 
above). The template can also consider heterogeneous and 
anisotropic conductivities due to information. Thus, head 
models and source models from template T1w sMRIs such as 
MNI-ICBM152 (Fonov et al., 2011) or MNI-AutoReg (Collins 
et al., 1994) are most common for ESI applications when the 
individual sMRI acquisitions are not available or usable or 
when avoiding the intensive computational cost and errors of 
individualized lead field calculations. While such a template 
or a homogenous head model may suffice when limited ESI 
resolution is acceptable, this approach may not be suitable for 
higher-resolution inverse solutions based on high-density 
MEG or EEG recordings.

The CiftiStorm head model and lead field processing modules are 
implemented based on the Brainstorm suite and produce standard 
directory and file formats. Our design of these modules outlined 
below is tailored to targeting critical quality factors integrating 
functionalities from diverse neuroinformatic tools. Figure 4 illustrates 
the MNI-ICBM152 T1w sMRI template outputs, the processing, and 
quality control workflows. These are implemented in the following 
MATLAB modules:

 I. fwd_head_model.m: First, the non-brain tissue employing FSL 
BET and skull-stripping is extracted and refined using a series 
of FSL stat and math commands. The non-brain tissues (scalp, 
skull, and cerebrospinal fluid) are extracted as tetrahedral 
volume meshes. These meshes are linearly realigned to the 
brain tissue identified during the structural pipeline processing 
stage via the FSL FLIRT utility and post-processed via the 
Brainstorm head modeler utility to outline their boundaries, 
which define the inner skull, outer skull, and scalp triangular 
surface meshes. Additional regularization employing 
smoothing of the second-order surface properties, such as 
triangle size, normal, and curvature, leads to the final head 
model and promotes the subsequent numerical BEM 
integration stability. Sensor registration leverages a second 
utility from the SPM head modeler. An MNI-registered scalp 
template is then non-linearly wrapped to the individual’s actual 
scalp and employed as a reference scalp to optimize the 
registration of EEG sensors or the MEG helmet with the head 
model. Then, the sensors are projected to the actual scalp in the 
case of EEG or co-registered with the helmet in the 
case of MEG.

 II. fwd_lead_field.m: Using the processed head model and 
registered sensor files, lead fields are calculated via the BEM 
method from Brainstorm that invokes OpenMEEG software 
included as a Brainstorm plugin. It is also possible to use other 
BEM implementations from FieldTrip that provide similar 
results. Calculations follow the Brainstorm recommendations 
(defaults) to tune the essential conductivity and geometrical 
BEM parameters. The same head model and sensors are then 
used to compute a second lead field and baseline for quality 
control via the homogenous method. When no individual head 
model is available, the BEM method is calculated only once for 
the whole dataset, after a minimal registration step between the 
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FIGURE 4

CiftiStorm head model, lead field processing, and quality control workflows. Top box: The neuroinformatic tools included in our pipeline and their 
different roles. Bottom box: The primary outputs are later targeted by the manual or automatic quality control analysis. An illustration aims to show the 
expected outputs under ideal working conditions, obtained from the high-quality MNI-ICBM152 image and its legacy structural processing (Sec. 2.1.2) 

(Continued)
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sensor template (specific to each dataset) and the head 
model template.

 III. fwd_control_loop.m: Quality control and corrections initiate 
creating an interactive graphic report of critical geometrical and 
numerical indicators for the head model and lead field quality. A 
report can be generated at any processing stage by invoking this 
module, which checks the available head model or lead field files. 
Within a loop between the visual report inspection and manual 
or automatic reprocessing, cases can be  flagged for further 
consideration and corrected for altered indicators, calling back 
the modules fwd_head_model.m and fwd_lead_field.m.

Figure 5 offers the detailed indicator information summarized in 
Figure 4 and considered by the quality control loop “fwd_control_
loop.m. These indicators include (a) the typical 2D views (slices) of 
the sMRI and the source and head model-sMRI registration; (b) the 
3D views of the head model, including the source model, inner skull, 
outer skull, scalp surface, and their mutual registration; (c) for a 
source model surface, the points that are situated too close to the 
inner skull surface; (d) the corrected inner skull surface under a user 
selected optimal surface-surface distance criterion; (e) the vector 
field distribution for a user selected sensor; (f) the 2D linear plots 
representing goodness-of-fit between the BEM lead field and the 
homogeneous lead field and their corresponding Pearson correlation 
coefficient, which must be  above a user-selected correlation 
threshold. Two types of correlation coefficients are implemented 
here, the sensor-wide (for each source) and the source-wide (for each 
sensor), as described in our previous study (Riaz et  al., 2023). 
Alterations in this indicator are sensitive to the numerical instability 
of the BEM methods originating from critical surface–surface 
distances and non-smooth local surface irregularities in the 
head model.

Several options are implemented to correct head model/lead 
field artifacts:

 • The sensor layout registration automatically includes the default 
Brainstorm and CiftiStorm automatic corrections. However, 
further corrections can be carried out manually in case of severe 
artifacts, guided by visual inspection via the CiftiStorm 
graphic interface.

 • For minor artifacts of the inner skull, outer skull, and scalp 
geometrical and their registration, automatic corrections may 
be implemented using the MNI-registered template non-linearly 
registered to the individual geometry using the Brainstorm or 
SPM head model utilities.

 • Flagged surface–surface distance artifacts (below a threshold) 
are automatically corrected by warping the internal surface 
at that point to increase the distance. Subsequently, the 
quality control procedure is repeated.

 • Finally, in case of severe artifacts due to a failed HCP or FSL 
segmentation or a non-existent at least a T1w sMRI, 
we recommend using a structural brainstorm template to obtain 
the lead field using a predefined source and head model 
geometry. This step requires sensor registration.

All these corrections require reprocessing by the “fwd_head_
model.m” and the “fwd_lead_field.m” modules that are 
controlled by the “fwd_control_loop.m” module.

