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Equipped with an early social predisposition immediately post-birth, humans 
typically form associations with mothers and other family members through 
exposure learning, canalized by a prenatally formed predisposition of visual 
preference to biological motion, face configuration, and other cues of animacy. 
If impaired, reduced preferences can lead to social interaction impairments 
such as autism spectrum disorder (ASD) via misguided canalization. Despite 
being taxonomically distant, domestic chicks could also follow a homologous 
developmental trajectory toward adaptive socialization through imprinting, 
which is guided via predisposed preferences similar to those of humans, thereby 
suggesting that chicks are a valid animal model of ASD. In addition to the 
phenotypic similarities in predisposition with human newborns, accumulating 
evidence on the responsible molecular mechanisms suggests the construct 
validity of the chick model. Considering the recent progress in the evo-devo 
studies in vertebrates, we reviewed the advantages and limitations of the chick 
model of developmental mental diseases in humans.
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1 Introduction

1.1 In search of valid animal models of developmental 
psychiatric disorders

Biological psychiatry and comparative psychology share a scientific question as for whether 
the apparent neurocognitive similarities among animals of different taxa (mostly vertebrates) 
could stem from common (homological) origins, namely that the underlying brain-behavior 
linkage evolved just once (Striedter, 2015). Alternatively, similar traits could arise as analogy via 
convergent evolution after multiple and independent events in each clade, therefore the 
challenges to find valid animal model of psychiatric disease are inevitably unsuccessful. Actually, 
the nervous system of vertebrates has held a highly conserved ground plan or “Bauplan” since 
the Cambrian period (Grillner and Robertson, 2016; Suryanarayana et al., 2021a,b); homologies 
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are widely found from the level of composite molecules (transmitters, 
hormones, receptors, and second messengers) to neural pathways and 
cytoarchitectonic organizations at the macroscopic level (Güntürkün 
and Bugnyar, 2016; Shepherd and Grillner, 2018) [specifically for the 
mammal-bird homologies, see Güntürkün and Bugnyar (2016)]. 
Despite the conservative nature of the organization of central nervous 
system (CNS), huge phenotypic diversification occurs in the behavior 
and cognition of vertebrates through differentiated development 
(Bateson and Gluckman, 2011), complicating the untangling of the 
evolutionary processes. By using a common set of composite parts and 
wirings in the brain, animals of different taxa could have developed 
diverse machineries for adaptive behaviors, so that the seemingly 
identical phenotypes are due to convergent evolution, hence the analogy.

In the present review, with the aid of recent progresses in evo-devo 
studies, we  argue a possibility that chicks and humans exhibit a 
homologous developmental trajectory leading to similar predisposition 
in their visual perception. Here, we propose a working hypothesis that 
taxonomically distinct animals could develop social perception via 
common ontogenetic processes during the prenatal embryonic period 
and the subsequent early post-natal period. It is stressed that the early-
life experiences are under strong control of embryonic development of 
the social perception in both species. Neural events during the late 
embryonic stages set up the neonatal predisposition such as face and 
biological motion preferences, so that the babies appear to be “born 
knowing” without specific post-natal experiences. Some of the late 
embryonic events could thus have lasting neurobehavioral effects on 
social communication throughout life. Specifically, as encouraged by 
recent progresses of avian model studies (Csillag et al., 2022; Huang and 
Cheng, 2022), validity of the domestic chicks as an autism spectrum 
disorder (ASD) model animal will be examined on two aspects, the 
surface and construct validity as criteria of the depression animal model 
proposed by Willner (1984). The former (surface validity) includes an 
examination of the similarity of behaviors and developmental processes, 
particularly the perceptual predisposition to face, biological motion and 
animacy. The latter (construct validity) includes shared neural substrates 
and molecular cascades, particularly the potential roles of nicotinic 
acetylcholine (nAChR) transmission in the embryonic brain in 
controlling excitation-inhibition balance in neonates. If the ASD-like 
impairments found in chicks are homologous to the human ASD, 
we will find these construct molecular events are based on identical 
gene expression profiles and cellular events during the prenatal period. 
If otherwise, and the impaired visual perception in chicks is due to 
convergent evolution, we  will find differences in the relevant brain 
regions and/or the molecular events.

1.2 Diverse environmental risk factors of 
ASD remain to be specified

ASD is the most prevalent developmental disorder primarily 
characterized by underdeveloped social interactions and 
communication and restricted and repetitive patterns of behavior and 
interests (Wing and Gould, 1979; American Psychiatric Association, 
2013; World Health Organization, 2023). It is speculated that the 
heterogeneous diagnostic phenotypes, as well as the dimensional 
nature of this disorder, could be  associated with a wide range of 
underlying genetic and environmental factors (Tchaconas and 
Adesman, 2013). In addition to apparent genetic risks (Sandin et al., 
2014) [for an exhaustive hereditability study in Sweden; also see 

Iossifov et al. (2014) for de novo mutations and Gaugler et al. (2014) 
for common variations], exposure to environmental toxicants during 
pregnancy and the neonatal period remains a major social and 
scientific concern (Rossignol and Frye, 2014). For example, a large-
scale twin study (Hallmayer et al., 2011) revealed high concordance 
rates among siblings, indicative of the role of genetic factors. However, 
the authors also reported that common environmental factors shared 
by these twins could substantially contribute to autism/ASD liability. 
Complex interactions are thought to occur between the genetic 
background of ASD susceptibility and the chemical agents acting 
during pregnancy and the early post-natal period.

