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Brain tumors can be classified into many different types based on their shape, 
texture, and location. Accurate diagnosis of brain tumor types can help doctors 
to develop appropriate treatment plans to save patients’ lives. Therefore, it 
is very crucial to improve the accuracy of this classification system for brain 
tumors to assist doctors in their treatment. We propose a deep feature fusion 
method based on convolutional neural networks to enhance the accuracy and 
robustness of brain tumor classification while mitigating the risk of over-fitting. 
Firstly, the extracted features of three pre-trained models including ResNet101, 
DenseNet121, and EfficientNetB0 are adjusted to ensure that the shape of 
extracted features for the three models is the same. Secondly, the three models 
are fine-tuned to extract features from brain tumor images. Thirdly, pairwise 
summation of the extracted features is carried out to achieve feature fusion. 
Finally, classification of brain tumors based on fused features is performed. The 
public datasets including Figshare (Dataset 1) and Kaggle (Dataset 2) are used to 
verify the reliability of the proposed method. Experimental results demonstrate 
that the fusion method of ResNet101 and DenseNet121 features achieves the 
best performance, which achieves classification accuracy of 99.18 and 97.24% 
in Figshare dataset and Kaggle dataset, respectively.
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1 Introduction

In recent years, the rising incidence and mortality rates of brain tumor diseases have posed 
significant threats to human well-being and life (Satyanarayana, 2023). Because of the different 
causes and locations of brain tumors, the treatment methods for brain tumors are very 
different. Additionally, the severity of lesions significantly impacts the efficacy of treatment 
methods. Therefore, it is very important to determine the type and severity of brain tumor 
lesions prior to treatment development. With the development of modern technology, 
Computer-Aided Diagnosis (CAD) technology plays an increasingly important role in the 
medical diagnosis process (Fujita, 2020; Gudigar et al., 2020; Sekhar et al., 2022). The diagnosis 
and analysis of brain tumor magnetic resonance imaging (MRI) images by physicians based 
solely on personal experience is not only inefficient but also subjective and prone to errors, 
leading to misleading results (Chan et al., 2020; Arora et al., 2023). Consequently, enhancing 
the efficiency and accuracy of computer-aided diagnosis for brain tumors has emerged as a 
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prominent research hotspot in the field of brain tumor-
assisted diagnosis.

Traditionally, the classification method of medical images consists 
of several stages, including image pre-processing, image segmentation, 
feature extraction, feature selection, training of classifiers and image 
classification (Muhammad et al., 2021; Yu et al., 2022). Nevertheless, 
in recent years, with the emergence of deep learning theory, more and 
more researchers applied the deep learning theory into medical image 
processing (Maurya et al., 2023). Deep learning has been employed 
widely in the analysis and diagnosis of diverse diseases (Cao et al., 
2021; Gu et al., 2021; Lin et al., 2022; Yang, 2022; Yao et al., 2022; 
Zolfaghari et al., 2023). Convolutional Neural Networks (CNNs) are 
widely recognized as one of the most prominent deep learning 
techniques. By utilizing the images as input, CNNs mitigate the issue 
of low classification accuracy resulting from the selection of 
unrepresentative features by humans.

Medical images are usually difficult to obtain, and the amount of 
image data is relatively small (Shah et al., 2022). Although training an 
effective deep learning model typically necessitates a substantial 
amount of data, transfer learning can address the issue of limited 
dataset size and expedite the training process. Therefore, transfer 
learning has been widely used in the medical field (Yu et al., 2022). 
Yang et al. (2018) utilized AlexNet and GoogLeNet for glioma grade 
classification. Experimental results demonstrated that CNNs trained 
using transfer learning and fine-tuning were employed for glioma 
grading, achieving improved performance compared to traditional 
machine learning methods reliant on manual features, as well as 
compared to CNNs trained from scratch. Swati et  al. (2019) and 
Zulfiqar et  al. (2023) employed VGG19 and EfficientNetB2, 
respectively for the classification of brain tumors. Arora et al. (2023) 
examined the classification performance of 14 pre-trained models for 
the identification of skin diseases. DenseNet201 obtained superior 
classification performance, achieving an accuracy of 82.5%. 
Meanwhile, ResNet50 exhibits the second-highest classification 
accuracy at 81.6%. Aljuaid et al. (2022), ResNet 18, ShuffleNet, and 
Inception-V3Net models were used to classify breast cancer, with 
ResNet 18 showing excellent performance with an accuracy of 97.81%.