2.3 CiftiStorm inverse model pipeline

2.3.1 Inverse solutions
CiftiStorm implements classical and recent ESI inverse solutions. 

We emphasize that special attention is given to the type of inverse 
solutions of cross-spectral tensors as a frequency domain measure of 
functional connectivity. However, quasilinear inverse operators also 
express these solutions, which allow the calculation of the usual source 
time series in the time or frequency domain.

The two classical inverse solutions included in our pipeline are 
the Beamformer Linearly Constrained Minimum Variance (LCMV) 
(Van Veen et al., 1997) and the Exact Low-Resolution Electromagnetic 
Tomographic Analysis (eLORETA) (Pascual-Marqui et  al., 1994, 
2006). The LCMV approximates an ideal filter to enhance activity at 
a given source and suppress the interference of others. eLORETA, by 
contrast, is designed to explicitly minimize localization errors of the 
maximum activity.

However, as we have recently shown (Paz-Linares et al., 2023a,b), 
these traditional inverse solutions for ESI are optimized to estimate 
activity and produce distorted cross-spectral estimators. CiftiStorm 
integrates novel cross-spectral inverse solutions optimized to estimate 
the source cross-spectral tensor within the theoretical framework of 
variable resolution electromagnetic tomographic analysis (VARETA) 
(Valdes-Sosa et al., 2000; Bosch-Bayard et al., 2001). We now briefly 
recap the VARETA notions to understand how to use CiftiStorm 
cross-spectral inverse solutions (Figure 6):

 • The complete MEG/EEG inverse problem is formulated in the 
frequency domain, where time domain data and current source 
density are transformed using the Fourier or Hilbert transform. 
Under stationarity and mixing conditions in the frequency domain, 
asymptotic complex-valued Gaussian probabilities (Brillinger, 
1983) apply to the Fourier or Hilbert transform of the current 
source density and the data. These probabilities fully specify second-
order properties for oscillatory brain networks (Figure 6A), which 
produce MEG/EEG signals across the spectrum, including the well-
known delta, theta, alpha, beta, and gamma activities, each with 
specific functional roles (Engel et al., 2001; Varela et al., 2001).

and source model processing (Sec. 2.2.1). Outputs are (A) the head model comprising four structures: cortex, inner skull, outer skull, and scalp surfaces. 
These surfaces are due to the HCP brain and FSL head processing, postprocessing, and registration via the Brainstorm head modeler utility. (B) The 
registration for EEG electrodes and their layout with the scalp surface. (C) The registration with the scalp surface for MEG magnetometers and their 
helmet layout. For optimal sensor registration in (B) and (C), the CiftiStorm pipeline leverages utilities from both the Brainstorm and the SPM head 
modelers. (D) The lead field for an EEG electrode. (E) The lead field for a MEG magnetometer. We use the reciprocal representation of 
electromagnetism to illustrate at the source space (cortex) the distinct vector field regimens for EEG and MEG sensors. Both are due to BEM 
computations employing the Brainstorm OpenMEEG or alternative FieldTrip utilities.

FIGURE 4 (Continued)
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FIGURE 5

Quality control indicator information of the same case is shown in Figure 4 in an expanded way, which is also included in CiftiStorm’s graphic interface 
and printed reports. These indicators include (A) the sMRI and the registration of source and head models with it (from left to right: the scalp, outer 
skull, inner skull, and brain surfaces); (B) mutual registration between the head model and the source model, from left to right, first one: the scalp, 
outer skull, inner skull, and brain surfaces, second one: inner skull, outer skull and brain cortex, third one: inner skull and brain cortex, last one outer 
skull and inner skull; (C) left, right and top view of the inner skull and brain cortes registration, in red color: the points situated too close between them; 
(D) inner skull and brain cortex registration after distance correction process; (E) the vector field distribution (blue arrows) for a user selected sensor 
(red dot), sensors (green dots); (F) correlation tests between the tested lead field and the homogeneous lead field and their corresponding Pearson 
correlation coefficient, first one: tested and homogeneous lead field correlation, second one: sensor-wise correlation between tested and 
homogeneous lead field, and last on: source-wise correlation between tested and homogeneous lead field.
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 • VARETA is based on a Bayesian inverse problem formalism, 
defined by the following: probabilities of the data (likelihood), 
current source density (prior), and source cross-spectral matrix 

(hyperprior). It is, therefore, a three-level conditional model at 
each frequency (Bosch-Bayard et al., 2001). At each frequency, 
the source cross-spectral matrix (frontal slices of the tensor) 

FIGURE 6

Illustration of the different notions embodying the cross-spectral methodology VARETA. (A) Characteristic spectral sensor topographies and cortical 
topographies composing the human resting state EEG spectrum. The cortical topographies that are determined by a conventional or cross-spectral 
inverse solution are the brain signature for band-limited oscillatory networks and the mechanism for activity associated with particular cognition and 
behavior. (B) Cross-spectral analyses of EEG sensor data and their sources involved in the cross-spectral inverse solution device, which follows the 
Fourier transform path. We describe this path as a series of tensor variables. The targeted variable is the theoretical source cross-spectral tensor, which 
must be determined by different methods from its sampled equivalent calculated for the data or the sources. (C) Regularization modes to resolve the 
high spatial ill-condition and dimensionality in the tensor target. These modes target independent distortions, measured as type-one and type-two 
leakage corresponding to the spectra and cross-spectra.
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specifies this model’s probabilities and inverse solution. The 
cross-spectral inverse solution (Figure 6B), a Bayesian estimator, 
maximizes a Bayesian cost function defined as − log posterior 
probabilities of the three-level conditional model.

 • CiftiStorm provides two types of mathematical priors (Figure 6C) 
to regularize cross-spectral estimates (Valdes-Sosa et al., 2000).

 1. Type-one regularization penalizes the diagonal entries of cross-
spectral matrices (the spectra) or activation, thus controlling 
localization error and leakage distortion in these estimates.