However, it does not mean that these chemicals must be  just 
eliminated. For example, valproic acid (VPA) has been identified as a 
risk factor for ASD (Christensen et  al., 2013), but it remains an 
indispensable antiepileptic medication (Meador and Loring, 2013). 
The associated risks must be precisely evaluated in close consideration 
with known benefits. Studies using appropriate animal models are 
critical (Ergaz et al., 2016) because environmental risk management 
is difficult without reliable neurobehavioral measures of the symptoms. 
As epidemiological studies of diseases and epidemiological analyses 
are complimentary, it is critically important to find appropriate animal 
models. Rodents (mice and rats) are the most popular model animals 
because developed genetic tools are available (Mabunga et al., 2015; 
Chaliha et al., 2020). However, it must be noticed that rodents and 
primates have undergone distinct evolution since their separation 
during the late Cretaceous period over 66 million years ago.

As an alternative animal model, we  have focused on newly 
hatched domesticated chicks (Gallus gallus domesticus) (Rosa-Salva 
et al., 2011; Vallortigara, 2012; Rosa-Salva et al., 2015; Versace et al., 
2018). Birds are descendants of theropod dinosaurs, the major group 
of sauropsids, whereas primitive mammals diversified as a minor 
group of synapsids during the Carboniferous Period, ~ 300 million 
years ago. Considering such a taxonomically distinct animal as a valid 
model for human psychiatric disorders may sound unrealistic. If the 
adult phenotypes are solely compared, humans can never be chickens. 
However, as the hourglass bottleneck theory suggests (Irie and 
Kuratani, 2011), humans and chickens achieve developmental 
convergence during the prenatal/early neonatal periods in terms of 
specific neurocognitive aspects (Figure 1). It must be noticed that the 
hourglass model (Irie and Kuratani, 2011; Uesaka et al., 2019, 2020) 
has been proposed to explain the morphogenesis, rather than the CNS 
and the relevant behavioral traits. The phylotypical “bottleneck” 
period critical for the predisposition formation (namely, the 
responsive brain mechanisms) could therefore be different from that 
for the morphogenesis (i.e., mid-late embryonic stages). In order to 
determine whether certain animals are human-like in their perceptive 
natures, we must elucidate how phenotypic similarities arise through 
their respective development of the sensory system.

2 Surface validity

2.1 Visual predispositions canalize the 
development of social behaviors: common 
developmental features for the surface 
validity

It is speculated that the development of socialized behaviors 
during the early neonatal period depends on predisposed visual 
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preference. In their inspiring report, Morton and Johnson (1991) 
argued that human babies are born to know visual characteristics 
of faces and denoted the information prior by term “CONSPEC.” 
With the aid of the “CONSPEC” information, neonates are 
supposed to gradually learn about the visual characteristics of 
conspecifics such as siblings and parents, and the device responsible 
for the subsequent learning to form social attachments was referred 
to as “CONLERN.” The predisposed “CONSPEC” information, or 
“core knowledge” (Spelke and Kinzler, 2007), could include a 
variety of visual features other than face (for reviews see Versace 
and Vallortigara, 2015; Di Giorgio et  al., 2017; Lorenzi and 
Vallortigara, 2021; Rosa-Salva et  al., 2021; Vallortigara, 2021a; 
Lemaire and Vallortigara, 2022), however, most studies have 
focused on face configuration, biological motion, and other cues 
of animacy.

2.1.1 Face-like configuration
Differential tuning to face configuration has been demonstrated 

in adolescents with ASD when compared with typically developing 
controls (for one of the earliest reviews, see Johnson, 1992; Johnson, 
2005; also see Pavlova et al., 2017 for a recent study using pictures 
resembling the food-face paintings by Giuseppe Arcimboldo). Based 
on the finding that infants prefer faces at 2–4 months old (Mauer and 

Barrera, 1981; Mondloch et al., 1999), a predisposed face preference 
has been suggested as a reliable diagnostic indicator for ASD. Typically, 
a definitive ASD diagnosis can be achieved in toddlers aged ~3 years; 
reliable biomarkers at earlier ages, if available, could facilitate 
treatment at the early stages (Elsabbagh and Johnson, 2009). In 
addition to behavioral measures, physiological measures, such as 
electroencephalography (EEG), can be employed in newborn babies 
(Buiatti et al., 2019).

Actually, the visual preference to face-like configuration could 
arise as a predisposed prior early in life. Visually naïve monkeys 
deprived of social stimuli (including human faces) preferred faces 
(Sugita, 2008), indicating robust development of face perception. Even 
human embryos in the third trimester of pregnancy reportedly exhibit 
head-turn responses to upright face configurations (Reid et al., 2017). 
A follow-up study confirmed the preference to face-like configuration, 
but top-heavy bias (i.e., inversion effect) was not detected (Reissland 
et al., 2020); it is reported also that the maternal mental health had 
significant effects on the embryonic activity, thus suggesting further 
studies to confirm the findings.