However, only relying on a single model often results in over-
fitting on the training set and poor generalization on the test set, in 
turn to diminish the model’s robustness. Therefore, in this paper, to 
addresses the limitations associated with only relying on a single 
model, model integration techniques are proposed. In this paper, three 
pre-trained models namely ResNet101, DenseNet121, and 
EfficientNetB0 are used to extract the features of brain tumor images. 
Subsequently, the extracted features are fused using a summation 
method, followed by classification of the fused features. The main 
contributions of this paper are as follows:

 1 An image classification method for brain tumors based on 
feature fusion is proposed.

 2 The feature outputs of the three pre-trained models were 
adjusted to have consistent dimensions.

 3 Feature fusion was accomplished through summation.
 4 The validity of the method was verified on two publicly 

available datasets including Figshare dataset (Cheng et  al., 
2015) referred to as dataset 1, and Kaggle dataset (Bhuvaji et al., 
2020) referred to as dataset 2, and the model outperformed 
other state-of-the-art models.

2 Related work

There have been many studies on the classification of brain tumors.
Alanazi et al. (2022) constructed a 22-layer CNN architecture. 

Initially, the model underwent training with a large dataset utilizing 
binary classification. Subsequently, the model’s weights were adjusted, 
and it was evaluated on dataset 1 and dataset 2 using migration 
learning. The model achieved accuracy of 96.89 and 95.75% on dataset 
1 and dataset 2, respectively. Hammad et al. (2023) constructed a 
CNN model with 8 layers. The model achieved an accuracy of 99.48% 
for binary classification of brain tumors and 96.86% for three-class 
classification. Liu et al. (2023) introduced the self-attention similarity-
guided graph convolutional network (SASG-GCN) model to classify 
multi-type low-grade gliomas. The model incorporates a convolutional 
depth setting signal network and a self-attention-based method for 
chart construction on a 3D MRI water surface, which achieved an 
accuracy of 93.62% on the TCGA-LGG dataset. Kumar et al. (2021) 
employed the pre-trained ResNet50 model for brain tumor 
classification, achieving a final accuracy of 97.48% on dataset 1. Swati 
et al. (2019) presented an exposition on the merits and demerits of 
conventional machine learning and deep learning techniques. They 
introduced a segmented fine-tuning approach leveraging a pre-trained 
deep convolutional neural network model. Through fine-tuning, they 
achieved an accuracy of 94.82% on dataset 1 using the VGG19 
architecture. Ghassemi et al. (2020) employed a pre-trained generative 
adversarial network (GAN) for feature extraction in the classification 
of brain tumors. The experiment was conducted on dataset 1, yielding 
an accuracy of 95.6%. Saurav et  al. (2023) introduced a novel 
lightweight attention-guided convolutional neural network 
(AG-CNN). This network incorporates a channel attention 
mechanism. The model achieves accuracies of 97.23 and 95.71% on 
dataset 1 and dataset 2, respectively.

Integration through models is a feasible solution. In Hossain et al. 
(2023), an ensemble model IVX16 was proposed based on the average 
of the classification results of three pre-trained models (VGG16, 
InceptionV3, Xception).The model achieved a classification accuracy 
of 96.94% on dataset 2. A comparison between IVX16 and Vison 
Transformer (ViT) models reveals that IVX16 outperforms the ViT 
models. Tandel et al. (2021) presented a method of majority voting. 
Firstly, five pre-trained convolutional neural networks and five 
machine learning models are used to classify brain tumor MRI images 
into different grades and types. Next, a majority voting-based 
ensemble algorithm is utilized to combine the predictions of the ten 
models and optimize the overall classification performance. In Kang 
et al. (2021), nine pre-trained models including ResNet, DenseNet, 
VGG, AlexNet, InceptionV3, ResNeXt, ShuffleNetV2, MobileNetV2, 
and MnasNet were employed. The pre-trained models were utilized to 
extract features, which were then forwarded to a machine learning 
classifier. From the extracted features, three deep features with 
excellent performance were selected and concatenated along the 
channel dimension. The resulting feature representation was 
subsequently sent to both the machine learning classifier and fully 
connected (FC) layer. On dataset 2, the model achieved an accuracy 
of 91.58%. Alturki et al. (2023) employed a voting-based approach to 
classify brain tumors as either healthy or tumorous. They utilized a 
CNN to extract tumor features, and employed logistic regression and 
stochastic gradient descent as the classifiers. To achieve high accuracy 
of tumor classification, a soft voting method was employed.
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Furthermore, the combination of CNNs and machine learning 
classifiers offers the potential ways to enhance the model’s 
performance. Sekhar et al. (2022), image features were extracted using 
GoogLeNet, and feature classification was performed using both 
support vector machines (SVM) and K-Nearest Neighbor (KNN). 
Ultimately, KNN outperformed SVM, achieving a model accuracy of 
98.3% on dataset 1. Deepak and Ameer (2021) employed a hybrid 
approach combining CNN and SVM to effectively classify three 
distinct types of brain tumors. The researchers introduced a CNN 
architecture comprising five convolutional layers and two fully-
connected layers. Subsequently, they extracted features from the initial 
fully connected layer of the designed CNN model, and ultimately 
performed classification using SVM. Remarkably, this approach 
achieved an impressive classification accuracy of 95.82% on dataset 1. 
Özyurt et al. (2019), the researchers utilized a hybrid approach called 
Neutrosophy and Convolutional Neural Network (NS-CNN) to 
classify tumor regions that were segmented from brain images into 
benign and malignant categories. Initially, the MRI images undergo 
segmentation employing the Neutral Set Expert Maximum Fuzzy 
Determination Entropy (NS-EMFSE) method. Subsequently, the 
features of the segmented brain images are extracted through a CNN 
and then classified using SVM and K-Nearest Neighbors (KNN) 
classifiers. The experimental results demonstrated that the utilization 
of CNN features in conjunction with SVM yielded superior 
classification performance, achieving an average accuracy of 95.62%. 
Gumaei et al. (2019) introduced the classification method of brain 
tumors based on the hybrid feature extraction method of regularized 
extreme learning machine (RELM). In this paper, the mixed feature 
extraction method is used to extract the features of brain tumors, and 
RELM is used to classify the types of brain tumors. This method 
achieves 94.233% classification accuracy on dataset 1. Öksüz et al. 
(2022) introduced a method that combines deep and shallow features. 
Deep features of brain tumors were extracted using pre-trained 
models: AlexNet, ResNet-18, GoogLeNet, and ShuffleNet. 
Subsequently, a shallow network is developed to extract shallow 
features from brain tumors, followed by fusion with the deep features. 
The fused features are utilized to train SVM and KNN classifiers. This 
method achieves a classification accuracy of 97.25% on dataset 1. In 
their work, Demir and Akbulut (2022) developed a Residual 
Convolutional Neural Network (R-CNN) to extract profound features. 
Subsequently, they applied the L1-Norm SVM ReliefF (L1NSR) 
algorithm to identify the 100 most discriminative features and utilized 
SVM for classification. The achieved classification accuracies for 
2-categorized and 4-categorized data were 98.8 and 96.6%, 
respectively.