 2. Type-two regularization penalizes off-diagonal entries (cross-
spectra), thus controlling localization error and leakage of the 
connectivity estimates (Gonzalez-Moreira et al., 2018; Palva 
et al., 2018).

Following the explanation given above, it is evident that applying 
the VARETA methodology to obtain cross-spectral inverse solutions 
is an intricate procedure (Bosch-Bayard et al., 2020). In what follows, 
we describe the specific CiftiStorm VARETA implementation in three 
MATLAB pipeline modules:

 I. inv_spectral_meeg_analysis.m initializes with minimal data 
preprocessing employing the EEGLAB ICA and ASR utilities 
in default mode. Preprocessed outputs are then imported and 
converted automatically to the Brainstorm utility. Processing 
continues obtaining the spectral metrics of MEG/EEG data via 
the Fast Fourier Transform (FFT) or Gaussian Filtered Hilbert 
Transform (GF-HT) algorithm, which approximates the FFT 
when the Filter bandwidth goes to zero. GF-HT is the preferred 
spectral transform when a more significant sample number, 
which equals the length of the MEG/EEG signal time series, is 
desired. The cross-spectral tensor of the MEG/EEG data is then 
computed as Hermitian covariance matrix of the FFT or 
GF-HT samples at each frequency. Since processing the full 
cross-spectral tensor is an intensive and, in many cases, 
unnecessary practice, the default mode uses band-filtered 
Hilbert transform (BF-HT). It computes a five-slice tensor 
representing the cross-spectra for the delta (0.5–4 Hz), theta 
(4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz), and gamma 
(>30 Hz) bands.

 II. inv_sssbl_analysis.m: This cross-spectral inverse solution 
employs type-one regularization via the Spectral Structured 
Sparse Bayesian Learning (SSSBL) model (Paz-Linares et al., 
2023a). Type-one regularization (described below in Section 
2.3.2) is applied to resolve spatial distortions (type-one leakage, 
type-one localization error) caused by degeneracy 
(ill-condition) in the diagonal values (spectrum) of a matrix 
(cross-spectrum). The SSSBL model leads to a robust and 
scalable inverse solution even under the high ill-condition and 
dimensionally and the resulting distortions of an ESI situation 
with 19 electrodes (10–20) EEG system against a 32 k 
(FSAverage) source model. The SSSBL model outputs a tensor 
quasilinear inverse operator with frontal slices representing an 
iterated solver to the non-linear cost function optimization 
problem and the inverse solution at each frequency (or each 
frequency band). Tensor slices can be assumed as lead field 

pseudoinverse matrices, with a non-linear matrix function at 
each frequency with the argument on the data cross-spectral 
matrix. Thus, taking any data metrics (FFT, GF-HT, BF-HT, 
and cross-spectra) under this operator produces the analogous 
source metric. This operator is a compression method to avoid 
storing the source metrics while keeping only the data metrics. 
An additional output is the sparse support of sources at each 
frequency obtained by thresholding the spectrum elements 
significantly different from zero according to the SSSBL 
posterior probability.

 III. inv_higgs_analysis.m: Cross-spectral inverse solution that 
employs type-two regularization via the Hidden Gaussian 
Graphical Spectral model (HIGGS) (Paz-Linares et al., 2023b). 
Type-two regularization (described in Section 2.3.2) is applied 
to resolve spatial distortions in the Cartesian space product 
(type-two leakage, and type-two localization error) caused by 
degeneration (ill-condition) in the off-diagonal values of a 
matrix (cross-spectrum). HIGGS is an unbiased sparse inverse 
solution to obtain the cross-spectral precision tensor or 
precision matrices (frontal slices of the tensor) describing the 
oscillatory brain networks at each frequency as Hermitian 
graphs. Hermitian graph elements generalize the directed and 
undirected connectivity features encoded as amplitude and 
phase information across frequencies. The HIGGS output can 
be  obtained with two types of methods: the two-step way, 
which inputs the source cross-spectral tensor initially 
determined by SSSBL to produce the corresponding cross-
spectral precision tensor; the one-step way, which inputs the 
data cross-spectral tensor to estimate the source cross-spectral 
precision tensor and a tensor quasilinear inverse operator. 
These outputs can be used to obtain the additional metrics 
(FFT, GF-HT, BF-HT, and cross-spectra). Either method is 
based on the sparse support provided by the SSSBL statistics. 
A further provision is to impose sparse support for the graph 
elements at each frequency by retaining only significant cross 
spectra according to the HIGGS posterior probability.

Finally, we  emphasize that a particular interest in frequency 
domain analyses, such as spectral factorization (Jafarian and 
McWhirter, 2012), phase–amplitude, or cross-frequency coupling 
(Sotero, 2016), may require additional considerations on the sparse 
support of the cross-spectral tensors. The cross-spectral inverse 
solution that only centers on individual frequencies or bands of 
frequencies is standard but may yield a discontinuous pattern of 
non-zeroed amplitudes across frequencies. Within the CiftiStorm, 
SSSBL, and HIGGS modules, we  can apply joint statistical scores 
across the frequency domain to produce a transverse non-zeroed 
amplitude pattern.

2.3.2 Integrated priors
Any combination of physical–mathematical priors currently 

integrated into the CiftiStorm inverse model processing pipeline can 
be  applied to an inverse solution. Employing these priors may 
depend on user expectations around a particular geometrical, 
spectral, or mathematical source feature or even computational time 
and cost. Here, we provide the necessary background to guide the 
prior choice. However, an empirical demonstration of the 
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incremental positive effect of incorporating geometrical priors in 
inverse solutions is provided in the following SSSBL study 
(Gonzalez-Moreira et al., 2020).

