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Background: The occurrence of lymph node metastasis (LNM) is one of the

critical factors in determining the staging, treatment and prognosis of cervical

cancer (CC). Heart rate variability (HRV) is associated with LNM in patients with

CC. The purpose of this study was to validate the feasibility of machine learning

(ML) models constructed with preoperative HRV as a feature of CC patients in

predicting CC LNM.

Methods: A total of 292 patients with pathologically confirmed CC admitted

to the Department of Gynecological Oncology of the First Affiliated Hospital

of Bengbu Medical University from November 2020 to September 2023 were

included in the study. The patient’ preoperative 5-min electrocardiogram data

were collected, and HRV time-domain, frequency-domain and non-linear

analyses were subsequently performed, and six ML models were constructed

based on 32 parameters. Model performance was assessed using the area

under the receiver operating characteristic curve (AUC), accuracy, sensitivity,

and specificity.

Results: Among the 6 ML models, the random forest (RF) model showed the

best predictive performance, as specified by the following metrics on the test

set: AUC (0.852), accuracy (0.744), sensitivity (0.783), and specificity (0.785).

Conclusion: The RF model built with preoperative HRV parameters showed

superior performance in CC LNM prediction, but multicenter studies with

larger datasets are needed to validate our findings, and the physiopathological

mechanisms between HRV and CC LNM need to be further explored.
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Introduction

Cervical cancer (CC) is a common gynecologic malignancy
worldwide and one of the leading causes of cancer-related deaths
in women (Sung et al., 2021). Clinical treatment is usually
administered according to the disease stage of patients. For
example, early CC patients are often treated with surgery, while
patients with locally advanced CC need to be considered for
combined radiotherapy and chemotherapy (Bhatla et al., 2021;
Burmeister et al., 2022; Pecorino et al., 2022; Mereu et al., 2023).
In 2018, the International Federation of Gynecology and Obstetrics
(FIGO) included lymph node status in the CC staging criteria (Kido
and Nakamoto, 2021). Since then, the occurrence of lymph node
metastasis (LNM) has become an important factor in determining
the staging and treatment modalities of CC (Hou et al., 2020).
In addition, LNM has been proven to be an important risk
factor for CC recurrence and patient death (Polterauer et al.,
2010; Moreira et al., 2020). Therefore, it is of great significance
to accurately assess whether LNM occurs in CC patients before
treatment to make the best treatment decision and prognosis
assessment.

Imaging methods such as magnetic resonance imaging
(MRI), computed tomography (CT), and ultrasound are the
current preferred choice for early non-invasive detection of CC
lymph node status. However, the assessment of lymph node
involvement by imaging methods relies mainly on lymph node
size and morphological features. False-positive results may occur
when there is a combination of inflammation, tuberculosis
and hyperplastic lymph node lesions, and false-negative results
may occur when there are small metastatic lymph nodes or
micrometastatic foci. In recent years, with the development
of artificial intelligence technology, radiomics approaches have
emerged and been widely studied in the prediction of preoperative
LNM status in patients with colorectal, bladder, breast, and
biliary tract cancers (Huang et al., 2016; Wu et al., 2018; Mao
et al., 2020). However, for the early prediction models of CC
LNM by radiomics, the reproducibility of the radiomics features
and the robustness of the model remain to be demonstrated
due to the complexity of the lymph node images and the
delineation relies on the subjective judgment of the diagnostician
(Ji et al., 2019).

The autonomic nervous system (ANS) is an important
component of the tumor microenvironment, which is involved
in and modifies the cancer process (Manganaro et al., 2021).
Evidence suggests that the ANS interacts with the development
of inflammation, immunity, and metastasis in a variety of
cancers (Bautista and Krishnan, 2020; Kamiya et al., 2021).
The ANS, characterized by heart rate variability (HRV), has
been extensively studied in cancer prognostic assessment, and
preoperative HRV has been shown to be strongly associated with
LNM status in a variety of malignant tumors. For example, Hu
et al. (2018) and Simó et al. (2018) found that HRV decreased
with tumor progression in patients with gastric cancer and
correlated with LNM. Wang et al. (2021) found that in CC
patients, HRV was significantly lower in the LNM group than
in the no LNM group, and this association was independent of
confounding factors such as age. If HRV can be used as a feature
variable to build machine learning (ML) models to predict CC

LNM, it would help to simplify the examination method for
LNM.