Subcortical visual pathway (superior colliculus/pulvinar to the 
amygdala) is responsible for the proto-face configuration (three blobs 
configured at a low spatial frequency) in human neonates (Johnson, 
1992). This subcortical (or tectofugal) pathway is functional 

FIGURE 1

Hypothetical hourglass “bottleneck” model of the convergent evolution of peri-natal epigenetic control of social behaviors. During the early 
developmental stages, humans (primate) and chicks (birds) show a clear taxonomic divergence. Most organogenetic events are accomplished until the 
late embryonic period, namely before the third trimester in humans and the 14  days of incubation in domestic chicks. Convergent pre- and early post-
natal “bottleneck” appears [i.e., phylotypic period (Irie and Kuratani, 2011)], and epigenetic processes (though mostly unspecified at present) would 
occur in the visual system responsible for the social perceptions. Subsequent developmental trajectory would be most sensitive to environmental 
toxicants during this “bottleneck” period, so that the inter-individual divergence overrides the taxonomic divergence.
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throughout life and plays critical role in rapid perception of emotional 
(e.g., fearful) face (Pegna et al., 2005; Tamietto and de Gelder, 2010); 
see Inagaki et al. (2022) for the most reliable account of this pathway 
in adult rhesus monkeys. Consistently, damage to the amygdala has 
been shown to cause some ASD-like deficiencies according to the 
“theory of mind” [ToM (Stone et al., 2003)], although the causal link 
between the ToM and ASD remains controversial (Gernsbacher and 
Yergeau, 2019).

Considering that the subcortical face pathway is functional in the 
early prenatal period and critical for the typical development of social 
behavior (Baron-Cohen et  al., 2000), we  would expect to detect 
differentiated visual attention to the face in infants with familial risk 
of ASD, and more specifically, in those who are later diagnosed with 
ASD. However, the use of the “face pop-up” task in these infants 
revealed clear attention to face similar to that observed in control 
individuals (or even higher) at 7 and 14 months of age (Elsabbagh 
et al., 2013). Conversely, another longitudinal developmental study 
has reported a steady decline in selective eye-fixating behavior in 
infants who were subsequently diagnosed with ASD at the earlier 
developmental stage from 2 to 6 months of age (Jones and Klin, 2013). 
The predisposed face perception is not a fixed trait, and the 
developmental changes need to be carefully examined (Simion and Di 
Giorgio, 2015). More recently, it has been reported that newborns with 
a high familial risk of ASD (6–10 days of age) show a reduced face 
preference when compared with low-risk controls (Di Giorgio et al., 
2016a); also see Di Giorgio et al. (2021a) for the follow-up longitudinal 
study on 4-month-old infants.

Visually naïve newly hatched chicks also exhibit an evident inborn 
preference for faces (Rosa-Salva et al., 2010, 2011, 2019). Exposure to 
VPA during the late embryonic stage substantially reduced the face 
preference score (Adiletta et al., 2021), possibly paralleling that observed 
in humans (Di Giorgio et al., 2016a). The subcortical visual pathway of 
birds (optic tectum and arcopallium/nucleus taeniae amygdala) 
functionally mature early, and newly hatched chicks start actively 
pecking small conspicuous objects at 1–2 days old. Furthermore, 
immediate early gene imaging studies revealed that telencephalic limbic 
nuclei are involved in the predisposition preference of chicks (Mayer 
et al., 2016, 2017, 2019). Note that traditional rodent models fail to 
spontaneously exhibit a comparable visual predisposition. On the other 
hand, tortoise hatchlings show visual preference to face-like 
configuration over comparable alternatives without any preceding visual 
experience (Versace et al., 2020). As these tortoises are solitary species 
without parental care after hatching, we may assume that the social 
preference to face could be dated back to the common ancestor of 
amniotic vertebrates, naturally including birds and mammals. In other 
words, the predisposed preference may not be a high faculty requiring 
cortical computations.

Issues on the eye contact deficits in ASD needs a careful 
consideration. Human eyes comprise a unique tool for social 
communications due to their morphological feature (Kobayashi and 
Kohshima, 1997); the exposed white sclera surrounds the dark iris, 
making it easier for others to detect what the subject is looking. The 
“eye contact” tactics could therefore be unique to humans, despite the 
subcortical pathway underlying orienting gaze control is evolutionarily 
conserved (Dean et  al., 1989; Kardamakis et  al., 2016). This 
morphology makes “eye contact” a powerful means to communicate 
socially in typically developing people, whereas adults with ASD often 
report adverse emotional responses to looking eyes of others and 
avoid “eye contact” (Trevisan et al., 2017). It is hypothesized that the 

excitatory/inhibitory imbalance occurs in the subcortical visual 
pathway of those infants with ASD, leading to hyper-activation of the 
limbic system (Hadjikhani et al., 2018). The “eye contact” aversion 
would most likely develop at later juvenile/adolescent stages following 
human-unique processes. However, as noted above (Elsabbagh et al., 
2013), those infants at risk for ASD show clear attention to faces as 
high as typically developing controls at 7–14 months of age, suggesting 
that the deficient attention is not necessarily linked with “eye contact” 
aversion in ASD.

2.1.2 Biological motion
Biological motion (BM) preference comprises another aspect of 

the “CONSPEC” process; it is easily tested using highly reduced 
animations composed of relatively few light points (~ a dozen). Both 
human and chick neonates exhibit BM preference without visual 
experience (Simion et al. (2008) and Pavlova (2012) in human infants; 
Vallortigara et al. (2005) in chicks; also see Rugani et al. (2015) for the 
association of the BM preference with brain asymmetry). In addition 
to the commonality in their appearance at the early neonatal stage, 
both human infants and chicks show a clear inversion effect, that is, a 
preference for the upright walking motion over the inverted upside-
down display [Troje and Westhoff (2006) in human infants; 
Vallortigara and Regolin (2006) and Chang and Troje (2009) in 
chicks]. Note also the recent report on the gravity prior, wherein naïve 
chicks preferred upward movements of single dot over the opposite 
downward (Bliss et al., 2023), in a manner similar to humans who 
judge upward motion more animate than the downward (Szego and 
Rutherford, 2008).