Moreover, the hyperparameters of the model can be optimized 
through the utilization of an optimization algorithm. Ren et al. (2023), 
the study employed preprocessing, feature selection, and artificial 
neural networks for the classification of brain tumors. Furthermore, 
the authors utilized a specific optimization algorithm known as water 
strider courtship learning to optimize both the feature selection and 
neural network parameters. The effectiveness of the proposed method 
was evaluated on the “Brain-Tumor-Progression” database, obtaining 
a final classification accuracy of 98.99%. SbDL was utilized by Sharif 
et al. (2020) for saliency map construction, while deep feature 
extraction was performed using the pre-trained Inception V3 CNN 
model. The connection vector was optimized using Particle Swarm 
Optimization (PSO) and employed for classification with the softmax 

classifier. The proposed method was validated on Brats2017 and 
Brats2018 datasets with an average accuracy of more than 92%. In 
Nirmalapriya et al. (2023), employed a combination of U-Net and 
CFPNet-M for segmenting brain tumors into four distinct classes. The 
segmentation process was conducted using the Aquila Spider Monkey 
Optimization (ASMO) to optimize segmentation model and the 
Spider Monkey Optimization (SMO), Aquila Optimizer (AO), and 
Fractional Calculus (FC) optimized SqueezeNet models. The model 
achieved a tested accuracy of 92.2%. The authors introduced a model, 
referred to in Nanda et al. (2023) as the Saliency-K-mean-SSO-RBNN 
model. This model comprises the K-means segmentation technique, 
radial basis neural network, and social spider optimization algorithm. 
The tumor region is segmented using the k-means clustering method. 
The segmented image then undergoes feature extraction through 
multiresolution wavelet transform, principal component analysis, 
kurtosis, skewness, inverse difference moment (IDM), and cosine 
transforms. The clustering centers are subsequently refined using the 
social spider optimization (SSO) algorithm, followed by processing 
the feature vectors for efficient classification using the radial basis 
neural network (RBNN). The final model achieves classification 
accuracies of 96, 92, and 94% on the three respective datasets.

3 Materials and methods

This paper utilizes three pre-trained models, namely ResNet101, 
DenseNet121, and EfficientNetB0. The outputs of these models are 
adjusted to ensure consistent data size, and then the extracted features 
from these models are fused. Subsequently, feature classification is 
performed. To achieve consistent output from the feature extraction 
modules across all models, we  harmonized the feature extraction 
modules of EfficientNetB0 and ResNet101 with DenseNet121 by 
utilizing a 1 × 1 convolutional layer.

3.1 Datasets and Preprocessing

The study employed two datasets. Dataset 1, introduced by Cheng 
et al. (2015), is a publicly available dataset comprising 3,064 T1 MRI 
images. It includes three different types of brain tumors: glioma (1,426 
images), meningioma (708 images), and pituitary tumor (930 images). 
Dataset 2, a widely used open-source dataset (Bhuvaji et al., 2020), 
encompasses 3,264 MRI images which consist of four categories: 
glioma (926 images), meningioma (937 images), pituitary tumor (901 
images), and normal (500 images).

