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Stem cells offer new therapeutic avenues for the repair and replacement of 
damaged tissues and organs owing to their self-renewal and multipotent 
differentiation capabilities. In this paper, we conduct a systematic review of the 
characteristics of various types of stem cells and offer insights into their potential 
applications in both cellular and cell-free therapies. In addition, we  provide 
a comprehensive summary of the technical routes of stem cell therapy and 
discuss in detail current challenges, including safety issues and differentiation 
control. Although some issues remain, stem cell therapy demonstrates excellent 
potential in the field of regenerative medicine and provides novel tactics and 
methodologies for managing a wider spectrum of illnesses and traumas.
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Introduction

Organ damage and degenerative diseases are caused by cell death through ageing or loss of 
function and can seriously affect people’s lives. Examples of such conditions include degenerative 
diseases like Parkinson’s disease, Alzheimer’s disease, cirrhosis of the liver, and hearing loss, as 
well as injurious diseases such as myocardial infarction and skin burns. Organs such as the liver 
have high regenerative capacity and can regenerate sufficiently to maintain functional stability 
under certain circumstances (Michalopoulos and Bhushan, 2021). Mouse liver has 
demonstrated robust regeneration that supports liver function after partial hepatectomy (Zhang 
et al., 2021; Duan et al., 2022; Fan et al., 2022). Unfortunately, most tissues and organs do not 
have such regenerative capacity and cannot repair themselves after injury, eventually leading to 
loss of function. An example of this would be the hair cells in the cochlea, which do not 
regenerate once they are damaged, resulting in irreversible hearing loss (Warchol et al., 1993). 
These patients will require a cochlear implant, whereby an electronic device containing an array 
of electrodes and a receiver is surgically implanted into the patient’s inner ear to directly 
stimulate the auditory nerve and recover some of the patient’s hearing (Lenarz, 2017; Carlson, 
2020; Weltin et al., 2022). Similarly, patients with damaged heart valves will require replacement 
with artificial valves made of metal or biological material in order to maintain heart function 
(Singh et al., 2019; Hofferberth et al., 2020; Dreyfus et al., 2022; Figure 1).

Artificial organ replacement is complex and patients can develop infections or immune 
rejection after transplantation (Ko et al., 2016; Bakir et al., 2022; Crespo-Leiro et al., 2022). Some 
inflammatory reactions, such as infectious endocarditis, can be fatal (Berisha et al., 2022). Therefore, 
there is a need for an immunogenically weak treatment that can effectively repair damaged tissues 
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and organs in patients, aiming to minimize the occurrence of adverse 
events. Stem cells (SCs), which have great potential to differentiate into a 
variety of cells and can proliferate indefinitely (Jin, 2017). SCs can 
be induced to differentiate into specific cell or tissue types in vitro before 
transplanting into the patient to replace degenerated or necrotic cells 
(Czajkowski et al., 2019; Selvaraj et al., 2019; Gholamigeravand et al., 2021; 
Melton, 2021). In addition, SCs can secrete anti-inflammatory factors, 
cytokines, and exosomes to suppress the inflammatory response and 
improve the microenvironment of the damaged area, ultimately regulating 
cell proliferation and differentiation (Vakhshiteh et al., 2019; Veneruso 
et  al., 2019; Lv et  al., 2021). This review provides a comprehensive 
overview of the mechanistic studies and clinical applications of stem cell 
therapy, while also pointing out pertinent issues in the field.

Classification of SCs

SCs are cells with multi-directional differentiation potential while 
retaining the ability to replicate and renew themselves. They can 
be classified according to the extent of their differentiation capability 
(Table 1).