 • The rotationally invariant prior. The cross-spectra are specified 
as a 3 × 3 complex-valued matrix of each source pair due to their 
origin in a 3D tensor field that defines current source density 
amplitude and orientation at cortical locations. This extra 
number of variables adds to the natural dimensionality and 
ill-condition in tackling a cross-spectral inverse solution. 
Considering a fixed field orientation by projecting the lead field 
in the normal direction of the cortical surface might be  too 
restrictive and inaccurate (Haufe et al., 2008). We opt for a more 
relaxed condition, considering the probabilities of a vector field 
invariant under rotations around the surface’s normal direction. 
A rotationally invariant prior, described as spherical coordinates, 
assigns probabilities that decrease with the sagittal angle between 
the vector and the normal direction and remain invariant under 
the azimuthal angle of the vectors around the normal direction. 
This option is implemented via the standardization method, 
where transformations are applied to the design matrix in a 
multivariate regression problem. Then, the inverse transformation 
(de-standardization) is applied to the regression coefficient. This 
method first standardizes the lead field (design matrix), 
equivalent to projecting the lead field and obtaining the cross-
spectral inverse solution restricted to the normal direction, a 
complex-valued scalar field for each source pair. Second, the 
inverse of the previous projection is applied to the inverse 
solution, retrieving the 3 × 3 cross-spectral matrix, a complex-
valued tensor field for each source pair. Third, we obtain the 
maximum amplitude direction for each source from the 3D 
spectra, a real-valued and positive 3D vector field corresponding 
to pairs of the same source. Finally, the cross-spectral inverse 
solution is projected in the direction of maximum amplitude and 
again reduced to a complex-valued scalar. A logical parameter 
“field” is used in the SSSBL and HIGGS modules to control 
this prior.

 • The surface curvature depth compensation prior. The bias of the 
inverse solutions is produced by surface curvature depth at every 
point of the cortical surface. We employ the definition of mean 
curvature (Van Essen et al., 2019), which is the average of the two 
principal curvatures for an inscribed ellipsoid at every surface 
point. The depth bias of inverse solutions regarding the 
observability of the sources’ distance from sensors has also been 
studied elsewhere (Lin et al., 2006). Here, we only refer to cortical 
curvature depth bias. In other words, the observability of the 
sources is higher around the gyri and lower around the sulci. This 
effect also varies in proportion to the curvature value at the 
source location (gyri or sulci). We  implement a depth bias 
compensator based on the cortical curvature weights that factor 
(standardize) each source lead field. These weights are linearly 
transformed curvature values. Compensation is achieved by this 
linear transformation with different values for the gyri and the 
sulci of its slope and intercept, which we  optimized in 
simulations. A logical parameter “curvature” is used in the SSSBL 
and HIGGS modules to control this prior.

 • The graph Laplacian smooth prior. Lateral connections link the 
neighbor cortical sources, reinforcing their coactivation. Inverse 
solutions can consider such links by employing a geometric 

connectivity mode denominated graph Laplacian (Nunez et al., 
1994; Pascual-Marqui et al., 1994). Integrating this prior is via 
the lead field transformation (standardization) by the graph 
Laplacian pseudoinverse. However, a problem arises from 
biological imaging protocols due to the strong bias of this 
transformation, which would be much more accurate employing 
the deformed graph Laplacian (Morbidi, 2013). This deformation 
is in the second-order expansion, around the minimum singular 
value, which uniformly converges to the graph Laplacian when 
this value rounds zero. A logical parameter “laplacian” is used in 
the SSSBL and HIGGS modules to control this prior.

 • The parcellation smooth prior. Functional specialization of the 
brain areas can also be  considered a prior for particular 
regularization models (Yuan and Lin, 2006). This model type is built 
in the SSSBL method, incorporating an additional Bayesian level of 
variational parameters that regularize the source spectra. The group 
prior takes effect when a unique variational parameter exerts its 
regularization effect on the group of sources belonging to a brain 
area. These areas are defined within the cortical parcellation 
produced in the structural pipeline. A logical parameter, 
“parcellation,” to control this prior is only available for the 
SSSBL module.

 • The regularization type-one prior. Built-in SSSBL module; this prior 
combines the cross-spectral matrix quasinorm (Wilansky, 2013) 
and nuclear norm (Fan 1951) to create a two-fold effect. The 
quasinorm trace square root operator applied to a matrix pursues 
regularizing distortions in the spatial distribution of the spectra. 
The nuclear norm, trace operator applied to a matrix, pursues 
regularizing ill-condition of the cross-spectra. Combined norms are 
also known to be  caused by adaptive matrix regularization 
problems, such as the Elastic Net nuclear quasinorm (Sun and 
Zhang, 2012). An alternative pathway is available for users 
preferring regularization priors within methods such as eLORETA 
(Pascual-Marqui et al., 2006) or Beamformers (Van Veen et al., 
1997) over SSSBL. A logical parameter “sssbl_method” controls this 
pathway choice in the SSSBL module.

 • The regularization type-two prior. Built-in HIGGS module 
(Paz-Linares et al., 2023b); this prior could be implemented as 
the Hermitian Graphical Least Absolute Shrinkage and Selection 
Operator (HGLASSO), also vectorized p1-norm applied to 
off-diagonal entries of a matrix, or the Hermitian Graphical 
Ridge (HGRidge), also vectorized squared p2-norm or 
Frobenious norm applied to a matrix. Either norm is 
fundamental to producing an inverse solution and regularizing 
the ill-condition of the cross-spectral precision matrices. 
However, the HGLASSO norm is key to pursuing an unbiased 
sparse pattern of the precision matrix. The Frobenious norm is 
a non-sparse biased but analytical alternative to HGLASSO. A 
logical parameter “higgs_method” controls this choice in the 
HIGGS module.