The MRI data consists of two-dimensional images with a size of 
512 × 512. However, the input of the pre-training model is necessary 
to be RGB image. Therefore, the images were resized to dimensions of 
224 × 224 × 3. Furthermore, the min-max normalization method was 
adopted to scale the intensity values of the image to the range of [0, 1]. 
The dataset 2 was processed in the same way. We divided the dataset 
into a training set and a test set with a ratio of 8:2.

3.2 Architecture of the proposed method

Transfer learning is a kind of machine learning technique, which 
leverages the knowledge acquired during training on one problem to 
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train on another task or domain. The transfer learning approach, 
which utilizes pre-trained network knowledge obtained from 
extensive visual data, is very advantageous in terms of time-saving and 
achieving superior accuracy compared with training a model from 
scratch (Yu et al., 2022; Arora et al., 2023).

ResNet, DenseNet and EfficietNet have been proved to be very 
effective brain tumor classification models (Zhang et al., 2023; Zulfiqar 
et al., 2023). The accuracy of brain tumor classification of VGG19 and 
ResNet50 is 87.09 and 91.18%, respectively (Zhang et al., 2023). The 
accuracy of GoogLeNet is 94.9% (Sekhar et al., 2022). We also have 
tested the ability of ResNet101 and EfficientNetB0 for brain tumor 
classification, whose accuracy is 96.57, 96.41%, respectively. The 
comparison shows that ResNet101, DenseNet121 and EfficientNetB0 
are more accurate, so they are chosen as the basic models.

Figure 1 depicts the framework of the proposed method in this 
paper. Firstly, the brain tumor data was processed and the images were 
adjusted. Secondly, features are extracted from brain tumor images 
using pre-trained models. Finally, the extracted features are then 
aggregated for feature fusion, followed by classification. Specifically, 
ResNet101, DenseNet121, and EfficientNetB0 serve as pre-trained 
models. The outputs of the ResNet101 and EfficientNetB0 feature 
extraction layers are adjusted to dimensions of (1,024, 7, 7). Brain 
tumor feature fusion is accomplished by pairwise summation of the 
extracted features. Finally, the fused features are classified using a 
linear classifier.

3.3 Pre-trained models

As a fundamental component of neural network architecture, the 
convolutional layer extracted features by sliding a fixed-size 
convolutional kernel over the original image and performing 
multiplication operations between the kernel parameters and the 
image. To achieve different effects, the convolution operation relies on 

additional parameters, primarily the step size, padding, and size of the 
convolution kernel. The size of the output features from the 
convolutional layer can be calculated using Equation (1).
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where Hin and Win represent the dimensions of the input data, 
padding refers to the number of zero-padding layers, Kernel_size 
represents the dimensions of the convolution kernel. And stride 
represents the step size of the convolution operation. The formula 
indicates that when the kernel_size is set to (1,1), the stride is set to 1 
and padding is set to 0, the output dimension of the convolutional 
layer remains unchanged.

3.3.1 ResNet101
Residual network (ResNet) is a widely recognized and 

straightforward model used for deep learning tasks, particularly in 
image recognition (He et  al., 2016). Previously, as the number of 
network layers increases, a common issue of vanishing gradients may 
arise, resulting in performance saturation and degradation of the 
model. Deep residual networks address this issue by incorporating 
jump connections between layers to mitigate information loss. The 
core idea of the deep residuals network is to add a path parallel to the 
main convolution path, which combines the features from the 
subsequent convolution layer with those from the previous layer 
within the same residuals block, in turn to can achieve a deeper 
network model. Within the residual network, each building block 
performs an identity mapping, and the resulting features are element-
wise summed across the convolutional layers preceding and following 
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FIGURE 1

Framework diagram of the proposed methodology.
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the identity connection. Figure  2 illustrates the foundational 
architecture of ResNet101. The feature extraction layer of the 
ResNet101 model produces an output with dimensions of (2048, 7, 7). 
Subsequently, a 1 × 1 convolutional layer with 1,024 convolutional 
kernels is added to the base model, which modifies the output 
dimension to (1,024, 7, 7).

3.3.2 DenseNet121
The DenseNet convolutional neural network model was proposed 

by Huang et al. (2017). The network is based on the ResNet structure, 
but it incorporates dense connections (i.e., summed variable joins) 
between all preceding and subsequent layers. Another significant aspect 
of DenseNet is the reuse of features through channel connections. In 
DenseNet, every layer receives feature maps as input from all preceding 
layers, and its output feature maps are subsequently utilized as input for 
each subsequent layer. In ResNet, the features of each block are 
combined by summation, whereas in DenseNet, feature aggregation is 
accomplished through concatenation. Figure 3 shows the fundamental 
framework of the DenseNet121 model. The core of the network is the 
reused combination of Dense Blocks and Transition Layers, forming the 
intermediate structure of DenseNet. Additionally, the topmost part of 
DenseNet consists of a 7 × 7 convolutional layer with a stride of 2, and 
a 3 × 3 MaxPool2d layer with a stride of 2. The output dimension of the 
feature extraction layer of the model is (1,024, 7, 7).