The main objective of this study was to establish
ML models to predict lymph node status based on
preoperative short-term HRV features in CC patients,
thereby providing new ideas for the preoperative prediction
of LNM in CC patients.

Materials and methods

Subjects

The study was approved by the Medical Ethics Committee of
Bengbu Medical University (Bengbu, Anhui, China) (2023-14). The
experimental process was performed in strict accordance with the
ethical standards set out in the 1964 Declaration of Helsinki and its
amendments. All patients were informed of the detailed purpose,
process, risks and adverse effects of the experiment and signed an
informed consent form.

The study subjects were 427 CC patients admitted to
the Department of Gynecological Oncology of the First
Affiliated Hospital of Bengbu Medical University from
November 2020 to September 2023. The inclusion criteria
were as follows: (1) CC confirmed by pathohistological
examination (squamous pathological types) and (2) new-
onset patients without surgical treatment, radiotherapy and
chemotherapy. The exclusion criteria were as follows: (1)
carcinoma in situ; (2) incomplete pathological data; (3) poor
quality of electrocardiographic signals; and (4) ectopic beats
>5% of all beats.

Data collection and heart rate variability
analysis

The 5-min supine electrocardiogram data of CC patients
were collected 1 day before surgery using a single-lead miniature
electrocardiograph (version 2.8.0, Healink-R211B, Healink Ltd.,
Bengbu, China) with the sampling rate of the electrocardiograph
set to 400 Hz and the bandwidth of the signal set to 0.6–40 Hz.
The patient was asked to keep quiet and breathe steadily, and
lead V6 was used.

The Pan-Tompkins algorithm was used to extract the
electrocardiographic R-R interval (RRI) time series (Pan and
Tompkins, 1985). Artifacts caused by extraction techniques,
interference, and ectopic beats were automatically corrected using a
time-varying threshold algorithm (Lipponen and Tarvainen, 2019).
HRV analysis was then performed to obtain a total of 32 HRV
parameters.

Heart rate indicators included mean heart rate (MeanHR),
standard deviation of heart rate (SDHR), minimum heart rate
(MinHR), and maximum heart rate (MaxHR).

Time-domain indicators included the standard deviation of
all normal-to-normal intervals (SDNN), root mean square of
successive interval differences (RMSSD), number of successive RR
interval pairs that differed by more than 50 ms (NN50), NN50
divided by the total number of RR intervals (pNN50), triangular
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TABLE 1 Clinical and demographic data.

Characteristics Total (N = 292) LNM (–) (N = 230) LNM (+) (N = 62) P-value

Age (years) 54.0± 10.9 54.2± 11.0 53.3± 10.6 0.557

BMI (kg/m2) 24.8± 3.2 24.8± 3.3 24.7± 3.0 0.759

Hypertension 0.164

No 231 (79.1) 178 (77.4) 53 (85.5)

Yes 61 (20.9) 52 (22.6) 9 (14.5)

Diabetes 0.657

No 277 (94.9) 217 (94.3) 60 (96.8)

Yes 15 (5.1) 13 (5.7) 2 (3.2)

Tubal ligation 0.540

No 169 (57.9) 131 (57.0) 38 (61.3)

Yes 123 (42.1) 99 (43.0) 24 (38.7)

Menopausal status 0.250

No 118 (40.4) 89 (38.7) 29 (46.8)

Yes 174 (59.6) 141 (61.3) 33 (53.2)

Adjuvant chemotherapy 0.787

No 261 (89.4) 205 (89.1) 56 (90.3)

Yes 31 (10.6) 25 (10.9) 6 (9.7)

Values are expressed as the mean± standard deviation, or the number of patients (percentages). LNM, lymph node metastasis; N, number of individuals; BMI, body mass index.

interpolation of normal-to-normal intervals (TINN), RR interval
triangular index (RRTi, sampling interval 1/128 s), deceleration
capacity (DC), acceleration capacity (AC).

