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Objective: To establish a deep learning model for the detection of hypoxic–
ischemic encephalopathy (HIE) features on CT scans and to compare various 
networks to determine the best input data format.

Methods: 168 head CT scans of patients after cardiac arrest were retrospectively 
identified and classified into two categories: 88 (52.4%) with radiological 
evidence of severe HIE and 80 (47.6%) without signs of HIE. These images were 
randomly divided into a training and a test set, and five deep learning models 
based on based on Densely Connected Convolutional Networks (DenseNet121) 
were trained and validated using different image input formats (2D and 3D 
images).

Results: All optimized stacked 2D and 3D networks could detect signs of HIE. 
The networks based on the data as 2D image data stacks provided the best 
results (S100: AUC: 94%, ACC: 79%, S50: AUC: 93%, ACC: 79%). We  provide 
visual explainability data for the decision making of our AI model using Gradient-
weighted Class Activation Mapping.

Conclusion: Our proof-of-concept deep learning model can accurately identify 
signs of HIE on CT images. Comparing different 2D- and 3D-based approaches, 
most promising results were achieved by 2D image stack models. After further 
clinical validation, a deep learning model of HIE detection based on CT images 
could be implemented in clinical routine and thus aid clinicians in characterizing 
imaging data and predicting outcome.
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1 Introduction

Globally, up to six million people suffer from sudden cardiac 
arrest each year, with less than 10% surviving (Zeppenfeld et al., 2022). 
Hypoxic ischemic encephalopathy (HIE) is a major cause of mortality 
and long-term disability among survivors in the acute phase 
(Geocadin et al., 2019). Accurate neuroprognostication is crucial, and 
current guidelines recommend combining several prognostic factors 
to predict poor outcomes (Deutsche Gesellschaft für Neurologie e.V, 
2017). Besides neurological examination, laboratory tests and 
electrophysiology, computed tomography (CT) of the brain is vital in 
predicting of neurological outcome in patients with suspected 
HIE. Cerebral edema with decreased attenuation of gray matter in CT 
is a typical finding in patients with severe HIE, and a loss of boundary 
between gray and white matter has been shown to be associated with 
poor outcome (Kjos et al., 1983).

The early detection of HIE is especially important for choosing the 
right treatment protocol because the approach for patients with HIE 
differs significantly from that of patients without HIE. For patients 
with HIE, the primary goal of treatment is to minimize brain damage 
and promote neurological recovery. This may involve therapeutic 
hypothermia to reduce metabolic activity and protect the brain (Nolan 
et  al., 2015). Additionally, supportive care, including maintaining 
adequate blood pressure, oxygenation, and fluid balance, is essential. 
In contrast, patients without HIE typically receive supportive care and 
monitoring, with a focus on preventing complications from the 
cardiac arrest itself (Nolan et al., 2021).

A reliable prognostic factor for poor outcome is the cerebral gray–
white matter ratio (GWR) (Scheel et al., 2013; Lee et al., 2015; Na et al., 
2018; Streitberger et al., 2019). Several studies determined that a GWR 
below 1.16–1.22 highly predicted poor neurological outcome (Kim 
et al., 2013; Scheel et al., 2013; Cristia et al., 2014; Lee et al., 2015). 
Various approaches exist to assess the GWR and predict poor outcome 
with high specificity and low-to-moderate sensitivity, depending on 
imaging timing (Na et  al., 2018). Commonly, GWR is measured 
through manual placement of up to 16 regions of interest (ROIs) by a 
neuroradiologist (Metter et al., 2011). The manual placement of ROIs 
is however time consuming and prone to interrater variability (Kenda 
et al., 2022). More recently, Kenda et al. developed a simplified method 
with an automated placement of atlas ROIs (bilateral putamen and 
internal capsule) with comparable outcome prediction to the 16 ROIs 
method (Kenda et al., 2021).