3.3.3 EfficientNetB0
The EfficientNet model was proposed by the Google AI research 

team in 2019 (Tan and Le, 2019). In contrast to traditional scaling 
methods used in previous studies, where the width, depth, and 
resolution of the deep CNN architecture are arbitrarily increased to 
enhance model performance, EfficientNets achieve network 
performance improvement through a fixed-scale approach that scales 
the width, depth, and resolution of the network’s input images. The 
calculations are as follows [Equations (2–6)]:

 Depth d: =αϕ  (2)

 Width w: = βϕ (3)

 resolutionratio r: = γϕ (4)

 s t. .α β γ⋅ ⋅ ≈2 2 2  (5)

 α β γ≥ ≥ ≥1 1, ,  (6)

where, α, β, and γ are obtained by hyperparametric mesh search 
techniques and can determine the allocation of additional resources 
to the width, depth, and resolution of the network. φ is a user-specified 
coefficient that controls the amount of additional resources used for 
model scaling. In Figure 4, the structure of the EfficientNetB0 model 
is shown. In order to transform the feature output of the EfficientNetB0 
model from its original dimension of (1,280, 7, 7) to the desired 
dimension of (1,024, 7, 7), a 1×1 convolution with 1,024 convolution 
kernels is applied so that the output is (1,024, 7, 7).

3.4 Training of CNNs

The convolutional neural network training process is a 
combination of forward and backward propagation. It starts at the 
input layer and propagates forward from layer to layer until it reaches 
the classification layer. The error is then propagated back to the first 
layer of the network. In layer L of the network, input from layer L-1 
neuron j is received in a forward propagation path. The weighted sums 
are calculated as follows [Equation (7)]:

 
In W x b

j

n
ij
l
j i= +

=
∑

1  
(7)

Here, the letters W l ij stand for weights, xj stand for training 
samples, and bi stand for bias. The nonlinearity of the model can 
be increased by the activation function to make the network fit the 
data better. Equation (8) shows how the Relu function is calculated.
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In the classification layer of the convolutional neural network, the 
probability of categorization is calculated by the following softmax 
function. This classification layer evaluates the probability score of 
each category by softmax function. Equation (9) shows the method 
of calculation.
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Structure of the ResNet101 model.
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CNN weights are updated by Backpropagation. The algorithm 
uses unknown weight W to minimize the tracking cost function. The 
loss function is calculated as follows [Equation (10)]:
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Here, m represents the total count of training samples. xi 
represents the initial training sample. yi represents the label associated 

with the sample xi. And P y
x
i

i









represents the probability of xi 

belonging to class yi.
Stochastic gradient descent on small batches of size N is used to 

minimize the cost function C and approximate the training cost by the 
small batch cost. W denotes the weights at iteration t of the l 
convolutional layer, and C denotes the small batch cost. The weights 
are then updated in the next iteration as follows [Equation (11)]:
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l
t

t
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In this case, αl is the learning rate of layer l. γ is the scheduling 
rate that reduces the initial learning rate at the end of a specified 
number of periods. And μ stands for the momentum factor, which 
indicates the effect of the previously updated weights on the 
current iteration.

4 Results and discussion

The experiments were conducted on a Windows 10 system with 
64 GB of Random Access Memory (RAM). The graphics card utilized 
was RTX 4070, and the programming language employed was Python, 
with PyTorch serving as the framework. The hyperparameters of the 
model in the experiment are shown in Table 1.

4.1 Evaluation metrics

To comprehensively assess the effectiveness of the model, the 
evaluation metrics including accuracy, precision, recall, and F1-score 
are employed in this paper. The expressions of the evaluation metrics 
are shown in Equations (12–15) (Yeung et al., 2022; Alyami et al., 2023).

 
Accuracy TP TN

TP TN FP FN
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Structure of the DenseNet121 model.
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where, true positive (TP) represents the count of accurately 
classified sick images in each respective category. True negative (TN) 
denotes the total number of correctly classified images in all categories, 
excluding the relevant category. False negative (FN) represents the 
count of incorrectly classified images in the relevant category. False 
positive (FP) denotes the count of misclassified images in all 
categories, excluding the relevant category.

4.2 Classification results

This section presents the classification results of the proposed 
method and includes a comparative analysis with and without the 
utilization of feature fusion methods.