Totipotent stem cells (TSCs) are a type of stem cell with the 
remarkable ability to differentiate into any cell type within an 
organism, including the placental cells necessary for embryonic 
development (Malik and Wang, 2022). TSCs exist at the earliest stages 
of embryonic development, typically at the zygote stage after 
fertilization when a sperm cell fertilizes an egg cell. At this point, the 
zygote is formed, which possesses the potential to develop into a 
complete organism (Baumann, 2017). TSCs often have a number of 
unique molecular features, including lower DNA methylation (Smith 
et  al., 2014) and activation of endogenous retroviral components 
(ERVs) (Hurst and Magiorkinis, 2017). The TSC state can be induced 
by several methods. A mixture of the GSK inhibitor 1-azakenpaullone, 
the retinoic acid analogue TTNPB, and the kinase blocker WS6 can 
induce mouse embryonic stem cells (ESCs) to exhibit a phenotype 
similar to that of TSCs at the fertilized egg and two-cell stages (Hu 
et al., 2023). Furthermore, heterochromatin remodeling has also been 
demonstrated to help establish allozygous-specific H3K4me3 
structural domains, thus effectively facilitating the transformation of 
ESCs from pluripotency to allozygosity (Yang et al., 2022). The unique 
ability of TSCs to differentiate into whole organisms is of great interest 
to developmental biology and regenerative medicine research. Still, 

FIGURE 1

Treatment after organ dysfunction. The primary causes of organ dysfunction include tissue and organ damage, tumors, and congenital genetic 
diseases. To restore corresponding functions, current treatments primarily focus on organ transplantation, artificial organ substitution, and 
regeneration of organs.
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there are specific ethical issues associated with their use and study 
(Takahashi and Yamanaka, 2006).

Pluripotent stem cells (PSCs) are known for their exceptional 
ability to differentiate into various specialized cell types across all three 
germ layers: ectoderm, endoderm, and mesoderm. Specifically, PSCs 
exhibit a significant capacity for differentiation into ectodermal 
derivatives (Yilmaz and Benvenisty, 2019). This is evidenced by their 
ability to generate neurons, glial cells, neural crest cells, and other cell 
types originating from the ectoderm (Yang et al., 2022). They are 
typically derived from ESCs at the blastocyst stage (Varzideh et al., 
2023), or induced pluripotent stem cells (iPSCs) by reprogramming 
adult cells with four transcription factors: Oct4, Sox2, Klf4, and c-Myc 
(Takahashi and Yamanaka, 2006). The most significant advantage of 
iPSCs is that they are derived from differentiated somatic cells, 
providing the advantages of SCs while significantly avoiding the 
ethical issues associated with TSCs and ESCs. The indefinite self-
renewal capacity of iPSCs in culture allows the generation of an almost 
unlimited supply of specialized cells, offering a great potential for the 
study of early human development, disease modeling and regenerative 
therapies (Chandy et al., 2022; Cho et al., 2022; Varzideh et al., 2023).

Adult stem cells (ASCs), categorized as multipotent stem cells, 
demonstrate a more restricted capacity for differentiation compared to 
pluripotent stem cells. These cells reside in various tissues and organs 
throughout the body, playing a role in maintaining, repairing, and 
regenerating tissues within their specific microenvironments (Prentice, 
2019). Unlike pluripotent stem cells, which possess a broader potential 
to differentiate into diverse cell types from multiple germ layers, ASCs 
are more constrained in their differentiation scope. They typically 
generate cell types specific to their tissue or organ of origin and are 
more specialized than pluripotent stem cells. Consequently, ASCs can 
only generate specific cell lineages corresponding to the exact tissue of 
their origin, differing from the broader differentiation potential 
exhibited by their pluripotent stem cell counterparts (Barker et al., 
2010). The most common ASCs include hematopoietic stem cells 
(HSCs; responsible for the production of blood cells in the bone 
marrow) (Cho et al., 2022), mesenchymal stem cells (MSCs; differentiate 
into fat, cartilage, and bone cells in various tissues) (Wang et al., 2023), 
and neural stem cells (NSCs; differentiate into neurons, astrocytes, and 
oligodendrocytes of the nervous system) (Zholudeva et al., 2021). ASCs 
are characterized by their relative abundance in adult tissues, their 
ability to regulate the microenvironment by secreting specific signaling 
molecules, and their ease of isolation (Ma et al., 2014; Zholudeva et al., 
2021). They are, therefore, of great value for tissue and organ repair and 
cancer therapy (Barker et al., 2010; Liu et al., 2023; Wang et al., 2023).