The recent development of machine and deep learning has 
significantly progressed and advanced the field of medical image 
analysis. Deep convolutional neural networks (CNNs) became 
widespread in the last decade and successfully addressed tasks such as 
object detection, image segmentation and classification. Several 
studies have demonstrated promising results in organ segmentation 
(Akkus et al., 2017; Livne et al., 2019; Hssayeni et al., 2020; Meddeb 
et al., 2021) and disease classification (Artzi et al., 2019; Burduja et al., 
2020; Li et al., 2020; Meddeb et al., 2022; Nishio et al., 2022). In neuro-
imaging, deep learning models have been successfully applied to 
intracranial hemorrhage detection and segmentation using CT images 
(Xu et al., 2021), as well as brain tumor classification using magnetic 
resonance imaging (MRI) (Gao et al., 2022).

The purpose of this investigation was to develop a deep learning 
framework capable of identifying imaging features of hypoxic–
ischemic encephalopathy (HIE) in CT scans of resuscitated cardiac 
arrest patients. The principal emphasis was on investigating the 

feasibility and constraints of deep learning in HIE detection, along 
with technical and clinical prerequisites. Various model architectures 
were evaluated using 2D and 3D data formats to develop a state-of-
the-art model with the highest achievable classification accuracy.

2 Methods

2.1 Study design

This retrospective observational study used prospectively 
collected data from adult (aged ≥18 years) comatose CA survivors 
treated with targeted temperature management (TTM) at a single 
tertiary academic hospital between 2010 and 2019. This study was 
approved by the institutional review board of the Charité (No.: 
EA2/066/17, EA4/136/21). The recommendations of the CLAIM 
checklist of the RSNA and the DECIDE-AI checklist were largely 
adhered to and are attached as Supplementary materials (Mongan 
et al., 2020; Vasey et al., 2022). Due to the retrospective design of this 
study, new informed consent was not required. All patient data was 
strictly protected and anonymized prior to analysis.

2.2 Study population

We included 168 patients from a previously published cohort of 
483 cardiac arrest (CA) survivors with suspected HIE from our 
institution (Kenda et al., 2021). After admission to the intensive care 
unit (ICU), patients were treated with TTM (body temperature of 
33°C for 24 h) according to the European Resuscitation Council 
Guidelines (Nolan et  al., 2015). All patients received CT-imaging 
within seven days after CA. The head CT images were taken by several 
GE Lightspeed and Revolution scanners as well as on Toshiba 
Aquilion. Neurological outcome was assessed by treating physicians 
at hospital discharge using the cerebral performance category (CPC) 
scale. For prognostic evaluation in this study, the outcome was 
dichotomized into “good” (CPC 1–3) and “poor” outcome (CPC 4–5). 
A board-certified radiologist (AM) and a board-certified 
neuroradiologist (MS) classified CTs with the labels “HIE” or “no 
HIE.” Both radiologists were blinded to the clinical parameters of the 
study population. All patient data was handled only using anonymized 
identifiers based on patient cohort and a number in the form of X123 
which still enables future de-identification A graphical representation 
of the patient selection and data flow of this study can be found in the 
Supplementary Figure S1.

2.3 CT imaging characteristics and 
preprocessing

All CT images were reformatted from standard DICOM to 
Neuroimaging Informatics Technology Initiative (NIfTI) format. In a 
second stage, they were co-registered in a linear and non-linear mode 
to a standardized CT template in an MRI-based standard space using 
FNIRT and FLIRT functions from FSL (FMRIB Software Library v6.0, 
FMRIB, Oxford, UK) (Jenkinson et al., 2012). To reduce superfluous 
information, we evaluated different preprocessing techniques: The first 
technique consisted of thresholding the skull bone and obtaining CT 
images with brain and head ridge visible (THRESH), the second 

https://doi.org/10.3389/fnins.2024.1245791
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Molinski et al. 10.3389/fnins.2024.1245791

Frontiers in Neuroscience 03 frontiersin.org

technique used the FSL brain extraction tool (BET). Following 
standard best practices of the train-test split for machine learning 
models, 134 CTs were used for training and validation, and the 
remaining 34 CTs for independent testing after training. Examples of 
CT images obtained from both preprocessing pipelines with different 
degrees of HIE and no HIE are shown in Figure 1.