3 Results

3.1 Geometrical artifact corrections

We carried out an initial test of concept for CiftiStorm in three 
public datasets: the Human Connectome Project (HCP) (Larson-Prior 
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et al., 2013), the Cuban Human Brain Mapping Project (CHBMP) 
(Valdes-Sosa et  al., 2021), and Healthy Brain Networks (HBN) 
(Alexander et al., 2017). The raw CiftiStorm output data are curated 
by the high-performance computer center of the Neuroinformatics 
Collaboratory at the University of Electronic Science and Technology 
of China (UESTC). The Supplementary Table S1 includes the 
description of the curated data and available imaging modalities. The 
same data are mirrored in the Compute Canada and the Cuban 
Neuroscience Center (CNEURO) as part of the CCC-AXIS work front 
(Evans et al., 2020).

The processing first obtains structural outputs by applying the 
standard (Sec.2.1.1) and legacy (Sec.2.1.1) CiftiStorm pipelines to raw 
HCP data and the legacy pipeline to raw CHBMP and HBN data. 
Subsequent processing obtains the source and head model outputs of 
all the data (HCP, CHBMP, HBN) by applying the CiftiStorm forward 
model pipeline. Artifact annotations to these outputs were created 
within the quality control loop as the result of extensive analysis by 
our team experts. These artifact annotations follow a standard 
questionnaire prepared following the HCP quality control 
recommendations (Marcus et al., 2013). We conducted a final trial on 
the annotated artifacts, calculating their scores using item response 
theory (Vega et al., 2021; Riaz et al., 2023).

We proceeded with the case exclusion or correction based on their 
specific annotations. Then, we  investigated the similarity of the 
standard and legacy structural pipelines and the forward model 
pipeline (Sec.2.2) across all databases (HCP, CHBMP, and HBN). 
Sample data were created for the next inverse model pipeline (Sec.2.3), 
including quality case outputs such as the non-annotated or fully 
corrected ones.

Figure 7 includes geometrical annotations for some key quality 
factors in Figure 5. We detect significant geometrical artifacts caused 
by movement or noise (Figure 7A) in both the T1w and T2w sMRI of 
the HBN and CHBMP datasets. sMRI noise appears in artifactual 
cases covering the head tissue and exterior areas, and movement 
appears as blurring in the head tissue areas. The decision to exclude or 
postprocess is quite challenging for such cases due to the cost/benefit 
relationship. Although postprocessing may work in cases by tunning 
the FreeSurfer or FSL parameters, doubtful brain or head 
segmentations can ultimately be solved by replacing the sMRI with a 
template (Figure 7B). The widespread issue of electrode alignment 
(layout) in EEG (Figure  7C) is solved in part manually and 
automatically refined later (Figure 7D). After geometrical corrections, 
the cases are looped back to structural and forward model processing 
to produce their new outputs.

FIGURE 7

Case flagged as “artifactual” for two major geometrical artifacts in Figure 5 and their solution in the quality control loop. (A) Individual sMRI showing 
movement artifact and the corresponding artifactual source model and head model outputs. (B) ICBM-152 sMRI, source model, and head model 
template substituting the individual outputs. (C) Incorrect EEG layout. (D) Corrected EEG layout.
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FIGURE 8

Case flagged as “artifactual” for the lead field artifacts in Figure 5 and their solution in the quality control loop. We show the minimum correlation value 
between the homogeneous and actual lead field outputs before (red) and after (green) correction in (A) across sources (for each sensor) and in 
(B) across sensors (for each source). The linear fit of both lead fields relative to the same correction is shown in (C) before and (D) after. (E) the 

(Continued)
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3.2 Lead field artifact corrections

Geometrical annotations also reflect the lead field quality and its 
key factors, which are part of the quality control loop and the artifacts 
annotation processes. We emphasize that the geometry of the source 
model (Sec.2.2.1), head model, and lead fields (Sec.2.2.2) have a 
multifactorial relationship that a closed set of parameters cannot 
condense. However, we consider the relative surface–surface distance 
within the head model, including the source model, which critically 
influences the lead field’s numerical accuracy. Figure 8 includes the 
type of lead field artifact annotations and their treatment in the quality 
control loop.

We consider two correlation modes between the homogenous 
and actual lead field outputs: for a sensor (represented by a lead 
field row), the source-wide correlation, and for a source 
(represented by a lead field column), the sensor-wide correlation. 
The automatic quality control of the lead field is applied sensor-
wise (Figure  8A) and source-wise (Figure  8B), simultaneously 
overseeing the two correlation modes (Riaz et al., 2023). We also 
manually explore the linear fit between both lead fields, which 
reveals more detailed information regarding the correlations 
(before correction Figure  8C and after correction Figure  8D). 
Indeed, correlations and linear fit are sensitive to the type of 
non-smooth or singularity lead field artifacts that appear for 
several sources and reflects in sensor correlations. Cortical maps 
highlight these artifacts and their correction in terms of the field 
amplitude and orientation (Figure 8E).

The corrections are applied by forcing the inner-skull local 
triangle mesh outwards till a minimum distance to the target source 
is achieved (Figure 8F). This case was flagged as “artifactual,” and 
corrections were applied due to detected correlations below 0.7 for 
sensors and below 0.33 for sources. We  have predefined the 
minimum distance value and investigated its effect across the 
present datasets, but this value can be updated iteratively within the 
CiftiStorm quality control loop. After correction, the source 
correlation values are updated (Figure 8G), always exhibiting their 
direct relationship to local distance manipulation or lead 
field artifacts.

We emphasize that artifact annotation and correction are critical 
for the automatic CiftiStorm quality control for the lead field. We can 
thus detect many of the geometrical artifacts delivered within 
structural and forward model processing. A previous study (Riaz et al., 
2023) reveals sensitivity to detecting electrode layout deformations, 
non-smooth surfaces, sMRI artifacts, and failed FreeSurfer or 
FSL segmentations.