Unipotent stem cells (USCs) constitute a specialized subset among 
stem cells, distinguished by their notably restricted differentiation 

potential. In contrast to pluripotent or multipotent stem cells, which 
are capable of generating a variety of cell types, USCs are dedicated 
solely to generating a single specific cell type (Lilja et al., 2018). These 
cells predominantly reside in specific tissues or organs, fulfilling a 
crucial function in sustaining, repairing, and rejuvenating the 
particular tissue they inhabit (Thomson et  al., 1998). USCs are 
commonly found in adult tissues and are able to continuously 
replenish particular cell populations that are consumed, playing a vital 
role in tissue maintenance and repair. Examples of USCs include basal 
cells in the skin (Lin and Lu, 2021) and satellite cells in the skeletal 
muscle (Mierzejewski et  al., 2020). The potential of USCs in the 
treatment of diseases is limited by their single mode of differentiation.

The technical route to SC therapy

To employ SCs for therapy, it is essential to first consider the 
source of the SCs. Considering their differentiation capacity and 
ethical issues, the most widely used SCs for treatment are currently 
PSCs and ASCs. ESCs are typically derived from the inner cell mass 
of a blastocyst (Bacakova et al., 2018). iPSCs are generated as described 
above and ASCs are derived from a variety of adult tissues, including 
adipose tissue, bone marrow, neural tissue, blood, skeletal muscle, etc., 
which provide convenient cell sources (Bacakova et al., 2018).

In order to maintain the multigenerational self-renewal capacity 
and differentiation ability of SCs, specialized culture systems are 
required to support this. Different biomaterials in the culture medium 
can impact the differentiation potential and the amplification capacity 
of SCs. Media containing oligopeptide-grafted hydrogels have been 
shown to enhance the proliferation and pluripotency of human ESCs 
and iPSCs (Chen et al., 2017). The use of culture systems containing 
human plasma and human embryo extracts maximizes the number of 
passages while maintaining the self-renewal and differentiation 
potential of iPSCs (Wang et al., 2012). In addition, compared to 2D 
cultures, 3D culture systems can better mimic the microenvironment 
of SCs in vivo and enhance the stemness of different SC species (Al 
Madhoun et al., 2016; Thakur et al., 2022). For example, a combination 
of 3D cell culture and natural brain tissue extracts can accelerate the 
differentiation of SCs into neuronal phenotypes (Azizi et al., 2018).

For SC therapy, the most crucial step is to direct the differentiation 
of SCs toward the target cell type by regulating culture conditions and 
signaling molecules. This can be achieved by mimicking the signaling 
pathways and microenvironment during embryonic development. 
Studies have shown that inner ear development is closely linked to 
fibroblast growth factor (FGF) signaling (Alvarez et  al., 2003). 
Stimulating this pathway in human ESCs can induce two types of ear 

TABLE 1 Classification of stem cells.

Classification Differentiation capacity Examples

Totipotent stem cells The most strongest differentiation potential, able to develop into complete 

individuals

Early embryonic stages of the fertilized egg and two-cell stage

Pluripotent stem cells Second only to totipotent stem cells, capable of differentiating into most cells Embryonic stem cells and induced pluripotent stem cells

Adult stem cells Limited differentiation potential, able to differentiate into multiple cell types in a 

specific tissue or organ

Hematopoietic stem cells, mesenchymal stem cells, and 

neural stem cells

Unipotent stem cells The weakest differentiation capacity, capable of differentiating into only one 