2.4 Deep learning models and input data

The 2D and 3D DenseNets presented in this paper were 
implemented using the Python programming language (version 3.7, 
Python Software Foundation1) on the open-source deep learning 
framework MONAI (version 0.92) in conjunction with PyTorch 
(version 1.13.03).

All these networks are based on DenseNet121 architecture, which 
is characterized by four dense blocks with three transition layers and 
a final classification layer (Huang et al., 2016). DenseNets show a very 
high performance in deep learning classification (Zhou et al., 2022). 
Figure 2 shows a schematic diagram of the data processing within the 
neural network.

To determine the highest classification performance, five networks 
were trained with different data formats for both the BET and 
THRESH preprocessed data:

 • 3D-NET-ALL: all CT data as 3D images
 • 2D-NET-ALL: all CT data as 2D images
 • 2D-NET-S100: a stack of 100 2D images per CT scan (from the 

skull base until centrum semiovale)
 • 2D-NET-S50: a stack of 50 2D images per CT scan (50 slices 

containing basal ganglia)
 • 2D-NET-BG: one slice at the level of the anterior commissure

Evidence from previous studies (Singh et al., 2020) indicates that 
certain layers of the CT images contain significantly more relevant 
information than others, which is why a 2D model with all images 
(2D-NET-all, 181 images per CT), two 2D models with image stacks 
(2D-NET-S100, 100 images per CT; 2D-NET-S50, 50 images per CT) 
and one model with only a single slice at the level of the anterior 
commissure (2D-NET-BG, 1 slice per CT) were tested. A schematic 
visualization of the used images per CT scan can be found in Figure 3.

The preprocessed data were subjected to various transformations 
such as intensity scaling, rescaling, and rotations to obtain a higher 
variance of the input data. During training, a cross entropy loss 
function was used (Selvaraju et al., 2016). As a hyperparameter of 
interest, the learning rate was fine-tuned for each model in the range 
of 10−5 to 10−2. This was achieved by using the Adam optimizer and 
determining the steepest gradient of the loss function over the 
learning rate. Each model was trained for a maximum of up to 100 
epochs. For internal validation after each epoch, a subset of 34 CT 
scans was used. The best training epoch was determined based on the 
highest AUC value. To optimize for highest specificity/lowest FPR, the 
threshold for the decision certainty of the model was increased from 

1 https://www.python.org (accessed on 18 July, 2022).

2 https://docs.monai.io

3 https://pytorch.org

0.5 to 0.95 resp.  0.99. Subsequently, the result was obtained by 
binarizing the probability values using the adjusted threshold. 
Additionally, GradCAM images were created for visual verification of 
the model predictions (Selvaraju et al., 2016).

2.5 Statistical analysis

Continuous variables between two groups were compared using 
a Welch’s t-tests or Mann–Whitney U tests according to the normality 
of the data. Classification performances were evaluated using the area 
under the receiver operating characteristic curve (AUC), accuracy 
(ACC), sensitivity (SEN), and specificity (SPE) for the training and 
test set. Inter-rater reliability was determined using Cohen’s kappa (k) 
for nominal variables, such as the presence/absence of HIE signs on 
CT images and classified according to Altmann’s scheme (Altman, 
1990). p-values <0.05 were considered statistically significant at 95% 
CIs. Statistical analysis was performed using Python 3.7, the scipy 
library [version 1.8.14 (Pedregosa et al., 2012) and R Studio (Version 
2022.12.0+353)].

3 Results

3.1 Study population

Of 168 patients, 50 (29.8%) were female, the average age was 60 
(±12) years. According to the labeling of the neuroradiologist, 88 
(52.4%) showed signs of HIE in their CT images while the other 80 
(47.6%) showed no signs of HIE. Among all patients, 128 (76.2%) of 
CT images were from patients with out-of-hospital cardiac arrests 

4 https://scipy.org/

FIGURE 1

CT images of two different patients after passing through the two 
preprocessing pipelines. Patient A showing no signs of HIE. Patient B 
showing signs of severe HIE (“reversal sign”). GT, ground truth.
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(OHCA). While almost 87 (98.9%) patients labeled with “HIE” by the 
radiologist had poor outcome (CPC 4–5 at hospital discharge), the “no 
HIE” group included 22 (25.0%) cases with CPC 4–5. An overview of 
the analyzed demographic and clinical characteristics of the study 
population is shown in Table 1.