Frequency-domain indicators included very low frequency
(VLF, 0–0.04 Hz), low frequency (LF, 0.04–0.15 Hz), high
frequency (HF, 0.15–0.4 Hz), total power (Total, 0–0.4 Hz),
ratio between LF and HF (LF/HF), and electrocardiogram-derived
respiration (RESP).

Prior to the frequency-domain analysis, the RR interval
sequences were uniformly resampled using the 4-HZ cubic spline
interpolation, the spectral values were estimated based on the fast
Fourier transform (FFT) method, and the power spectral densities
of the RR interval time series were estimated using the FFT
of the Welch periodogram method (150 s window width, 50%
overlapping windows).

Non-linear indicators indicated approximate entropy
(ApEn) (embedding dimension m = 2 and the tolerance
value r = 0.2 SDNN); detrended fluctuation analysis, which
was calculated at 4 ≤ n ≤ 12 (short-term fluctuation, α1),
13 ≤ n ≤ 64 (long-term fluctuation, α2), and correlation
dimension (CD), (embedding dimension m = 2); recurrence
plot analysis, including mean diagonal line length (Lmean),
maximal diagonal line length (Lmax), recurrence rate (REC),
determinism (DET) and Shannon entropy (ShanEn), (embedding
dimension m = 10, embedding lag τ = 1, and threshold
distance r =

√
m SD, where SD is the standard deviation

of the R-R time series); and multiscale entropy (MSE)
produced by using sample entropy (SampEn) as a function
of the scale factor, with scale parameter values τ = 1, 2, 3,
4, and 5 (SampEn_MSE1, SampEn_MSE2, SampEn_MSE3,
SampEn_MSE4, SampEn_MSE5).

The above analysis was performed with Kubios HRV Premium
software (version 4.0.2, Kubios Oy, Kuopio, Finland).1

Machine learning modeling

Since the original dataset exists LNM (+) and LNM (–) category
imbalance problem, the LNM (+) and LNM (–) were matched in
the ratio of 0.8:1 by using the synthetic minority over-sampling
technique (SMOTE) in order to enhance the model performance.
The dataset was divided into training and test sets at a ratio of
7:3. Six ML models adaptive boosting (AdaBoost), Gaussian naive
Bayes (GNB), logistic regression (LR), random forest (RF), support
vector machine (SVM) and XGBoost, were built for CC LNM
status classification. We used 10-fold cross-validation to evaluate
the performance of the models on the training set. The optimal
model was selected and the classification performance on the test
set was further evaluated using the area under receiver operating
characteristic curve (AUC), accuracy, sensitivity and specificity. ML
models were constructed and validated using Python (Version 3.9)
and R programming language (Version 3.6.3).

Statistical analysis

Different representations were applied according to different
types of data: mean ± standard deviation for normal continuous
data, median (first quartile, third quartile) for non-normal
continuous data, and count (percentage) for count data. The

1 https://www.kubios.com
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TABLE 2 Differences in HRV indicators between the LNM (–)
and LNM (+) groups.

HRV LNM (–)
(N = 230)

LNM (+)
(N = 62)

P-value

MeanHR (bpm) 70.6 (64.5, 77.3) 70.9 (64.9, 76.1) 0.851

SDHR (bpm) 2.2 (1.8, 2.8) 2.2 (1.7, 2.8) 0.467

MinHR (bpm) 66.1 (60.6, 72.0) 66.3 (60.7, 71.2) 0.932

MaxHR (bpm) 76.6 (70.1, 83.5) 76.5 (69.4, 83.3) 0.922

SDNN (ms) 26.9 (20.9, 33.8) 24.7 (19.4, 34.6) 0.419

RMSSD (ms) 16.2 (11.8, 24.8) 16.1 (10.9, 23.9) 0.632

NN50 (beats) 1 (0, 10) 1 (0, 9) 0.905

pNN50 (%) 0.27 (0.00, 2.78) 0.14 (0.00, 2.87) 0.923

RRTi 7.28 (5.90, 8.94) 7.05 (5.21, 9.09) 0.491

TINN (ms) 132 (99, 165) 122 (94, 173) 0.522

DC (ms) 13.2 (9.2, 20.3) 13.0 (8.2, 20.3) 0.721

AC (ms) −14.2 (−20.6,
−9.5)