specific cell type in its tissue of origin

Skin basal cells and skeletal muscle satellite cells
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progenitor cells that differentiate into inner ear hair-like cells and 
auditory neurons, respectively (Chen et al., 2012). Mild activation of 
Wnt signaling promotes the differentiation of MSCs into 
chondrogenic cells (Schizas et al., 2021). The adhesion and growth 
characteristics of cells can also be influenced by culturing them on 
the surface of nanomaterial composites, which triggers 
mechanotransduction-induced changes in gene expression through 
changes in cytoskeletal structure. Mouse kidney-derived SCs have 
been induced to differentiate into podocytes or proximal tubular cells 
in this way (MacGregor-Ramiasa et al., 2017). In contrast, in neural 
differentiation of SCs, chemical inducers or growth factors, including 
retinoic acid (RA), brain-derived neurotrophic factor (BDNF), and 
nerve growth factor (NGF), are required (Gupta and Singh, 2022). 
Finally, the most direct way to induce directed differentiation of SCs 
is through transcription factor regulation. In addition to the above-
mentioned transcription factors that can reprogram fibroblasts to 
iPSC, different transcription factors are required to induce 
differentiation of the required cell population (Ng et  al., 2021). 
Overexpression of NR5A1 and RUNNX1 or RUNX2 induces the 
differentiation of iPSC into human ovarian granulosa cells (Pierson 
Smela et al., 2023). The combined action of transcription factors, 
GATA4, Tbx5, MEF2C, and Hand2, reprograms mouse tail-tip and 
cardiac fibroblasts to cardiomyocyte-like cells with cardiac function 
in vitro (Song et  al., 2012). Overexpression of GFI1, Pou4f3, and 
ATOH1 directly induces the transformation of human fibroblasts into 
inner ear hair cell lineages (Duran Alonso et al., 2018).

Following combination and optimization of the above methods, 
directed differentiation of SCs can be achieved. After ensuring the 
validity and stability of the differentiation process, cell identification 
and functional validation, including cell phenotype analysis, gene 
expression analysis and functional assessment, are required to confirm 
that the differentiated cell types are as expected, thus ensuring that the 
resulting cells have the desired properties and functions.

Finally, differentiated and validated SCs are transplanted into 
patients via different vectors and scaffolds. At this stage, enhancing the 
retention of SCs in tissues is critical to the efficacy of the therapy. The 
most commonly used modality is injecting a saline suspension of the 
SCs directly into the target organ or tissue (Mousaei Ghasroldasht 
et al., 2022). However, due to the low adhesion of saline, only a small 
number of cells may remain in the tissue following injection. 
Therefore, a medium with higher adhesion properties is needed as a 
vehicle for SCs transplantation, such as a hydrogel (Nayagam et al., 
2012; Niu et  al., 2019). Nanohybrid hydrogels containing sufated 
glycosaminoglycan-based polyelectrolyte complex nanoparticles 
(PCN) are able to mimic extracellular matrices and contain a variety 
of bioactive factors to improve the implantation rate of neural SCs, 
while enabling cellular responses after central nervous system injury 
(Jian et al., 2018). Gelatin methacrylate (GelMA)/sodium alginate 
(Alg) (GelMA/Alg) hydrogels also contribute to the reduction of 
cellular damage after the implantation of neural SCs (Chen et al., 
2023). Hydrogels of different compositions have played essential roles 
in cardiac infarction, skin regeneration, liver regeneration, etc., 
(Mardpour et al., 2019; Ke et al., 2020; Gong et al., 2022).

In summary, a complete SC therapeutic process comprises three 
significant aspects: SC generation and amplification, targeted 
differentiation and application, and selection of the optimal technical 
route to achieve regeneration and functional recovery of damaged 
tissues and organs is required for different clinical areas (Figure 2).

Applications of SC therapy

Cell therapy for organ and tissue regeneration encompasses a 
range of methods aimed at repairing or regenerating damaged tissues 
or organs by introducing exogenous cells into the body. Stem cell 
therapies, among other approaches, constitute a significant aspect of 
this field, harnessing the regenerative potential of specific cell 
populations to restore tissue function in conditions ranging from 
degenerative diseases to injuries.