3.3 Comparing EEG/MEG inverse solutions

We study the similarities and differences of CiftiStorm inverse 
solutions (Sec.2.3.1) across the CHBMP EEG and the HCP MEG 
datasets (Riaz, 2021). The inverse solution module under analysis 

was SSSBL, which incorporates the type-one regularization priors 
as well as the geometrical priors (Sec.2.3.2). Our working 
hypothesis is “for the same condition (resting state) the spatial 
distribution of source spectra estimated by inverse solutions across 
all frequencies of MEG and EEG are equivalent” (Riaz et al., 2020). 
For this study, a sample data of 45 cases (participants) was created 
from the CHBMP dataset, and another sample data of 45 cases 
from the HCP dataset yielded a balanced sample size. We selected 
the cases by filtering them according to their scores in the 
geometrical and lead field artifact annotation analysis and their age 
between 22 and 35 years.

The study initiates with spectral processing of the sample data, 
employing a narrow-band Gaussian Filtered Hilbert Transform 
(GF-HT) for each frequency between 0 and 50 Hz, with a resolution 
of 0.5 Hz and a filter bandwidth of 1 Hz. Subsequent processing is 
via the SSSBL inverse solution. Figure 9 includes the analysis of 
source spectra and statistical tests to explore our hypothesis for 
CHBMP EEG and HCP MEG acquisitions in the resting state 
condition. Before any statistical comparison, the log-spectra 
transformation and linear regression were applied considering a 
model of the global differences between the MEG and EEG 
source spectra:

Model:  MEG , , EEG , ,s f c e s f ca f b f( ) = ( )( ) ( )

Log-spectra:  
MEG MEG and EEG← ( ) ← ( )log logEEG

Regression:  MEG , , EEG , , , ,s f c a f b f s f c E s f c( ) = ( ) + ( ) ( ) + ( )

In this model, “MEG” and “EEG” are 3D tensors representing the 
spectra of MEG and EEG sources. The tensors comprise 64 k sources 
(denoted with s), 100 frequencies (denoted with f ), and 45 cases 
(denoted with c).

The manifold in Figure 9A represents the mean log spectra of 
MEG and EEG source pairs at each frequency scattergram. The 
manifold highlights two types of differences encoded by the regression 
parameters a f( ) and b f( ):a f( ) (intercept) is the frequency-
dependent MEG and EEG spectral power difference induced by 
acquisition and preprocessing methods. We model this difference as 
a scale parameter of the source spectra reported in previous 
simultaneous MEG/EEG studies (Dehghani et al., 2010). Figure 9C 
(blue curve) shows this parameter’s strong frequency-
dependent behavior.
b f( ) (slope) is the difference in regimes of spatial decay regarding 

the distance between sensors and sources of MEG and EEG. We model 
this difference as an exponential contraction parameter of the EEG 
source spectra reported in previous studies on the MEG/EEG 
sensitiveness to sources (Piastra et al., 2020). Figure 9C (red curve) 
shows the stable behavior of this parameter across frequency.

artifactual, homogeneous, and corrected lead fields are shown from left to right. (F) From left to right, and under distance criteria, the sources labeled 
(red) as too close to the inner skull surface and the sources after correction. (G) From left to right, there is a cortical colormap of the source 
correlations before and after correction.

FIGURE 8 (Continued)
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E s f c, ,( ) (reminders) represents the reminders or residuals of the 
Regression: Model:. Reminders may comprise MEG/EEG noise, 
different preprocessing, or interindividual variability.

The R2  coefficient of the Regression: Model: in Figure  9B 
shows the goodness-of-fit between MEG and EEG source log 
spectra across all frequencies. We  proceed after regression, 
studying the source differences with a random permutation test to 
the spectra distribution. Figure 9D summarizes the test outcomes 
for five bands (delta, theta, alpha, beta, and gamma-low) in 

cortical topographies. The cortical topographies are for a set 
indicator function of the binary outcomes. The set summarizes any 
source showing a significant statistical difference at any frequency 
within the band. This test yields striking similarities between the 
EEG and MEG source spectra and only a few differences associated 
with EEG’s low sensitivity to subcortical and interhemispheric 
sources. Differences are due to a significance level of 0 01. . This 
level was applied to determine thresholds for the distribution of 
the test maximum absolute value taken across all sources 
and frequencies.

FIGURE 9

The CiftiStorm inverse solution pipelines from the CHBMP EEG and HCP MEG datasets show differences between their source spectra. (A) Scattergram 
manifold illustrating the global differences between MEG and EEG source log spectra. The large differences are due to the properties of either type of 
acquisition or preprocessing style. (B) Results of the regression using a linear model that represents these differences as a scale and a slope parameter. 
(C) Goodness of fit for this linear model. (D) Random permutation test outcomes of the differences for delta, theta, alpha, beta, and gamma-low 
bands.
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4 Discussion

Developing high throughput pipelines for electrophysiological 
source imaging (ESI) has been the target of numerous efforts, e.g., 
megconnectome (Larson-Prior et al., 2013), Fieldtrip (Oostenveld 
et al., 2011), and Brainstorm suite (Tadel et al., 2011). However, the 
diversity in data acquisition technologies, protocols, standards, and 
structural, forward model, and inverse model pipelines are causing a 
massive quality gap in the ESI outputs across and within datasets. This 
gap results in overwhelming variability in the inverse solutions 
leveraged within ESI analyses, leading to issues with replicable, 
reproducible, or transferable ESI research in basic or clinical 
neurosciences and multimodal neuroimaging.

A prominent effort introducing ESI guidelines, standards, and 
pipelines such as the megconnectome toward a broader multimodal 
neuroimaging connectomics research framework was the Human 
Connectome Project (HCP) (Van Essen et al., 2012a,b, 2013; Glasser 
et al., 2013; Marcus et al., 2013). We introduced CiftiStorm, an HCP 
megconnectome pipeline compliant with the Brainstorm suite, to 
target the root causes of such ESI problems. Notably, CiftiStorm 
development was appointed by the Global Brain Consortium (GBC) 
(Valdes-Sosa et  al., 2022), explicitly responding to the EEG 
ESI challenge.