The motion characteristics of both local movements (such as the 
movements of the lower limbs) and global features (shape of the body) 
are critical in humans (Chang and Troje, 2009; Hirai et al., 2011). 
However, it remains unclear which of these visual components is 
associated with the development of social cognition. Bardi et al. (2011) 
reported that infants depend more on local cues, whereas Bidet-Ildei 
et al. (2014) highlighted the importance of translational displacement 
of the body. Hirai and Senju (2020) have proposed an integrative 
hypothesis of the two-process theory, wherein the “step detector” 
responsible for the local motions of feet below the body precedes the 
“bodily action evaluator” that processes the global processing of action 
types and styles. Several studies in both human adults and children 
have suggested the association between reduced sensitivity to BM and 
ASD (Blake et al., 2003; Rutherford et al., 2006; Wang et al., 2018; 
Kaliukhovich et al., 2021) [also see the recent meta-analysis (Federici 
et al., 2020)]. Importantly, it should be noted that, in our current 
context, visual preferences for social stimuli (face inversion, averted 
eye gaze, and BM) markedly differ between the two groups of infants 
with high and low familial risk of autism (Di Giorgio et al., 2016a). 
Further longitudinal studies are needed to determine the association 
between visual preference and the subsequent development of 
social interactions.

2.1.3 Animacy
In addition to the face and BM, both chicks and humans have a 

visual predisposition to other cues of animacy (Rosa-Salva et al., 
2011; Vallortigara and Rosa-Salva, 2017; Vallortigara, 2021b for 
reviews). For example, living organisms are characterized by self-
propelling animacy, a well-established preference in both human 
babies (Di Giorgio et al., 2016b) and visually naïve chicks (Rosa-
Salva et al., 2016, 2018). Unpredictable speed changes in motion are 
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a critical feature of animacy in newborn human babies (Di Giorgio 
et al., 2021b), as observed in newly hatched chicks with distinct 
inherited variability (Versace et al., 2017, 2019) (for involvement of 
septal and hypothalamic nuclei, see Lorenzi et  al., 2017). Both 
variability in body orientation and the unpredictable temporal 
contingency of motion are critical in chicks (Lemaire et al., 2022; 
Rosa-Salva et al., 2023). It should also be noted that avoidance of 
looking at (threatening) objects is also considered to be innately 
predisposed (Hebert et al., 2019).

2.1.4 Imprinting and the early process of 
attachment formation

In chicks, the BM preference is functionally linked to filial 
imprinting. Imprinting is a complex process that involves predisposition 
and experience-based learning; thus, it may be  homologous to the 
processes of attachment formation in human babies. Newly hatched 
domestic chicks and ducklings form lasting attachments, even when the 
first object seen is a non-biological artifact rather than a conspecific 
animal (Spalding, 1873; Lorenz, 1937). Artifacts such as rotating blue 
boxes were actually effective as imprinting objects (Horn, 2004). 
However, contrary to this popularly accepted idea, memorized preference 
for artifacts is short-lived and is gradually replaced by more naturalistic 
stimuli such as stuffed hens (Bolhuis et al., 1985; Johnson et al., 1985; 
Johnson and Horn, 1988). Accordingly, an innate predisposition 
gradually emerges after learned attachment fades. In contrast, BM 
preference emerges first and subsequently guides learning.

Perfectly naïve chicks show an apparent preference for BM, 
although with a relatively small effect size (Vallortigara et  al., 
2005). When imprinted by motion pictures, the BM preference is 
enhanced or “permissively induced” (Miura and Matsushima, 
2012). The induction is nonspecific to the exposed stimulus, and 
any motion (even randomized point-light animation) is a similarly 
effective inducer. The memorized preference to the moving artifact, 
on the other hand, is determined by the visual features of the object 
such as color and shapes, thus is assumed to be  “instructively 
induced.” However dissociable, the BM preference facilitates the 
memorized preference, or imprinting (Miura and Matsushima, 
2016). BM animations were more effective than non-BM 
animations, and chicks with a higher BM preference exhibited 
higher imprinting scores.

Imprinting memory formation is functionally coupled with BM 
induction through enhanced thyroid hormone activity (Figure 2). 
Exposure to motion increases the expression of Dio2, which is 
responsible for the conversion of circulating thyroid hormone (T4) to 
its active form (T3) in the epithelial cells of telencephalic capillaries 
(Yamaguchi et  al., 2012). The enhanced T3 influx into the dorsal 
pallium (intermediate medial mesopallium, IMM, an avian homolog 
of the mammalian neocortex, including the association areas) reopens 
the sensitive period and acutely strengthens learning and BM scores 
(Miura et al., 2018; Takemura et al., 2018). In aged chicks, T3 can 
reactivate the preference for animate objects (Lorenzi et al., 2021). 
Accordingly, imprinting allows chicks to remain imprintable for a 
prolonged period, guiding subsequent learning during the extended 
sensitive period to objects bearing BM features. Notably, these two 
aspects of imprinting (memory formation and induced predisposition) 
appeared tightly coupled and not dissociable (Miura et al., 2020).

Newly hatched domestic chicks could serve as a valid animal 
model for studying environmental risk factors for ASD, at least at the 
surface phenomena level. Imprinting is also assumed to be a primary 

stage of emotional development in human infants (Mobbs et al., 2016). 
The following section examines how ASD-like deficiencies could arise 
in the chick model and whether the underlying mechanisms 
are shared.