−13.7 (−20.7,
−8.7)

0.572

VLF (ms2) 315 (158, 563) 268 (164, 587) 0.873

LF (ms2) 104 (52, 188) 84 (43, 173) 0.307

HF (ms2) 94 (49, 215) 82 (42, 229) 0.512

Total (ms2) 572 (324, 954) 471 (276, 919) 0.592

LF/HF 1.092 (0.562,
1.989)

1.030 (0.474,
2.298)

0.849

RESP (Hz) 0.28± 0.05 0.29± 0.06 0.250

ApEn 1.134 (1.066,
1.176)

1.124 (1.046,
1.167)

0.427

α1 1.002± 0.277 1.031± 0.297 0.480

α2 1.041± 0.192 1.092± 0.152 0.057

CD 0.463 (0.219,
0.880)

0.416 (0.162,
0.885)

0.650

Lmean (beats) 12.90 (10.39,
17.78)

13.27 (10.79,
16.37)

0.509

Lmax (beats) 288 (164, 351) 302 (175, 355) 0.661

REC (%) 37.49± 10.48 37.68± 9.83 0.899

DET (%) 98.69 (97.45,
99.35)

98.79 (97.50,
99.42)

0.539

ShanEn 3.372± 0.396 3.416± 0.354 0.424

SampEn_MSE1 1.533 (1.355,
1.665)

1.532 (1.278,
1.731)

0.994

SampEn_MSE2 1.494 (1.311,
1.671)

1.476 (1.273,
1.602)

0.433

SampEn_MSE3 1.402± 0.282 1.358± 0.214 0.247

SampEn_MSE4 1.408± 0.299 1.401± 0.252 0.853

SampEn_MSE5 1.464 (1.253,
1.664)

1.371 (1.187,
1.581)

0.152

Values are expressed as median (first quartile, third quartile) or mean ± standard deviation.
HRV, heart rate variability; LNM, lymph node metastasis; N, number of individuals.

Shapiro-Wilk test was used to test the distribution normality
of continuous variables. Independent samples t-tests and Mann-
Whitney U-tests were performed to compare continuous variables

between two groups. The chi-square test was used to compare count
data between two groups. SPSS Statistics 26.0 (IBM Corp., Chicago,
IL, United States of America) software was used for statistical
analysis. P < 0.05 was defined as a significant difference.

Results

Patient characteristics

This study finally included 292 CC patients with an age and
body mass index (BMI) of 54.0 ± 10.9 years and 24.8 ± 3.2 kg/m2,
respectively. All patients were divided into LNM (–) and LNM
(+) groups based on histopathologic findings. The LNM (–)
group included 230 patients, and the LNM (+) group included
62 patients. After statistical analysis, we found no significant
differences between the LNM (–) and LNM (+) groups in terms of
age, BMI, hypertension, diabetes, tubal ligation, menopausal status,
and adjuvant chemotherapy (P > 0.05). Table 1 describes the basic
clinical characteristics of CC patients.

Table 2 shows the statistical results of the HRV parameters
in CC patients. No HRV parameter was significantly different
(P > 0.05) between the CC LNM (–) and LNM (+) groups; these
results were obtained from the analysis of the raw data of 292 CC
patients.

Diagnostic performance of the six
machine learning models

Six ML models were built based on the 32 HRV features,
Figure 1 shows the AUC of 10-fold cross-validation for the 6 ML
models on the validation set. Among them, the RF model had
the highest AUC for 10-fold cross-validation (AUC = 0.904). The
calibration curve (Figure 2) shows that among the six models, the
RF model has the best fit between the predicted probability and the
actual probability to discriminate LNM with a Brier score of 0.147.