To verify the correct classification between the two groups, 20% 
of the CT images were reviewed by a second board-certified 
neuroradiologist and the interobserver variability was determined. 
The independent radiological reviews yielded a Cohens kappa of 
0.758, which is a “good agreement” according to Altmann’s scheme.

For missing data, the parameters are calculated on the basis of the 
available data and their new total number is specified.

3.2 Evaluation of classification 
performance and further metrics

Overall, the 2D-NET-S100 and 2D-NET-S50 achieved the highest 
AUCs (AUC: 94% resp.  93%) and accuracies (both ACC: 79%), 

2D-NET-all (AUC: 89%, ACC: 76%) performed worse than the stack 
models but still a lot better than the 3D-NET-all (AUC: 70%, ACC: 
50%). The 2D-NET-BG (AUC: 47%, ACC: 50%) performed on the 
same level as a random guess. The receiver operating characteristic 
curves with their corresponding AUCs are shown in 
Supplementary Figure S2. An overview of the most relevant 
performance metrics for all networks on the BET data can be found 
in Table 2. Networks using the THRESH data performed less stable 
than on the BET data. A table of all performance parameters for all 
networks including both kinds of preprocessed input data as well as 
two probability thresholds is displayed in the Supplementary Table S1.

3.3 Deep learning visualization

To better understand the decision-making process of our models, 
Gradient-weighted Class Activation Mapping (GradCAM) was 
implemented and evaluated for each patient. GradCAM utilizes the 
activation gradient information of the last convolutional layer to 

FIGURE 2

Visualization of the data processing flow in a 3D-DenseNet network.

FIGURE 3

CT images in 3D and coronal reconstruction. 1: 3D image of the whole brain. 2: Image stack of 50 slices including the basal ganglia. 3: Image stack of 
100 slices. 4: One slice at the level of the anterior commissure.
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highlight the regions of highest importance for the prediction of the 
model and visualizes these regions similar to heatmaps (Selvaraju 
et  al., 2016). Figure  4 contains examples of GradCAM images 
implemented on 2D THRESH Ct scans. The first images on the left-
hand side depict the original CT scans. The second image in each row 
presents a comprehensive GradCAM image. The third image overlays 
the entire GradCAM image with 60% opacity onto the original CT 
scan. The fourth image showcases the region encompassing the 30th 
percentile of the most vigorous activations in the Gradcam images, 
superimposed over the original CT. All test data is visualized in the 
same manner in Supplementary Figure S3.

In general, the GradCAM visualizations showed that the highest 
information density for the decision on the presence of HIE was based 
on the expression strands of the sulci in the area of the centrum 
semiovale and the basal ganglia. This presentation was quite analogous 
for all true-positive and true-negative cases. With the exception of 

true-positive cases, in which no sulci were visible and the GWR was 
already visually expected to be very low, further brain areas were 
also displayed.

Furthermore, the GradCAM images also made it possible to 
determine that false positive or false negative cases mostly marked 
areas outside the brain or the limits of the FSL brain extraction tool.

4 Discussion

The aim of this study was to develop a convolutional neural 
network (CNN) that could detect HIE in CA patients and to explore 
which data types and network architectures are best to establish a 
state-of-the-art model. All trained models were able to detect HIE 
with varying accuracies. Both 2D-NETs (S100, S50) trained on image 
stacks from brain extracted images (BET-images) achieved best 

TABLE 1 Demographic and clinical characteristics of the study population.