What are the predisposed priors for? Why should animals, and 
humans as well, be born knowing before birth (Vallortigara, 2021a)? A 
recent progress in machine learning could give us a hint (Barabási et al., 
2023). Most artificial neural network models require extensive updating 
of network-wide weights among neurons by intensive training. Even 
though any randomly connected initial network could give rise to target 
functions after intensive and long training (Amari, 2020), learning 
processes are often slow and require intensive set of training examples, 
yet risk overfitting. By implementing genetic connectome model (GCM) 
(Kovács et al., 2020), the author showed that predisposed wiring should 
serve priors through evolutionarily shaped processes, thus promoting the 
computational power (Barabási et  al., 2023). Genetic identities of 
neurons, as determined by the single-cell RNA seq in developing brains, 
could therefore be a powerful means to disentangle the molecular events 
responsible for the construct validity.

3 Construct validity

3.1 Valproic acid, an anticonvulsant drug, 
mediates ASD-like impairment of social 
behavior development and acute 
suppression of spontaneous embryonic 
movements

Given that VPA was identified as an environmental risk factor for 
ASD during pregnancy (Moore et al., 2000; Rasalam et al., 2005), 
studies have attempted to clarify the underlying mechanisms using 
rodent models [see reviews (Meador and Loring, 2013; Ergaz et al., 

FIGURE 2

Thyroid hormone conversion in the central nervous system mediates 
the link between CONSPEC and CONLERN mechanisms toward 
adaptive socialization via visual canalization. Any motion pictures of 
artifact such as rotating red toy will effectively cause the primary 
imprinting selectively to the visual feature of the object. However, the 
primary imprinting is associated by CONSPEC mechanisms, wherein 
the biological motion (BM) preference is permissively induced if 
accompanied by enhanced Dio2 gene expression and a rapid inflow 
of thyroid hormone (T3) in the dorsal pallium. Thyroid hormone 
subsequently elongates the sensitive period for memory formation, 
allowing the secondary imprinting for a longer post-hatch period. 
With the aid of the induced BM preference, the secondary imprinting 
is canalized to images of conspecifics, and the chicks will form firm 
social attachments to conspecifics.

https://doi.org/10.3389/fnins.2024.1279947
https://www.frontiersin.org


Matsushima et al. 10.3389/fnins.2024.1279947

Frontiers in Neuroscience 06 frontiersin.org

2016; Nicolini and Fahnestock, 2018)]. Late embryonic exposure to 
VPA impairs social behavior also in chicks (Nishigori et al., 2013; 
Sgadò et al., 2018; Lorenzi et al., 2019; Adiletta et al., 2021). These 
studies have consistently reported impaired social behavior in 
newborns and hatchlings after embryonic VPA exposure, although 
drug-induced phenotype disorders were not necessarily identical, 
probably due to task-dependent variation among individuals. For 
example, Matsushima et al. (2022) reported low imprinting scores 
exclusively in individuals with a low BM preference. Specification of 
the ASD-like behavioral impairments by the embryonic VPA awaits 
further studies.

Actually, VPA has a wide spectrum of pharmacological effects, 
including actions on N-methyl-D-aspartate type glutamate 
receptors [NMDA-R (Gean et  al., 1994)] and inhibitory GABA 
transmission (Winterer, 2003). Moreover, VPA is well-accepted as 
a potent inhibitor of histone deacetylases [HDACs (Phiel et  al., 
2001)]. Acute anticonvulsant action on the late embryos (the last 
week of the prehatch development) may induce ASD-like 
phenotypes, as VPA effectively suppresses embryonic motion 
(Matsushima et al., 2022). Spontaneous motion is ubiquitous among 
late embryos of vertebrates (Bekoff et al., 1975) (see also Bekoff, 
2001; Blankenship and Feller, 2010 for more recent reviews), 
although its functional roles remain unclear. Nevertheless, 
suppression of embryonic movements per se fails to account for 
ASD-like deficiencies in chicks, since similarly effective suppressers 
(e.g., selective blockers of NMDA-R MK-801) failed to cause 
ASD-like symptoms (Matsushima et al., 2022).

The brain regions and molecular events that are responsible for 
the VPA-mediated ASD phenotypes remain elusive. In a rat model, 
VPA enhanced NMDA-R expression and synaptic potentiation in the 
hippocampus (Rinaldi et al., 2007), thereby causing an imbalance 
between excitatory and inhibitory transmission (E-I imbalance; see 
Uzunova et al., 2016; Lee et al., 2017 for comprehensive reviews). In 
support of the hyper-excitation hypothesis, post-natal blockade of 
NMDA-R by memantine (a drug prescribed for Alzheimer’s disease) 
rescued social interaction impairment (Kang and Kim, 2016). 
Consistent with studies performed in rodent models, administering 
bumetanide (a selective blocker of NKCC1 co-transporter) 
immediately before training could rescue chicks with VPA-induced 
impaired imprinting (Matsushima et  al., 2022); the impact of 
bumetanide will be discussed below.