4.2.1 The representation of a single model
The confusion matrix illustrating the classification results of 

models, which was pre-trained through fine-tuning on the test set of 
the dataset 1, is presented in Figure 5. To analyze the classification 
outcomes of the three pre-trained models on the test set of the dataset 
2, Figure 6 shows the corresponding confusion matrix. Additionally, 
Table  2 lists the specific values of accuracy, precision, recall, and 
F1-score, calculated using Equations (12–15) respectively. According 
to Table  2, on dataset 1, DenseNet121 has the best classification 
performance for brain tumor with 98.53% accuracy, while on dataset 
2, ResNet101 has excellent classification performance with 95.71% 
accuracy.

4.2.2 With feature fusion
Figures 7, 8 display the confusion matrices of the brain tumor 

classification results achieved by feature fusion on dataset 1 and 
dataset 2, respectively. Furthermore, Table 3 present detailed values of 
the classification indexes for dataset 1 and dataset 2. It can be seen that 
ResNet101 + DenseNet121 attains optimal classification results on 
both datasets, with an accuracy of 99.18% on dataset 1 and 97.24% on 
dataset 2.

Figures 9A, B show the average evaluation metrics for brain 
tumor classification of every model on dataset 1 and dataset 2, 
respectively. On the dataset 1, from Figure 9A, it can be observed 
that the combination of ResNet101 and DenseNet121 (ResNet101 
+ DenseNet121) achieved the best classification accuracy, precision, 
recall, and F1-score, with values of 99.18, 99.07, 99.11, and 99.08%, 
respectively. Additionally, among the individual models, 
EfficientNetB0 exhibits the best classification results for brain 
tumor classification. Notably, DenseNet121 outperforms ResNet101 
+ EfficientNetB0 but is outperformed by both ResNet101 + 
DenseNet121 and DenseNet121 + EfficientNetB0. In Figure 9B (i.e., 
dataset 2), the ResNet101 + DenseNet121 model also achieves the 
best performance. However, among the individual models, 
DenseNet121 exhibits the best classification results, with accuracy, 
precision, recall, and F1-score of 97.24, 97.06, 97.58, and 97.28%, 
respectively. Unlike dataset 1, where DenseNet121 showed strong 
performance, it appears to have the weakest classification ability on 
the dataset 2. Conversely, ResNet101 + DenseNet121, ResNet101 + 
EfficientNetB0, and DenseNet121 + EfficientNetB0 all outperform 
the individual models. The experimental results validate the 
effectiveness of combining features from different models through 
feature fusion, thus providing a more reliable approach for brain 
tumor classification than relying on a single model. In addition, the 
average improvement of ResNet101 + DenseNet121 is 2.085% 
(dataset 1 is 2.61%, dataset 2 is 1.56%) and 1.32% (dataset 1 is 
0.65%, dataset 2 is 1.99%) compared with ResNet101 and 
DenseNet121, respectively. Similarly, the accuracy improvement for 
ResNet101 + EfficientNetB0 is 1.035% (1.31% for dataset 1 and 
0.76% for dataset 2) and 1.345% (1.47% for dataset 1 and 1.22% for 
dataset 2) compared with ResNet101and EfficientNetB0 alone. In 
comparison with Densenet121 and EfficientNetB0, the average 
accuracy improvement for DenseNet121 + EfficientNetB0 is 1.225% 
(0.61% for dataset 1 and 1.84% for data set 2) and 1.985% (2.28% 
for dataset 1 and 1.69% for dataset 2), respectively. The modeled 
results strongly support the efficacy of employing feature fusion in 
brain tumor classification. In addition, it is evident that ResNet101 
achieves the most favorable classification results, while 
DenseNet121 yields the terrible results on dataset 2. But the 
classification effectiveness of ResNet101 + DenseNet121 surpasses 
that of ResNet101 + EfficientNetB0 and DenseNet121 + 
EfficientNetB0. This suggests that the combination of ResNet101 
and DenseNet121 outperforms configurations involving 
EfficientNetB0. The possible reason for this phenomenon is the 
inferior feature matching effect of ResNet101 + EfficientNetB0 and 
DenseNet121 + EfficientNetB0 compared to ResNet101 + 
DenseNet121.

A subject Receiver Operating Curve (ROC) is also utilized in the 
analysis process. It is a curve that illustrates the relationship between 
the true positive rate and the false positive rate. The size of the Area 
Under Curve (AUC) of the ROC curve indicates the strength of the 
model’s ability to differentiate between different types of tumors, with 
a larger AUC value indicating better classification performance. As 
shown in Figure 10, the ROC curves of ResNet101 + DenseNet121 for 
the model are demonstrated and the values of AUC for the three types 
of brain tumors in dataset 1 are 0.9987, 0.9952, and 0.9999, 
respectively. In dataset 2, the values of AUC are 0.9991, 0.9971, 0.9999, 
and 0.9998, respectively.

TABLE 1 Hyperparameters.