Parameter Total HIE no HIE p-value*
n 168 88 80

Age 60 [48–70] 57 [44–68] 63 [54–72] 0.021

Sex

Male 118 (70.2%) 60 (68.2%) 58 (72.5%) 0.271

OHCA 128 (76.2%) 73 (83.0%) 55 (68.8%) 0.033

Shockable Rhythm (n = 167/88/79) 78 (46.7%) 37 (42.0%) 41 (51.9%) 0.205

Primary cause of arrest (n = 166/87/79) 0.075

Cardiac 69 (41.6%) 29 (33.3%) 40 (50.6%)

Respiratory 39 (23.5%) 24 (27.6%) 15 (19.0%)

Other ** 58 (34.9%) 34 (39.1%) 24 (30.4%)

Time to ROSC (min) (n = 157/81/76) 20 [10–30] 22 [15–60] 12 [8–21] 0.007

Total Adrenalin Dose (mg) (n = 157/87/70) 2 [1–5] 4 [2–7] 2 [1–3] <0.001

APACHE Score (n = 165/86/79) 36 [30–40] 37 [31–41] 34 [29–39] 0.1

Length of ICU stay (days) 10 [5–17] 5 [3–11] 15 [10–28] <0.001

Time on Ventilator (hours) 170 [96–334] 123 [60–235] 242 [135–432] 0.003

CT acquisition (hours after CA) (n = 167/88/79) 20 [3–93] 18 [3–85] 34 [4–125] 0.004

Neurological outcome at hospital discharge <0.001

CPC 1 36 0 36

CPC 2 22 0 22

CPC 3 4 1 3

CPC 4 11 9 2

CPC 5 95 78 17

*Mann–Whitney U test (resp. Welch’s t-tests). **Intoxication, metabolic and unknown cases.

TABLE 2 Overview of the various key metrics for comparing the different neuronal networks on the BET data.

Parameter 3D-NET-all 2D-NET-all 2D-NET-S100 2D-NET-S50 2D-NET-BG

SEN [%] 0 53 59 59 0

SPE [%] 100 100 100 100 100

ACC [%] 50 76 79 79 50

AUC [%] 70 89 94 93 47

All metrics are based on the test dataset including 34 CT scans and a network probability threshold of 0.99. SEN, sensitivity; SPE, specificity; ACC, accuracy; AUC, area under the curve.
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predictive performance and highest accuracy in the training/
validation as well as in the test set.

In recent years, CT imaging has played a central role in a 
multimodal approach to estimate the prognosis and consequently 
decide on continuation or withdrawal of life-sustaining therapy in CA 
patients. Grey-White Matter Ratio (GWR) measurement has proven 
to be a strong prognosticator of poor outcome with high specificity 
and low- to moderate sensitivity (Lee et al., 2015; Na et al., 2018). 
However, GWR measurement needs neuroradiological expertise that 
is rarely found outside of referral care centers and university hospitals 
(Elmer et  al., 2023). In this study, we  established a deep learning 

model for detection of HIE signs on CT images that can be easily 
implemented in clinical routine.

We tested two different preprocessing pipelines for our data. The 
first pipeline involved thresholding to strip the skull, while the second 
pipeline involved brain extraction. The use of thresholding technique 
in the first pipeline was faster to implement but resulted in some 
prediction bias. This may have been due to the presence of superfluous 
information through the head ridge, e.g., subcutaneous edema that 
could indicate continuous heart failure after CA and lead to a poor 
outcome regardless of HIE. On the other hand, brain extraction 
removed superfluous information, but resulted in some partial 

FIGURE 4

Visualization of various CT images tested on 2D-NET-S100 network, where the test images were partially overlaid with GradCAM images. GT, ground 
truth; PRED, prediction.
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information loss through removal of cerebrospinal fluid, veins, and 
superficial cortex. The brain extraction technique was found to 
produce better predictive performance as well as a more plausible 
predictions judging from the GradCAM images.

After performing the necessary preprocessing steps, we trained 
multiple models using different data formats, including 3D images, 2D 
images of the entire brain, 2D stacks of the most significant brain 
regions, and 2D slices at the level of the anterior commissure. Our 
results demonstrated that networks trained on the 2D image stacks, 
which included 50 resp. 100 image slices but not all images of each CT 
scan, delivered the best performance. One possible explanation for 
this is the significantly larger amount of training data available for the 
2D stack format, with 13,400 images (for 2D Stack-100) compared to 
only 134 images for the 3D data in the training set. Our results are 
corroborated by Crespi et  al., who described that 2D networks 
outperformed 3D networks on medical data despite the lower number 
of parameters (Crespi et  al., 2022). These findings highlight the 
importance of carefully selecting the appropriate data format for 
training CNN models in medical imaging applications to achieve 
optimal performance.