3.2 Selective impairment of BM 
predisposition via embryonic interference 
with nAChR receptors, including 
neonicotinoid insecticides

Pesticide chemicals, particularly considering the rapidly 
increasing consumption of neonicotinoid insecticides [NNs 
(Costas-Ferreira and Faro, 2021)], are another serious concern in 
the etiology of ASD. NNs are designed to selectively perturb 
cholinergic neurotransmission in the nervous system of insects 
through their agonistic nature, whereas NNs were assumed to have 
low toxicity in vertebrates. Early ecological reports have 
highlighted the population decline of insectivorous birds 
(Hallmann et al., 2014). Following concerns regarding the high 
persistence of NNs in plants and soil, NNs were found to impair 

the migratory ability of granivorous birds (Eng et al., 2017, 2019). 
Several recent epidemiological studies have reported the risk of 
maternal exposure to environmental NNs (Keil et al., 2014; Gunier 
et  al., 2017). An early study (Keil et  al., 2014) estimated the 
association between the indoor usage of imidacloprid (IMI; one of 
the most heavily used NNs for flea and tick treatment for pet 
animals) and ASD, detecting an alarming odds ratio of ~2.0. 
Prenatal exposure to agricultural pesticides was found to 
be  associated with low intelligence quotient and verbal 
comprehension (Gunier et al., 2017). A large-scale study on the 
association between ambient pesticide usage (NNs included) and 
ASD in California’s agricultural region (Von Ehrenstein et  al., 
2019) detected considerable odd ratios for various pesticide 
chemicals; the effects of prenatal exposure were boosted by 
additional exposure in neonatal infants. A rodent model study 
assessing acetamiprid (ACE; another NNs) has reported the 
abnormal development of social and anxiety-related behaviors in 
males after prenatal and lactational exposure (Ongono et al., 2020).

Our study using a chick model (Sano et al., 2016) revealed high 
concordance with these reports in humans and rodents. Selective and 
non-selective blockade of nAChR (using tubocurarine and selective 
α7 subtype inhibitor), as well as perturbed nAChR transmission by 
IMI, could suppress embryonic movements and impair the BM 
preference of hatchlings. Notably, nAChR blockade did not impair 
imprinting memory formation, thus revealing distinct dimensions of 
social behavior malformation from those induced by VPA (Figure 3).

3.3 Thyroid hormone, E-I imbalance in 
humans and chicks

Maternal hypothyroidism (gestational hypothyroxinemia) is 
another risk factor for ASD (Román et al., 2013; Berbel et al., 
2014; Getahun et  al., 2018). Circulating levels of thyroid 
hormones (THs, T4 in particular) could be  a potential early 
biological marker for ASD. To date, no consensus has been 
reached regarding the role of THs in the development of ASD, 
given that both positive (Hoshiko et  al., 2011) and negative 
(Ames et  al., 2020) results have been reported. In addition to 
being a critical determinant of imprinting in chicks (Lemaire 
et al., 2022), TH plays critical roles in diverse neurodevelopmental 
processes (Batista and Hensch, 2019), particularly in the 
maturation of GABAergic transmission via the rapamycin 
(mTOR; mechanistic target of rapamycin) cascade (Westerholz 
et al., 2013). The mTOR-GABA cascade may mediate the acute 
facilitatory effects of THs in chicks (Yamaguchi et  al., 2012; 
Batista et  al., 2018; Lorenzi et  al., 2021). T3 acutely enhances 
GABAergic transmission in slice preparations of the chick 
pallium (Saheki et al., 2022), although its functional link to the 
behavioral effects remains elusive.

Interestingly, in humans, symptomatic autism comorbid with 
fragile X syndrome and tuberous sclerosis complex (TSC) is 
accompanied by mutations in the mTOR signaling pathway. 
Rapamycin was shown to rescue social impairment in a mouse model 
of TSC (Sato et  al., 2012). A more recent study addressing 
macrocephaly in infants with ASD has suggested that synaptic 
pathology related to the mTOR pathway is responsible for 
hyperconnectivity (Pagani et al., 2021).
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In the central nervous system, the metabolic control responsible for 
the balanced management of energy income and growth may underlie 
appropriate socialization during the early stages of life in humans and 
chicks. In addition, premature E-I balance (excitatory-inhibitory balance, 
or delayed GABA switch from depolarizing to hyperpolarizing response) 
could be a key event in neural maturation, affording a potential target for 
developing effective pharmacotherapies for ASD.

3.4 GABA switch, nicotinic transmission, 
and treatment using bumetanide and 
oxytocin

GABA exerts depolarizing transmission via GABA-A receptors in 
the embryonic and early post-natal stages, and the excitatory GABA is 
supposed to exert trophic functions for the functional maturation of 
the brain. During the perinatal period, excitation is converted to adult-
type inhibitory neurotransmission [Ben-Ari (2002), Represa and 
Ben-Ari (2005), and Ben-Ari et al. (2007) for comprehensive reviews; 
Pfeffer et al. (2009) for the hippocampal development; also see Hyde 
et al. (2011) specifically for the schizophrenia etiology]; this conversion 
(referred to as the GABA switch) is mediated by a reduction in the 
intracellular chloride ion ([Cl−]i), which, in turn, can be attributed to 
the enhanced expression of cation-linked co-transporters responsible 
for the efflux of Cl− (KCC2 over NKCC1). To identify regulatory 
mechanisms underlying the GABA switch, nicotinic cholinergic 
transmission was found to be critical in the chick ciliary ganglion (Liu 
et  al., 2006). Further analysis of the phosphorylation of KCC2 
molecules revealed protein kinase C-mediated modulation by 
glutamatergic and serotonergic actions, as well as the activation of 
muscarinic acetylcholine receptors (Kahle et al., 2013) (for more recent 
comprehensive reviews see Kaila et  al., 2014; Zhang et  al., 2021). 
Cascade of causal molecular events is yet unspecified.