Cell therapy for organ and tissue 
regeneration

Cell-based therapies operate through various mechanisms, 
encompassing cellular differentiation, secretion of bioactive 
molecules like growth factors and cytokines, modulation of immune 
responses, and facilitation of tissue repair and remodeling. 
Degenerative and injurious diseases, including circulatory, 
endocrine and neurological disorders, have the potential to 
be restored through SC therapy (Rossi and Cattaneo, 2002; Boyle 
et al., 2006). The first clinical applications were in the hematological 
sector, involving transplantation of hematopoietic stem cells (HSCs) 
from the blood system (Eaves, 2015). HSC transplants have now 
become the standard of care for hematological malignancies and 
hereditary blood cell disorders (Bordignon, 2006). Graft-versus-host 
disease (GVHD) can be minimized by analyzing genes within the 
human leukocyte antigen (HLA) region to find the best 
HLA-matched donor and recipient. To avoid the limitations of donor 
matching and potential immune complications, genetic correction 
or gene editing of patient’s own HSCs has dramatically improved the 
efficiency of transplantation therapy for hematological disorders 
(Morgan et  al., 2017). Wiskott-Aldrich syndrome (WAS), 
characterized by macrothrombocytopenia, eczema, autoimmunity, 
and lymphoid malignancies, is caused by the expression of mutated 
forms of the WAS gene. This mutation has been corrected in the 
patient’s own HSCs by lentiviral transfection of the correct gene, 
followed by infusion of the modified HSCs into the patient, who 
showed improvement in immune function and clinical symptoms 
(Aiuti et al., 2013). In sickle cell disease, the hemoglobin abnormality 
is reversed by the introduction of the globin genes (γ-globin, 
γ/β-globin hybrids, and anti-sickle β-globin) into HSCs via 
γ-retroviral and lentiviral vectors or by directly targeting the fetal 
γ-globin suppressor gene BCL11A (White et al., 2023).

SC therapy has also shown strong potential in the treatment of 
deafness. Combined treatment of ESCs with insulin-like growth 
factor-1 (IGF), epidermal growth factor (EGF), and bFGF can induce 
ESCs to express markers of inner ear progenitor cells, including 
ATOH1 (Li et al., 2003). After co-culture of ESCs/iPSCs and stromal 
cells from embryonic chicken egg sacs, Oshima et al. identified a class 
of hair bundle cells with short microvilli that have electrophysiological 
properties resembling immature hair cells (Oshima et al., 2010). This 
method further completes the progressive differentiation from SCs to 
hair cells. Treatment of hereditary hearing loss with SCs also requires 
the aid of gene editing. In deaf patients with MYO7A mutation, 
CRISPR/Cas9 gene correction in iPSCs is required to restore normal 
morphology and function of the differentiated hair cell-like cells (Tang 
et al., 2016).

https://doi.org/10.3389/fnins.2024.1269577
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2024.1269577

Frontiers in Neuroscience 05 frontiersin.org

Cell-based SCs therapies have also been gradually refined for the 
treatment of heart and skin diseases. Cardiomyocytes are fully 
differentiated cells and have a limited regenerative capacity that 
determines the irreversible loss of cardiac function after injury 
(Eschenhagen et al., 2017). The re-differentiation of cardiomyocytes 
from ESCs and iPSCs is expected to further improve the function of 
damaged cardiac tissues (Mummery et al., 2012). With the addition 
of gene editing, SCs have been used to improve the treatment of 
cardiac diseases, including the introduction of Akt1 to enhance the 
proliferation of cardiac progenitor cells (Noiseux et al., 2006), and 
modification of the SDF-1/CXCR4 genes to facilitate the recruitment 
of cardiac SCs (Zhang et al., 2008; Tang et al., 2009). In terms of skin 
wound healing, SCs treatment mainly reduces healing time, risk of 
wound contracture and scar formation (Nourian Dehkordi 
et al., 2019).

In summary, cell-based SCs therapies work by direct replacement 
of the damaged tissues with cells derived from differentiation of 
normal SCs to restore tissue function or by correcting the abnormal 
SCs with gene editing so that normal tissue and organ function can 
be  restored. While demonstrating potential in facilitating tissue 
regeneration and potentially reversing specific pathological 
conditions, several challenges persist, encompassing immune rejection 
concerns, ethical considerations, and the risks associated with 
unregulated cellular behavior subsequent to transplantation.