As we corroborated for the CHBMP EEG and HCP MEG (Sec.3.3 
and Figure 9), our pipeline could potentially lead to analogous ESI 
results across the human MEG/EEG spectrum. The statistical MEG/
EEG comparison test provided central evidence of the CiftiStorm’s 
properties. We carried out this test under the following hypotheses: 
(a) the principal cause for MEG and EEG signals is the cortical current 
source density, and (b) cortical sources causing these signals must 
be approximately the same. In this sense, the test outcomes constitute 
more evidence than proof for the classical theories of the MEG/EEG 
origin (Nunez et al., 1994; Dehghani et al., 2010; Piastra et al., 2020; 
Riaz et al., 2020).

Broader consequences follow from this outcome, and our 
definition for tested MEG source variables is the Hilbert transform of 
narrow-band filtered current source density. These source variables 
are essential for transferable MEG and fMRI connectomics research 
since they provide the link between oscillatory networks underlying 
the MEG and principal components of the fMRI (Brookes et  al., 
2011a; Hipp et al., 2012; Hall et al., 2014; O’Neill et al., 2015; Tewarie 
et al., 2016). Thus, our results may also represent a striking incremental 
step toward EEG/fMRI fusion and broader EEG ESI integration 
within the multimodal neuroimaging framework.

Such an integrative neuroimaging perspective is in the guidelines 
identified by the GBC and similar international initiatives such as the 
HIBALL (Amunts et  al., 2016), CCC-AXIS (Evans et  al., 2020), 
CHBMP (Valdes-Sosa et al., 2021), UKB (Miller et al., 2016), and 
HBN (Alexander et  al., 2017). Following the GBC guidelines, the 
CiftiStorm source code and graphic interface are open-source to help 
other groups replicate, reproduce, or transfer the results presented in 
this study.

It is essential to underscore that our pipeline is designed to 
enhance the use of novel MEG/EEG inverse solutions (Sec2.3 and 
Figure  6). They have their basis in the methodology of variable 
resolution electromagnetic tomographic analysis (VARETA) (Valdes-
Sosa et al., 2000; Bosch-Bayard et al., 2001). As we demonstrated in a 
previous report (Riaz et al., 2020), such high levels of similarity is 

unreachable via existing inverse solutions such as the low-resolution 
electromagnetic tomographic analysis (LORETA) methods (Pascual-
Marqui et al., 1994, 2006; Pascual-Marqui, 2002). Neither are they 
possible with Beamformer methods linearly/multiply constrained 
minimum variance (L/MCMV) (Van Veen et al., 1997; Piotrowski and 
Yamada, 2008).

As argued in Section 2.3, our results confirm the favorable 
regularization effect of mathematical priors integrated into Bayesian 
methods, such as our Spectral Structured Sparse Bayesian Learning 
(SSSBL) (Paz-Linares et al., 2023a) and Hidden Gaussian Graphical 
Spectral Model (HIGGS) (Paz-Linares et al., 2023b). Recent literature 
has also highlighted the power of Bayesian methods such as SSSBL for 
many applications, including MEG/EEG denoising (Hashemi et al., 
2022), inverse solutions (Hashemi and Haufe, 2018), or statistical 
analysis (Wang et al., 2023). In addition, note that we incorporated 
morphometric information on the sources (Nunez et  al., 1994; 
Pascual-Marqui et al., 1994; Lin et al., 2006; Yuan and Lin, 2006; Haufe 
et al., 2008) into SSSBL or HIGGS to incorporate as another important 
geometrical priors.

Our results are determined by the quality control loop applied to 
resolve the lead field artifacts (Sec.3.2). As we argue here, not only the 
inverse model but also the lead field accuracy is crucial in obtaining 
precise inverse solutions (Vorwerk et al., 2018; Piastra et al., 2020). 
Furthermore, the corrections applied within CiftiStorm could 
potentially increase the number of adequate quality cases for future 
studies employing other datasets. Fundamental to developing and 
calibrating our forward model (lead field) pipeline was the processing 
of a collection of 1,251 sMRIs via the structural pipeline (Sec.3.1). This 
collection was courtesy of the Healthy Brain Networks (HBN) 
initiative (Alexander et al., 2017). Our quality control loop identified 
60 “artifactual” lead fields from artifact annotations in this 
calibration stage.

The CiftiStorm’s numerical accuracy index detects artifacts based 
on correlations, which our previous study introduced for the first time 
(Riaz et al., 2023). When the “artifactual” lead fields were compared 
to another 60 “acceptable,” we found three main reasons for them 
being declared as “artifactual. This finding is explained by the 
corresponding artifact corrections of the CiftiStorm pipeline. The first 
reason was the blur/noise of the sMRI causing inaccurate 
segmentation; the second was the imperfect sensor alignment, and the 
third was the critical surface-surface distance within the source and 
head models.

In case of an evident failed sMRI segmentation, an initial 
correction was retrying the segmentation after tunning FreeSurfer’s 
and FSL’s parameters. However, in cases where the sMRI still could 
not be adequately segmented, we flagged its outputs as “incorrigible. 
The “incorrigible” flagged sMRI outputs were then substituted by 
template outputs created by applying the legacy structural pipeline 
to an MNI-registered sMRI (Collins et al., 1994; Fonov et al., 2011). 
The use of templates is still common and leads to approximated ESI 
analysis from EEG and MEG (Litvak et al., 2011; Ashburner et al., 
2014). Specific anatomy configuration files allow the switching of 
individualized or predetermined templates. This initial correction 
helped isolate the second and third types of lead field artifacts. The 
user must know the limitations of applying brain templates, which 
always entail a specific loss of localization accuracy. There is justified 
concern about the use of templates in ESI. However, one of the 
results of the Cuban Human Brain Mapping Project was the actual 

https://doi.org/10.3389/fnins.2024.1237245
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://globalbrainconsortium.org/
https://globalbrainconsortium.org/
https://bigbrainproject.org/hiball.html
http://ccc-axis.org/
https://chbmp-open.loris.ca
https://www.ukbiobank.ac.uk/
https://healthybrainnetwork.org/
https://github.com/CCC-members/CiftiStorm


Areces-Gonzalez et al. 10.3389/fnins.2024.1237245

Frontiers in Neuroscience 21 frontiersin.org

comparison of hundreds of ESI based on individualized head 
models with several types of templates (Valdés-Hernández et al., 
2009). Although this study confirmed the higher accuracy of 
individualized templates, it was also found that the localization error 
incurred with different templates was acceptable for specific course-
grained applications.