Moreover, GradCAM visualization provides a valuable tool for 
understanding the decision-making process of the CNN models. 
These maps helped us gain insight into the reasoning behind the 
model’s predictions and identify areas that may require further 
investigation or attention from treating clinicians. According to our 
GradCAM images, our models predominantly use information in the 
basal ganglia and cortical sulci when discriminating between HIE and 
no HIE. To further analyze this observation systematically, we divided 
the GradCAMs into subgroups based on the model’s decisions (true 
positive, true negative, false negative, false positive) and visualized 
them again as group overlay plots. These visualizations are presented 
in Supplementary Figure S4, where the metrics of the subgroups 
correspond to rows 34–37 of columns I and J in Supplementary Table S1. 
First, the overlays of the THRESH method highlight significantly 
more areas from outside the brain than in the brain extraction group 
(BET), which was the main reason why we  developed the BET 
pipeline. The subgroup overlays indicate that for both types of CT 
data, similar regions were highlighted for both true positive and false 
positive decisions, as well as for both true negative and false negative 
decisions, respectively. While the heatmaps for true positive focuses 
more on deep grey matter including basal ganglia, the heatmaps in 
true negative are more diffused, suggesting the model is not focusing 
on any particular area indicative of HIE. This observation emphasizes 
again the critical importance of interpretability neural networks for 
medical imaging analysis, as it can help identify false predictions 
caused by information loss or other factors.

In addition, we also complied with 37 of the 42 checklist items on 
the RSNA’s CLAIM checklist during the study. The open items were 
either not applicable and indicated external validation, which we have 
already identified as a limitation of our study and will be addressed in 
future work. Of the DECIDE-AI checklist, 28 of the 37 items were 
adhered to. The open points are all in the area of implementation in 
everyday clinical practice and usability by other medical users, which 
was not yet planned as part of this study. We would like to point out 
that the scope of this checklist is aimed at other areas than this initial 
proof of concept study was intended to investigate.

In a recent publication by Mansour et al. (2022), machine and 
deep learning were utilized to identify patients who would exhibit 
radiologic evidence of apparent HIE on follow-up CT scans. Although 

this study demonstrates the potential of deep learning in detecting 
features that may not be  visible to human raters, their proposed 
method included various significant limitations (i.e., high risk of 
overfitting due to small data set, questionable training pipeline and 
principal component analysis), which could result in partially 
erroneous results (Molinski et  al., 2022). Our approach involved 
training our deep learning models from scratch, with direct class 
prediction as the output, without manual feature selection or 
additional machine learning modeling. Additionally, we believe that 
interpretability of the model’s predictions is crucial, which is why 
we utilized GradCAM visualization.

Our deep learning-based classification method differs significantly 
from GWR measurement. Unlike GWR, which relies on placing ROIs 
in the basal ganglia and white matter and may miss important 
information in other regions such as the cerebellum, our model 
considers all spatial information in the images. In addition, GWR only 
takes into account the Hounsfield units of the ROI, neglecting other 
relevant anatomical factors such as sulcal relief and ventricular 
enlargement. Our multi-class deep learning classification method uses 
a neural network with output nodes equal to the number of classes (in 
our case two: “HIE” and “no HIE”). Each output node is associated 
with a class and generates a score for that class, which is then passed 
through an activation layer to obtain probability values. As prediction 
probability threshold is set at 0.5 by default, we  adjusted for the 
optimal threshold to achieve 0% FPR, which is necessary for clinical 
implementation (Geocadin et al., 2019).