Cell-free paracrine therapy

There is growing evidence that in addition to direct cell 
replacement therapy, SCs, particularly MSCs, secrete proteins, growth 
factors, cytokines, and chemokines that exert influence on the 
surrounding cells or microenvironment to support tissue regeneration 
(Han et al., 2022). These secretory products, collectively known as the 
SCs secretome, are able to modulate the microenvironment of the 
damaged tissue by affecting the signaling pathways in different cell 
types, including tissue-specific cells, immune cells, vascular 
endothelial cells, and fibroblasts in the extracellular matrix (ECM) 
(Konala et al., 2016; Praveen Kumar et al., 2019; Daneshmandi et al., 
2020). Due to their immunomodulatory properties, MSCs produce 
different regulatory factors to modulate the immune response in the 
microenvironment after homing and migrating to sites of injury 
(Volarevic et al., 2017). Immune checkpoint inhibitors, such as anti-
PD-1/PD-L1, used for cancer therapy can also induce autoimmune 
type 1 diabetes, while MSCs-derived exosomes significantly prevent 
anti-PD-1/PD-L1-induced diabetes in mice (Kawada-Horitani et al., 
2022). Bone marrow-derived MSCs were found to promote tendon-
bone healing in the rotator cuff of rats by secreting TGF-β to regulate 
macrophage polarization via the Smad2/3 pathway. Inhibition of the 
M1 macrophage phenotype and promotion of the M2 phenotype was 
thought to contribute to tissue regeneration (Chen et al., 2021). In 

FIGURE 2

The flowchart of stem cell therapy. Various stem cell types are initially isolated from tissues and subsequently expanded through 2D or 3D culture. 
Following the regulation of culture conditions and signaling molecules, these stem cells can be directed towards specific differentiation pathways, 
ultimately resulting in tissue-specific cells that can be utilized for therapy via hydrogel encapsulation injection.

https://doi.org/10.3389/fnins.2024.1269577
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2024.1269577

Frontiers in Neuroscience 06 frontiersin.org

addition, human MuSCs, a type of muscle SCs, can secrete mediators 
such as heme oxygenase-1 and prostaglandin E2 to inhibit T 
lymphocyte proliferation, induce Treg-like cell production and 
suppress the cytotoxic response of CD8+ T lymphocytes (Charrier 
et  al., 2022). Thus, SCs can produce various mediators to act on 
multiple immune cells, including macrophages and T cells, and play a 
pivotal role in regulating the immune microenvironment.

SCs can also secrete factors that promote angiogenesis in the 
microenvironment while they themselves differentiate into suitable 
cell types to replace the damaged cells (Xia et al., 2019). This is the case 
in fetal skin where the SC secretome promotes HUVEC cell 
proliferation and angiogenesis by enhancing the transcriptional 
activity of targeted genes associated with fetal skin regeneration and 
angiogenesis, including VEGF, Ang-1, Ang-2, and PLGF (Boyle et al., 
2006). ESCs-derived MSCs can promote angiogenesis and nerve 
regeneration through paracrine secretion, thus, improving 
neurological deficits and reducing infarct volumes in ischemic rats 
(Asgari Taei et al., 2021). Further proteomic analysis revealed that the 
cysteine-rich protein Cyr61 (also known as CCN1) is a pro-angiogenic 
factor that mediates vascular endothelial cell migration and 
angiogenesis through integrins αvβ3 and AMPK (Estrada et al., 2009; 
Park et al., 2015; Li Z et al., 2019). Similar to Cyr61, MSC-derived 
heparinases also promote angiogenesis via integrin pathways (Hu 
et al., 2015). The microenvironment also contains transport systems 
such as lymphatic vessels which can be  regulated by SCs. When 
quiescent SCs shift to the activated phase, they can change the 
expression of angiopoietin-like protein 7 (Angptl7) to Angptl4. This 
results in a switch from promoting lymphatic drainage to promoting 
lymphatic dissociation and reducing drainage, thus mediating 
lymphatic remodeling (Gur-Cohen et  al., 2019). In summary, the 
paracrine secretions from SCs can regulate lymphatic drainage and 
promote angiogenesis to ensure nutrient supply while replenishing 
damaged cells.