Parameters Setting

Epoch 25

Learning rate 0.0001

Batch size 32

Optimizer Adam

Loss function Cross entropy
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4.2.3 Cross-dataset validation and robustness 
validation

Based on the foregoing, it is evident that the ResNet101 + 
DenseNet121 yields superior classification results across the two 
public datasets. This section aims to assess the robustness of 
ResNet101 + DenseNet121. To further assess the model’s robustness, 
a cross-data verification method was employed. The normal class in 
Dataset 2 was excluded, and data from the remaining three brain 
tumor classes were utilized to evaluate the dataset 1 trained model, 
ResNet101 + DenseNet121. The precision, recall, F1-score and 
accuracy of ResNet101 + DenseNet121 are verified to be  94.71, 
94.44, 94.41, and 94.38%, respectively, which indicates its 
good robustness.

4.3 Discussion

There have been many studies on brain tumor classification. 
Among these methods, the key is the extracted features. Generally, 
there is a relationship between the effectiveness of the model and the 
amount of data. Whereas the acquisition of medical images is usually 
difficult and expensive. Transfer learning can take full advantage of its 
advantages on tasks with small datasets to improve model 
performance, accelerate the training process, and reduce the risk of 
overfitting. In addition, model integration is a technique that combines 
the prediction results of multiple independently trained models to 
obtain more powerful and robust global predictions, which can 
improve the upper limit of performance. In our work, the pre-trained 
model is used to extract the features of the image, and then the 

extracted features are fused using the model integration method of 
feature fusion to enhance the ability of the model.

From the previous analysis, it can be found that among the three 
fused models, ResNet101 + DenseNet121 achieves the best 
classification results. ResNet101 adopts the method of residual 
learning to construct residual blocks, which makes the network easier 
to train and reduces the problem of gradient vanishing. Densenet121, 
on the other hand, uses the idea of dense connectivity, where each 
layer’s input contains the output of all previous layers. This kind of 
connection is helpful to the transmission of information and the flow 
of gradients, and slows down the problem of information bottleneck. 
Dense connectivity also facilitates feature reuse. The features 
extracted by ResNet101 and those extracted by Densenet121 are 
fused to realize the complementary feature, which makes the feature 
more abundant and diversified, and thus achieves better classification 
effect. To demonstrate the effectiveness of the proposed method, 
we use the method of t-Distributed Stochastic Neighbor Embedding 
(t-SNE) to visualize the features extracted by the model ResNet101 + 
DenseNet121 trained on dataset 1, and the visualization results are 
shown in Figure  11. The feature set of ResNet101 is shown in 
Figure 11A. It can be seen that some gliomas and meningiomas are 
nested with each other. The mean and standard deviation of the 
feature set are−0.0057 and 0.6141, respectively. The feature set of 
DenseNet121 is shown in Figure 11B, which shows that only a few 
gliomas and meningiomas are nested with each other. The mean and 
standard deviation of the feature set are 0.2323 and 0.652795, 
respectively. Figure  11C displays the feature set of ResNet101 + 
DenseNet121, indicating minimal nested classes. The mean and 
standard deviation of the feature set are 0.2267 and 0.9604, 

FIGURE 5

Confusion matrix of predicted results for a single model on the test set of the dataset 1. (A) ResNet101 (B) DenseNet121 (C) EfficientNetB0.

FIGURE 6

Confusion matrix of the predicted results of a single model on the test set of the dataset 2 (A) ResNet101 (B) DenseNet121 (C) EfficientNetB0.
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respectively. Additionally, the analysis shows that the standard 
deviation of the feature set of ResNet101 + Densenet121 is the 
highest, which also shows that ResNet101 + Densenet121 increases 
the uniqueness of extracting the image features of brain tumors and 
enhances the ability to distinguish brain tumors.

4.4 Comparison with other state of the art 
methods

We compared the classification results obtained in this 
study with those reported in the literature using the same 

TABLE 2 Indicators for the classification of a single model.