The second correction applied was the EEG (MEG) sensor 
registration. This correction was done via an automated and manual 
utility within the CiftiStorm’s quality control loop. The automated 
correction replaced the MNI-registered scalp to improve the sensor 
alignment in the actual scalp. The manual correction was in the 
graphic interface, following the provider’s MEG or EEG sensor 
alignment guidelines. Once the corrections for “artifactual” lead field 
cases were completed, we fed back the flagged artifactual cases to the 
lead field calculation module for recalculation.

The third and last correction utilized a critical distance value 
when a lead field lopped within the two previous quality control stages 
was still flagged as “artifactual. This critical value is a default CiftiStorm 
parameter applied to the surface-surface distances within the head 
model, considering the source model distance to the inner skull 
surface. The critical value can be  modified iteratively within the 
quality control loop until the lead field is checked as “acceptable. Such 
a critical distance artifact mainly affects EEG head models and lead 
field, as stated before, due to the type of numerical integration 
methods for the Poisson equation of electromagnetism in 
heterogeneous media (Hamalainen and Sarvas, 1989; Hämäläinen 
et al., 1993; Riera and Fuentes, 1998). This type of artifact is not very 
common for MEG lead fields obtained by other methods (Huang 
et al., 1999). The kind of quality control loop and corrections features 
introduced mainly respond to the GBC EEG challenge and are unique 
CiftiStorm features.

CiftiStorm can be  potentially applied to investigate spectral 
differences between the MEG and EEG sources further, as in our 
previous study (Riaz et  al., 2021). This study was conducted 
end-to-end by CiftiStorm to assess the differences in inverse solutions 
methods, including SSSBL, HIGGS, eLORETA, and LCMV. From this 
assessment, the corrections were applied to our inverse solutions for 
non-linear deformations across the source spectra. However, linear 
methods such as eLORETA or LCMV that do not produce this artifact 
lead to dissimilar spatial distributions of the MEG and EEG 
source spectra.

Another CiftiStorm application was the study of spectral source 
connectivity measures derived from the SSSBL method applied to 
individuals at risk of cognitive decline (González-López et al., 2022). 
This study reported meaningful and statistically significant source 
connectivity changes even when SSSBL was used to obtain inverse 
solutions from a 10–20 EEG system (19 sensors) commonly found in 
clinical settings.

The first CiftiStorm release included the forward model pipeline 
and quality control loop employed for our former lead field study. This 
release incorporated several new functionalities, such as the graphic 
interface of the quality control loop and batch processes of the 
structural and forward model pipelines. We have also increased the 
number of settings that can be customized for specific databases in 
“.json” configuration files. Another increment is exploration tools and 
the quality control loop extension for structural outputs at any stage. 
This quality control can be applied to the outputs of other third-party 

CiftiStorm functions such as HCP, Ciftify, FreeSurfer, and FSL, and 
customization can be used to improve subsequent reconstruction of 
the source and head models. Additional functionalities, such as quality 
control of the source model and FSAverage registration, were included 
to optimize this pipeline. Different MATLAB standard processing 
tools, such as FieldTrip and SPM, were extremely useful in developing 
these functionalities. Users can also perform geometric optimization 
of the source and head models according to each database’s artifacts 
and follow different processing paths in the pipeline. Direct interaction 
through an open parametrization of the functions for lead field 
computations can be obtained with SPM, Brainstorm, FieldTrip, and 
OpenMEEG or DUNEuro.

CiftiStorm has produced good-quality results in several legacy 
datasets, including sMRI, MEG, and EEG. However, this pipeline still 
requires testing with several configurations not considered in this 
work and might be relevant for real studies. We must test our pipeline 
in different MEG datasets to perfect the automatic correction of the 
individual MEG helmet registration. Another limitation is the 
automatic correction when the image segmentation produces 
overlapping between surfaces, producing structural errors and low 
correlation in the sources. We  also prepared a release with 
HCP-compatible and analogous electrophysiological source imaging 
and connectivity data obtained with our pipeline for the HCP MEG 
and the CHBP EEG. Future work should include a statistical module 
in our ESI pipeline to allow users to get group analysis between 
subjects and datasets.

5 Conclusion

This study addresses the pressing challenges for broad EEG 
electrophysiological source imaging (ESI) integration within the 
Human Connectome Project (HCP) research framework. 
We  introduced the “CiftiStorm” ESI pipelines, an HCP 
megconnectome compliant in the Brainstorm suite, which responds 
directly to the call set by the Global Brain Consortium (GBC) for 
enhanced EEG ESI reproducibility toward connectomics. By 
meticulously examining the critical ESI quality factors, including 
structural, forward model, and inverse model processing, CiftiStorm 
introduced a high-throughput ESI device. Our pipeline demonstrated 
remarkable success in achieving high-quality forward model outputs 
through rigorous quality control and geometrical corrections that 
targeted the source, head model, and lead field separately. 
Incorporating a sophisticated cross-spectral inverse solution within 
an inverse modeling methodology derived from variable resolution 
electromagnetic tomographic analysis (VARETA) and rigorous 
mathematical and geometrical prior models, we obtain, for the first 
time, highly similar MEG/EEG sources, paving the way for more 
robust and reproducible EEG ESI outcomes in the realm of 
multimodal neuroimaging.
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