In addition to the normal microenvironment, SCs can also regulate 
the tumor microenvironment (TME). MicroRNA-100-rich exosomes 
derived from MSCs can inhibit the expression of VEGF in breast cancer 
cells through mTOR/HIF-1α signaling, ultimately inhibiting 
angiogenesis in the TME (Pakravan et al., 2017). However, in bladder 
cancer, the secretome of adipose-derived MSCs promotes the 
proliferation and invasion of cancer cells in vitro (Maj et al., 2018). 
Thus, regulation of the TME by the secretome of SCs can 
be bidirectional depending on the tissue involved. However, based on 
the secretory property of MSCs, therapeutic modalities that use MSCs 
as carriers for targeted delivery of treatment agents are now emerging 

(Hu et al., 2010). From delivery of cytokines such as IFN-β (Studeny 
et al., 2004) and IL-2/IL-12 (Gao et al., 2010; Bae et al., 2022) to regulate 
the immune microenvironment (CD8+ T cells, NK cells), to delivery of 
drugs such as paclitaxel (Pessina et al., 2013), doxorubicin (Zhao et al., 
2017), and photoresponsive agents for photodynamic therapy or 
photothermal therapy (Ouyang et  al., 2020), to today’s delivery of 
suicide genes such as TRAIL (Li M et al., 2019) and herpes simplex 
virus-thymidine kinase (HSV-TK) (Oraee-Yazdani et al., 2023), the use 
of MSCs as a therapeutic vector has been progressively refined.

In summary, cell-free therapies based on SCs have shown great 
promise with their ability to modulate the tissue microenvironment 
for the treatment of more diverse diseases than cell therapies in which 
SCs are re-differentiated to replenish damaged cells. Cell-free 
paracrine therapy offers several advantages over cell-based therapies, 
including reduced risk of immune rejection, simplified storage and 
administration processes, and potentially fewer safety concerns 
(Table 2).

Current challenges

In the current phase of rapid development in SC-based therapies, 
it is still important not to overlook some of the problems they pose. 
The first issue to be considered is the source of SCs as there are ethical 
and legal considerations (King and Perrin, 2014). The use of ESCs is 
subjected to ethical debates and legal limits, while the acquisition and 
amplification of adult SCs are technically tricky and have quality 
control issues (Chen et  al., 2020). Another issue arising from 
prolonged continuous culture is the loss of cell viability, leading to 
reduced proliferative and differentiation capabilities. Addressing this 
necessitates the use of new materials, such as silica nanoparticles, for 
the long-term preservation of stem cells in a desiccated state (Gallina 
et al., 2015). Secondly, the efficiency and direction of differentiation of 
SCs is a major issue as this determines the effectiveness of the 
treatment. Directed differentiation is a complex process that we do not 
yet fully understand and many factors, such as cell culture conditions, 
cytokines, and signaling pathways can influence the process (Kim 
et al., 2016). Therefore, more research is still required to better control 
the direction and quality of differentiation of SCs to prevent adverse 
events such as tumorigenesis (Andrews et al., 2022). Another crucial 
determinant of stem cell therapy is the capacity to target cellular 
migration. Prior to assuming their role in differentiation, stem cells 
must be effectively delivered to the intended site. Currently, most stem 
cell therapeutic approaches employ intravenous drug delivery, which 

TABLE 2 Applications of stem cell therapy.

Cell therapy Cell-free paracrine therapy

Treatment principle The inherent ability of stem cells to undergo self-renewal and 

differentiation

The capacity of stem cells to secrete and generate various bioactive 

substances

The main acting substance Stem cells Stem cells secretome (proteins, exosomes, and active factors)

Therapy method Replace damaged or abnormal cells Regulate the microenvironment

Clinical application Hematopoietic stem cells transplantation; regeneration of inner 

hair cells, cardiomyocyte, and hypodermal cell

Suppressing autoimmunity in type 1 diabetes; promoting angiogenesis of 

skin and brain tissue; regulating the tumor microenvironment

References Oshima et al. (2010), Eaves (2015), and Nourian Dehkordi et al. 