The best performing RF model was further tested using the test
set. The ROC curves of the RF model in the training set, validation
set, and test set are shown in Figures 3A–C, respectively. Figure 3D
demonstrates the decision curve of the RF model in the test set,
and the result shows that the RF model achieves a high net clinical
benefit in most of the high risk threshold ranges. Table 3 shows the
predictive metrics of the RF model on the training set, validation
set, and test set.

Model interpretation

The SHAP summary plot of the RF model is shown in Figure 4.
The 20 features in the SHAP summary plot are arranged along
the vertical axis in descending order of feature importance, with
a higher position indicating a higher level of importance for the
model to predict the LNM status. The features in order they
are SampEn_MSE2, α1, ApEn, SampEn_MSE3, REC, DET, α2,
ShanEn, SDHR, Lmean, SDNN, SampEn_MSE5, TINN, LF/HF,
SampEn_MSE4, CD, MeanHR, MinHR, HF, MaxHR. For each
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feature, one point represents one patient. The horizontal axis is the
SHAP value of the feature, the absolute value of which indicates
the degree to which the feature affects the model output. Patients
with higher SHAP values are at higher risk of developing LNM. Red
indicates higher feature values, purple indicates feature values close
to the overall mean, and blue indicates lower feature values.

Discussion

In this study, we used HRV parameters obtained from the
preoperative 5-min electrocardiogram data of CC patients to
develop ML models for the classification of LNM status. Among
them, the RF model performed the best with an AUC of 0.852,
accuracy of 0.744, sensitivity of 0.783, and specificity of 0.785
on the test set. The results showed that the RF model based on
preoperative HRV features could be used for CC LNM prediction.

In recent years, the use of ML techniques has been proposed to
identify CC LNM, mainly using invasively obtained hematological
parameters and/or non-invasive imaging parameters as model
input features. For example, Ou et al. (2022) used pretreatment
hematological parameters of CC patients to build an ML model
to predict LNM in patients and built a Cforest model with
a performance AUC of only 0.620. In addition, uncontrollable
factors such as drugs and inflammation can affect the stability
of hematological indicators, and different testing reagents and
equipment can cause bias in the test results (Niu et al., 2020),
all of which are not conducive to the popularization of this
method. Arezzo et al. (2023) established LR and XGBoost models
to predict LNM in patients with advanced CC using clinical data
and pelvic MRI as the characteristic parameters, and the results
showed that the XGBoost model demonstrated a better predictive
performance (89% accuracy, 83% precision, 78% recall, and AUC
0.79). Although the model based on clinical features and MRI
showed some performance improvement over the hematological
parameter model, the method is more costly and the test is more
time-consuming. In comparison, the ML model established with
HRV parameters as features is much better than the above methods
in prediction performance. In addition, HRV detection is a non-
invasive method that is low cost, safe and easy to perform, which is
also ideal for clinical promotion and application.

In ML-related studies, previous scholars have mostly used the
P-value of statistical methods as a criterion for feature selection.
However, this approach has certain pitfalls, i.e., the P-value is
always manipulated to make a "one-size-fits-all" judgment with a
threshold value of 0.05 or 0.01, which makes it easy to miss the
potential contributions of features to the model prediction. In our
study, although statistically significant differences in HRV metrics
between the LNM (–) and LNM (+) groups were not observed, our
test set of RF model based on HRV parameters reached an AUC
of 0.852. The threshold for a significant difference (P < 0.05) is
too strict and may ignore the contribution of some features to the
classification (Guo et al., 2019). Traditional statistical methods may
not be suitable for feature selection when modeling in ML, as ML
methods can mine more potential relationships between data.

In this study, for the best predictive performance of the RF
model, we used SHAP analysis to address the issue of model
interpretability. The SHAP analysis showed that non-linear HRV

FIGURE 1

Receiver operating characteristic curve (ROC) for six ML models on
the validation set.