The association between GABA switch retardation and ASD was 
based on the finding that diazepam (an anxiolytic drug, a positive 
modulator of GABA-mediated inhibition used to relieve anxiety) 
could paradoxically increase aggressive behaviors in autistic children 

(Marrosu et  al., 1987). Subsequent studies have shown that 
dysfunctional GABA inhibition could play a pivotal role in ASD 
etiology (Nelson and Valakh, 2015; Hadjikhani et  al., 2018). 
Bumetanide has attracted attention as a potent candidate for 
ameliorating ASD symptoms, given that this agent selectively blocks 
the NKCC1 co-transporter responsible for Cl− influx (Delpire and 
Ben-Ari, 2022). Although initial open-label small-sized trials appeared 
positive and promising (Fernell et al., 2021; Wang et al., 2021), recent 
phase-2 trials failed to afford positive outcomes (Sprengers et  al., 
2021). A detailed follow-up analysis has identified heterogeneous 
phenotypes of neurocognitive impairment in patients with ASD, some 
of which were unaffected by bumetanide (Van Andel et al., 2023). In 
a chick model, bumetanide treatment immediately before training 
rescued impairments in both imprinting (by VPA) and BM preference 
(by nAChR blockade) (Matsushima et al., 2022). Further studies are 
required to identify underlying targets and pharmacology.

Oxytocin and related nonapeptides comprise another group of 
candidate drugs for ASD. In humans, intranasal application of 
oxytocin can acutely ameliorate social deficiencies such as BM 
perception and social communication in cases of relatively low 
severity (Kéri and Benedek, 2009; Parker et al., 2017). In typically 
developing individuals, oxytocin receptors peak during early 
childhood, whereas this peak is absent in those with ASD (Freeman 
et  al., 2018). Similar facilitatory effects of oxytocin on prosocial 
behaviors have been observed in dogs (Nagasawa et al., 2015; Kovács 
et al., 2016), birds (Duque et al., 2018; Loveland et al., 2019; Seguchi 
et al., 2022) and fish (Nunes et al., 2020), suggesting its ubiquitous role 
in vertebrates. Considering the underlying mechanisms, a study using 
oxytocin-receptor knock-out mice has suggested that KCC2 is 
regulated by oxytocin (Leonzino et al., 2016). A more recent study in 
mice identified a link between the genetic risk of ASD and the 
oxytocinergic signaling pathway (Hörnberg et al., 2020). In chicks, 
intracranially administered mesotocin (an avian counterpart of 
oxytocin) enhanced the preference of naïve chicks (Loveland et al., 
2019). The appropriately timed excitation/inhibition balance could 
play critical roles on functional maturation of the social brain network 
in both of the newly hatched chicks and the human neonates, thus 

FIGURE 3

Disturbed epigenesis during the late embryonic stage leads to impaired predisposition critical for post-natal socialization through imprinting. 
Imidacloprid and other environmental toxicants disturbing nicotinic acetylcholine receptors (nAChR) would impair the induction of predisposed 
preference to biological motion. On the other hand, valproic acid (VPA) disturbs expression patterns of yet unspecified set of genes through inhibiting 
deacetylation of nuclear histone, leading to impaired memory formation. As both of the predisposition and the memory formation are critical for 
adaptive socialization, disturbance of either one of these would lead to social attachment hypoplasia. Despite distinct processes of disturbance, both 
impairments are rescued by bumetanide, a selective blocker of NKCC1 cotransporter.
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forming another aspect of the convergent peri-natal “bottleneck” 
(Figure 1).

4 Perspectives

Do chick studies have future? Table 1 summarizes the validity and 
limitations of chicks as an ASD model animal, and some of these 
points will be discussed in detail. To conclude this review article, 
we  will further discuss how neurocognitive homologies are to 
be defined. We will also discuss how we should address the homology 
issue on firm biological bases.

4.1 Limitations and advantages of the 
domestic chick; comparisons with other 
novel ASD model animals

In terms of the taxonomic validity measured by the distance from 
Homo sapiens (Belzung and Lemoine, 2011), chicks are definitely 

inferior model of human disorders because they are not mammals. 
Non-human primates such as common marmosets (Watanabe et al., 
2021) is one of the most promising options in this respect. Prenatal 
VPA treatment actually causes a deficient inequity aversion (Yasue 
et  al., 2018), suggesting impaired social motivation or interest to 
conspecifics. Although marmosets have the ability to visually perceive 
BM (Brown et al., 2010), effects of prenatal VPA treatment have not 
been addressed in the neonatal visual perception. Genetic engineering 
technique using the CRISPR/Cas9 system has successfully generated 
marmosets that carry mutations in the fragile X mental retardation 1 
(FMR1) (Abe et al., 2021). Though fragmental at present, these studies 
are expected to yield a promising model system, high in both face and 
construct validity in near future.

Zebrafish is another promising model to study ASD despite the 
inferior homological validity (Choi et al., 2021). Several technical 
advantages such as the large-scale pool of mutants, wide applicability 
of tractable genetic manipulation and high-resolution whole brain 
imaging, makes this fish a powerful candidate for studying the 
molecular basis of developmental disorders including ASD (Geng and 
Peterson, 2019; Torres-Pérez et al., 2023). High throughput screening 
of the environmental risk chemicals (Geng et al., 2022) is probably the 
most successful product so far.