(2019)

Boyle et al. (2006), Pakravan et al. (2017), Maj et al. (2018), Asgari Taei 

et al. (2021), and Kawada-Horitani et al. (2022)
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exhibits limited efficacy in facilitating targeted migration from blood 
circulation to tissues (Liu et al., 2020). Survival of the transplanted SCs 
is another major issue facing SC therapy. SC therapy, characterized by 
its low expression of MHC and HLA, holds the potential to achieve 
reduced immunogenicity and significantly enhance the suppression 
of the graft-versus-host response. However, owing to the limitations 
in pre-expansion technology associated with SC therapy, its immune 
privilege is progressively compromised. Upon infusion into the 
human body, the presence of inflammatory factors within the body 
further escalates the immunogenicity of SCs, thereby elevating the risk 
of rejection (Barrachina et al., 2017). Cell survival and growth after 
transplantation are influenced by the host immune system, since the 
host immune responses to the allogeneic cells directly contributes to 
graft rejection (Sanz-Ruiz and Fernández-Avilés, 2018). A possible 
solution for allo-rejection is to knockout immune-related genes by 
gene editing to generate immune-compatible SCs (Ye et al., 2020). 
Further research will be required to resolve these and other challenges 
to successfully translate SCs therapies to the clinics.

Summary and perspectives

Since Ernst Haeckel first identified SCs in 1868, the development 
of these cells had gone through several critical stages. Initially, SCs 
were isolated and identified from various tissues, followed by the 
development of iPSCs and the combination of gene editing with SCs, 
leading to the progressive refinement of SC therapy. The most direct 
application for SCs is cell-based therapy, owing to their multi-
directional differentiation capabilities. This approach involves the 
injection of SCs, both allogeneic and genetically modified autologous 
SCs, into the sites of disease or injury to promote tissue regeneration 
and functional recovery. The administration of cardiopoietic stem cell 
injection, induced by a cardiogenic growth factor, effectively enhanced 
cardiac function in patients with chronic heart failure during a clinical 
trial. Notably, no adverse effects on the heart or systemic toxicity were 
observed among the subjects (Bartunek et al., 2013). The deficiency of 
arylsulfatase A (ARSA), an inherited disorder known as 
metachromatic leukodystrophy (MLD), can be addressed through in 
vitro lentiviral transduction of autologous hematopoietic stem cells 
with cDNA encoding ARSA. This approach leads to enhanced ARSA 
activity and reduced brain damage (Fumagalli et  al., 2022). An 
alternative application is cell-free therapy, utilizing the secretory 
ability of SCs, is also a critical approach. SC secreted factors can 
modulate the target tissue cells and the microenvironment, including 
the immune microenvironment and angiogenesis. Allogeneic 
expanded adipose-derived mesenchymal stem cells (Cx601) have been 
proven to secrete immunomodulators and anti-inflammatory factors, 
and have certain potential in the treatment of inflammatory bowel 
disease, especially in the treatment of anal fistula in patients with 
Crohn’s disease (Panés et al., 2018). The latest therapeutic approach is 
to use SCs as vehicles for the targeted delivery of effectors, drugs, and 
genes into damaged tissues or tumors to exert the appropriate 
regulatory effects. The potential of oncolytic adenovirus as an 
antitumor therapy is limited in central nervous system tumors due to 
the presence of the blood–brain barrier. However, a clinical trial 
demonstrated that delivery via neural stem cells (NSC) facilitated safe 
and efficient transportation of oncolytic adenovirus to the tumor site 
(Fares et al., 2021).

However, SC therapy also faces a number of safety issues. 
Allogeneic SCs can trigger the patient’s immune system, leading to 
graft rejection, while excessive proliferation and differentiation of 
transplanted SCs may lead to tumor formation. Ensuring the safety of 
SC therapy is, therefore, a significant challenge. It is also crucial in SC 
therapy to ensure that SCs can differentiate directionally into target 
cell types and maintain their function and stability. Further research 
and improved differentiation techniques are needed to ensure that 
differentiated cells have the desired characteristics.

In conclusion, as an essential therapeutic tool in regenerative 
medicine, SC therapy plays a vital role in a number of ways, both in 
the cells themselves and in their secreted components. With a better 
understanding of the properties and functions of SCs, it is expected 
that more diseases and injuries will be  able to benefit from 
SC therapy.
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