FIGURE 2

Calibration curves for the 6 ML models on the validation set. The
dotted line represents the perfect calibration curve, i.e., the
predicted probability matches the true probability perfectly. The
numbers in the legend represent the Brier scores of the ML models;
the smaller the Brier score, the closer the predicted probability of
the ML model is to the true probability.

parameters contributed more to the RF model. HRV analysis
includes traditional time-domain, frequency-domain and non-
linear analyses. Compared with traditional time-domain and
frequency-domain parameters, non-linear parameters reflect the
complexity of physiological signals better and can detect subtle
changes in the early stages of disease (Busa and van Emmerik,
2016; Shi et al., 2017, 2019; Cui et al., 2020; Liao et al., 2022).
The MSE complexity measure analysis method was proposed by
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FIGURE 3

Receiver operating characteristic (ROC) curves of the RF model on the training set (A), validation set (B), test set (C), and the decision curve on the
test set (D).

TABLE 3 Predictive metrics of RF model on training set, validation
set and test set.

AUC Accuracy Sensitivity Specificity

Training 1.000 0.996 1.000 0.995

Validation 0.903 0.844 0.854 0.909

Test 0.852 0.744 0.783 0.785

Costa et al. (2002), which quantifies the non-linear dynamics
of complex systems on multiple scales based on SampEn and
measures signal complexity more comprehensively. Several studies
have been conducted to apply the complexity indicators quantified
by this method for disease prediction, classification and prognostic
assessment (Lin et al., 2016; Frassineti et al., 2021; Tang et al.,
2021; Yang et al., 2021; Liao et al., 2022). For example, Frassineti
et al. (2021) found that MSE analysis had prescreening value in
neonatal seizures. Tang et al. (2021) showed that MSE analysis was

helpful for the identification of high-risk pulmonary hypertension
patients. In contrast to other single time scale analyses, MSE can
reflect an understanding of a range of time scales (Busa and van
Emmerik, 2016). In practical applications, MSE analysis will be
more accurate for long-duration electrocardiogram data; the length
of the electrocardiogram data we analyzed was 5 min, so only 5
scales were analyzed. Interestingly, Zhang et al. (2021) used the 5
scales as well and noted that MSE showed greater discriminatory
power in identifying coronary artery lesions. Combined with our
findings, this implies that MSE may be promising indicators
for detecting disease states, although the underlying mechanisms
remain unclear. DFA provides an interpretation of shorter time
series and can quantify the fractal behavior of complex dynamical
systems (Peng et al., 1994; Nayak et al., 2018; Gu et al., 2022). In
our results, we observed that the short-term fluctuation slope α1
in the DFA indicator played an important role in the RF model
contribution, which may be related to the complex physiological
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FIGURE 4

SHAP summary plot of 20 HRV parameters of the RF model.

mechanism behind it. The physiological context of DFA has been
shown to be related to subtle interactions between sympathetic and
vagal nerves (Tulppo et al., 2005; Beckers et al., 2006; Mandarano
et al., 2022). As mentioned in the introduction, cancer progression
involves dysfunction of ANS regulation, and LNM, as an important
step in cancer progression, is associated with a combination of
factors such as immune function, inflammatory response, and
other factors, which can be influenced by the ANS through their
regulation (Li et al., 2013; Le et al., 2016). In summary, the
results of this study suggest that altered body complexity and ANS
dysfunction are closely associated with CC LNM, but the specific
mechanisms need to be further explored.

Limitations

Our study also presents some limitations. First, there were
some differences in the proportion of patients in the LNM (–) and

LNM (+) groups in this study, and although we corrected for the
sample imbalance using the SMOTE method, this may still have
interfered with the results and affected the generalization ability of
the model. Second, this study was a single-center study. Because
HRV collection is prone to interference from the environment
and other factors, external validation in a multicenter study is
essential. Third, the physiopathological mechanisms between HRV
parameters, especially non-linear parameters, and CC LNM need
to be further explored.

Conclusion

In conclusion, we investigated the feasibility of ML modeling
using preoperative HRV parameters to predict CC LNM and
demonstrated that the RF model may be a helpful detection
tool. Being easy to implement, non-invasive and inexpensive, the
technique is amenable to further clinical studies to refine our
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methodology and to determine the optimal application of the
technique in clinical practice.
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