Our study has several potential limitations that should 
be considered. First, as the study has a retrospective, single-center 
design, our model has yet to be  externally and prospectively 
validated. Furthermore, our cohort of 168 patients is relatively small, 
and a larger dataset is needed to ensure the reproducibility of results 
and reduce the risk of overfitting. We tried to reduce this risk as 
much as possible by utilizing raw image transforms, a learning rate 
finder and an Adam gradient optimizer. Additionally, choosing a 
standard training-validation split instead of cross-validation can also 
be seen as limitation, as cross-validation could probably deliver a 
more robust assessment of generalization ability and facilitate a more 
comprehensive evaluation of hyperparameters. But we still opted for 
a conventional training-test split instead of employing cross-
validation in this proof-of-concept study, because (i) this study was 
designed to minimize computational overhead, (ii) repeatedly 
training and evaluating the model on different subsets of a small 
dataset may cause the model to memorize specific patterns rather 
than learning the underlying patterns of the data and thereby 
increases the risk of overfitting and (iii) a standard training-test split 
allows for a more straightforward visualization of the model’s 
performance and thus enables better comparability of the different 
models used in the study. Another point of concern is the choice of 
ground truth: In our study, we used neuroradiological expertise as 
the ground truth for “HIE” and “no HIE” labels. However, this may 
not necessarily reflect the underlying pathology or clinical status of 
the patients. The main reason for this choice is the difficulty to 
clinically determine the real cause of poor outcome, as many patients 
with HIE develop other complications such as cardiac or pulmonary 
complications, which may lead to death. Given the complexity of 
clinical cases like HIE, it is important to note that the ground truth 
of our training data corresponds to the expert opinion of a 
radiologist, which may already contain errors. To minimize this risk, 
a portion of the data was reviewed by another neuroradiologist to 
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determine interrater variability. Our analysis found a high level of 
agreement between raters, which was significantly better than what 
is typically observed for HIE (Caraganis et al., 2020). However, there 
is still a small possibility that the ground truth of certain images may 
be  incorrect. Another limitation is the quality of the data itself. 
Despite various preprocessing techniques, there is always the 
possibility that the individual CTs are not sufficiently homogenized 
since our data originated from three different scanner types of two 
manufactures. In a phantom study, Li et al. (2021) showed a high 
variability of image quality between different CT scanners. Roa et al. 
(2015) demonstrated that the image quality of a same CT scanner 
decreased over time. The data quality is also partially impaired by 
variability in patient characteristics, such as age and the timing of 
the CT scan after CA. It is well known that age-related cerebral 
atrophy and hypoattenuation of white matter in chronic small vessel 
ischemic disease can complicate neuroradiological diagnosis. 
Furthermore, HIE diagnosis on later CT scans is also significantly 
more sensitive for poor outcomes (GWR decreases over time in 
patients with severe HIE), so the sensitivity for prediction of poor 
outcome is higher for late CTs (>24 h after CA) as compared to early 
CTs (<6 h after CA) (Streitberger et  al., 2019). As these aspects 
confound the outcome prognosis for a human rater, they also 
confound the training of a neural network, especially on a 
small dataset.

For our future work, we  first want to address the current 
limitations especially in regards to the data sampling (i.e., cross-
validation) and retest and retrain it on a larger dataset. We will also 
explore newer techniques of CT quality harmonization such as the 
ComBat method (Johnson et al., 2007; Orlhac et al., 2021). Moreover, 
as the timing of brain computed tomography and accuracy of outcome 
prediction are correlated, we  will investigate the influence of CT 
timing on the predictive performance of our model. Our vision is to 
develop a multimodal model, for which we  will integrate further 
parameters such as serum biomarkers and electrophysiology data to 
improve outcome prediction. Transfer learning in combination with 
an external multi-center validation approach can be used to further 
optimize this pilot study (Weiss et al., 2016).

5 Conclusion

In this study we established a state-of-the-art, deep learning-based 
model for detection of hypoxic–ischemic encephalopathy on CT 
images which can be trained on 2D or 3D images.

The best performance was achieved by neuronal networks trained 
on 2D image stacks of brain extracted CT data. After implementing 
the described improvements and external validation, our model can 
be implemented in clinical routine and help clinicians with outcome 
prediction of HIE in CA patients.
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