Comparison with these two models clearly reveals limitations and 
advantages of domestic chicks as ASD model. As the genetic 
engineering is premature in birds, the chick model is inappropriate for 
experimental manipulation of relevant genes. The rodent models are 
superior to specify the genes involved in the ASD etiology. On the 
other hand, environmental risk chemicals are reliably searched for in 
chicks and fish because (1) chemicals can be quantitatively applied to 
eggs and (2) rapid development allows efficient screening. 
Furthermore, (3) complications due to maternal metabolisms are 
inevitable in mammals, while these are disregarded in studies using 
chick and fish models. The screening efficiency is much higher in fish 
than any other models, however, the marmoset and chick models are 
superior in their behavioral similarity to humans. To examine the BM 
predisposition, for example, similar video clips of point light 
animation are used for testing chicks (Vallortigara et  al., 2005), 
marmosets (Brown et al., 2010) and human babies (Simion et al., 
2008), whereas motion pictures of different kinetics are used in 
zebrafish (Larsch and Baier, 2018).

4.2 Is the similar social perception due to 
genuine homology or convergent 
evolution?

The construct validity of chicks as the ASD model could 
be assumed to be evidence in favor of the homology, however, the 
present list is inevitably not exhaustive. ASD is actually a spectrum 
composed of a variety of diverse phenotypes among individuals with 
different genetic and environmental backgrounds. Any animal model 
would therefore be partial, covering limited aspects of the disorder. It 
is therefore critically important to collect any pieces of disproof, 
namely the discrepancy between the model and the human cases in 
their etiology, and also between the model animals of different taxa, 
such as rodents, primates, birds and fish.

So far, two major points remain ambiguous, making the answer 
to this question difficult. One is to specify the responsible brain region 

TABLE 1 Validity, advantages and limitations of the newly hatched 
domestic chicks as an ASD model animal.

Surface validity

   Predisposed priors of social communications shared with humans.

   Preference to face configuration.

   Preference to biological motion (BM).

   Preference to animacy.

   Two processes of CONSPEC and CONLERN.

Construct and predictive validity

   Cellular/molecular mechanisms shared with humans.

   Effects of valproic acid in the late embryonic stage.

   Effects of neurotransmission by nAChR in the late embryonic stage.

   Effects of hypothyroidism.

   Excitatory-inhibitory imbalance (GABA-A reversal potential).

   Effective treatment of neonates by bumetanide.

Advantages of the chick model

   Tractability of fertilized eggs and hatchlings.

   Availability of embryonic manipulation.

   Rapid testing after pharmacological treatment of late embryos.

   No confounding effects of maternal metabolism.

   Functional “subcortical” visual pathway.

   Accumulated literatures on the development.

   The principles of the 3Rs.

   Replacing mammalian models.

   Reduction due to reproducible results with relatively few subjects.

   Refinement due to availability of neurocognitive tests in neonates.

Disadvantage and limitations of the chick model

   Taxonomic difference from Homo sapiens.

   Distinct behavioral development in juvenile/adults.

   Lack of layered isocortex in telencephalon.

   Lack of pure lines for studying genetic bases of behavioral development.

   Lack of powerful methods for genetic manipulations.

   Lack of data on verbal communication and vocalization.

   Lack of data on restricted and repetitive patterns of behavior.
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for the priors, and another is the molecular events leading to the 
formation of the predisposed social perception. As for the first, 
we  tentatively assume the subcortical visual pathway, however, its 
development during the late embryonic stages is largely unknown. For 
the second, as would be expected from the VPA effects, a variety of 
epigenetic processes are supposed to underlie, such as DNA 
methylation, histone modification and post-translational splicing 
(Eshraghi et al., 2018; Leung et al., 2023). It is also noticed that the 
phylotypic bottleneck of the vertebrate morphogenesis is characterized 
by a transition in chromatic accessibility (Uesaka et  al., 2019). 
Comprehensive survey is expected on the developmental changes of 
chromatin environment in embryos of these assumed model animals, 
particularly in its late stage of development.

Another aspect could be the blood–brain-barrier (BBB), because 
premature BBB of the embryonic brains could be responsible for the 
fragility to environmental toxicants, yet some of the BBB functions are 
conserved among vertebrates and even some invertebrate animals 
(O’Brown et al., 2018). At the same time, the endothelial epithelial cells 
of blood vessels in the brain are actively regulating the endocrine control, 
such as thyroid hormone in chicks (Yamaguchi et al., 2012) and juvenile 
hormone for cast differentiation in ants (Ju et al., 2023); BBB could play 
as an active regulator or “gatekeeper” of the humoral factors in the 
developing CNS, rather than immature underdeveloped barriers. In this 
context, epigenetic regulation of BBB in healthy and damaged brain 
needs more attention (Ihezie et al., 2021); for example, histone deacetylase 
inhibitor such as VPA (see above) could protect the BBB damages after 
stroke. Possible links connecting between BBB development and ASD 
etiology are to be searched for in future, with a close reference on the 
involvement of gut-brain axis in ASD (Morton et al., 2023).

5 Concluding remark

No single animal models suffice to understand the complex 
etiology, cellular/molecular mechanisms, responsible brain networks, 
behavioral traits and pharmacological therapeutics of ASD. Though 
inevitably fragmental, findings obtained from a variety of, but 
appropriately chosen animal models should be  complementarily 
integrated for a proper understanding of a developmental disease with 
multiple causes and wide phenotypic spectrum. Developmental 
homology to human neonates would be most critical criteria of the 
valid animal models. In this respect, the domestic chick comprises a 
unique position for studying neurocognitive disorders.

A fundamental question remains. Why did chicks converge to 
human neonates despite distinct evolutionary separations over 

300 million years? This remains an unresolved puzzle, which could 
be  addressed by analyzing behavioral phenotypes and disorders 
(surface validity) and the underlying mechanisms (construct validity). 
Biological psychiatry and comparative psychology therefore ask a 
same question: What are we?
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