Dataset Model Tumor type Precision Recall F1-score Accuracy

Dataset 1 ResNet101 Glioma 96.19% 97.54% 96.86%

Meningioma 94.16% 91.49% 92.81%

Pituitary 98.92% 98.92% 98.92%

average 96.43% 95.99% 96.20% 96.57%

DenseNet121 Glioma 99.65% 98.60% 99.12%

Meningioma 95.21% 98.58% 96.86%

Pituitary 99.46% 98.39% 98.92%

average 98.10% 98.52% 98.30% 98.53%

EfficientNetB0 Glioma 96.86% 97.54% 97.20%

Meningioma 92.91% 92.91% 92.91%

Pituitary 98.37% 97.31% 97.84%

average 96.05% 95.92% 95.98% 96.41%

Dataset 2 ResNet101 Glioma 95.29% 98.38% 96.81%

Meningioma 97.08% 88.77% 92.74%

NoTumor 93.46% 100.0% 96.62%

Pituitary 96.17% 97.78% 96.97%

Average 95.50% 96.23% 95.78% 95.71%

DenseNet121 Glioma 96.24% 96.76% 96.50%

Meningioma 96.57% 90.37% 93.37%

NoTumor 84.75% 100.0% 91.74%

Pituitary 100.0% 96.11% 98.02%

Average 94.39% 95.81% 94.91% 95.25%

EfficientNetB0 Glioma 94.65% 95.68% 95.16%

Meningioma 93.96% 91.44% 92.68%

NoTumor 96.04% 97.00% 96.52%

Pituitary 97.25% 98.33% 97.79%

Average 95.48% 95.61% 95.54% 95.40%

FIGURE 7

Classification results of brain tumors on the test set of the dataset 1 (A) ResNet101  +  DenseNet121 (B) ResNet101  +  efficientNetB0 
(C) DenseNet121  +  EfficientNetB0.
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dataset. The compared results shown in Table 4 demonstrate 
that our study achieved competitive classification performance 
when compared to the state-of-the-art approaches in the 
current literature.

5 Conclusion

This paper proposes a novel method for brain tumor classification, 
utilizing feature fusion to improve performance. Three advanced 

FIGURE 8

Classification results of brain tumors on the test set of the dataset 2 (A) ResNet101  +  DenseNet121 (B) ResNet101  +  efficientNetB0 
(C) DenseNet121  +  EfficientNetB0.

TABLE 3 The classification results of feature fusion methods.

Dataset Model Tumor type Precision Recall F1-score Accuracy

Dataset 1 ResNet101 + DenseNet121 Glioma 99.30% 99.65% 99.47%

Meningioma 97.90% 99.29% 98.58%

Pituitary 1.00% 98.39% 99.19%

average 99.07% 99.11% 99.08% 99.18%

ResNet101 + EfficientNetB0 Glioma 98.25% 98.25% 98.25%

Meningioma 94.48% 97.16% 95.80%

Pituitary 1.00% 97.85% 98.91%

average 97.58% 97.75% 97.65% 97.88%

DenseNet121 + EfficientNetB0 Glioma 99.65% 98.60% 99.12%

Meningioma 96.53% 98.58% 97.54%

Pituitary 98.92% 98.92% 98.92%

average 98.37% 98.70% 98.53% 98.69%

Dataset 2 ResNet101 + DenseNet121 Glioma 95.81% 98.92% 97.34%

Meningioma 98.30% 92.51% 95.32%

NoTumor 95.24% 1.00% 97.56%

Pituitary 98.89% 98.89% 98.89%

Average 97.06% 97.58% 97.28% 97.24%

ResNet101 + EfficientNetB0 Glioma 95.31% 98.92% 97.08%

Meningioma 98.84% 91.44% 95.00%

NoTumor 97.00% 97.00% 97.00%

Pituitary 95.19% 98.89% 97.00%

Average 96.59% 96.56% 96.52% 96.47%

DenseNet121 + EfficientNetB0 Glioma 96.83% 98.92% 97.86%

Meningioma 98.86% 92.51% 95.58%

NoTumor 96.08% 98.00% 97.03%

Pituitary 96.24% 99.44% 97.81%

Average 97.00% 97.22% 97.07% 97.09%
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pre-trained models including ResNet101, DenseNet121, and 
EfficientNetB0, were selected as base models and adjusted to have the 
same output size (1,024, 7, 7). Brain tumor images were fed into these 
models to extract their respective features, and then feature fusion was 
achieved by pairwise combination of the models through feature 
summation. The fused features were subsequently used for the final 
classification. The method was validated on two publicly available 
datasets, and evaluation metrics such as accuracy, precision, recall, 
and F1-score were employed. Experimental Results indicated that the 
combination of ResNet101 and DenseNet121 (ResNet101 + 
DenseNet121) achieved the best classification results for both dataset 
1 and dataset 2. On dataset 1, accuracy of 99.18%, precision of 99.07%, 
recall of 99.11%, and F1-score of 99.08% were achieved. For dataset 2, 
the corresponding metrics values including accuracy of 97.24%, 
precision of 97.06%, recall of 97.58%, and F1-score of 97.28% were 
obtained. Comparing our method with other state-of-the-art 

techniques, our approach exhibits superior classification performance. 
In the future, we plan to study two important works. On one hand, 
we  will expand the experimentation by incorporating additional 
models to validate the effectiveness of feature fusion through 
summation for brain tumor classification. On the other hand, we aim 
to extend this method to encompass other brain diseases, thus 
enhancing the model’s capacity to recognize multiple classes of 
brain diseases.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found here: https://figshare.com/articles/dataset/brain_tumor_
dataset/1512427 and https://www.kaggle.com/datasets/sartajbhuvaji/
brain-tumor-classification-mri.

FIGURE 9

Visualization of brain tumor classification metrics (A) dataset 1 (B) dataset 2.

FIGURE 10

ROC curve of the model (A) dataset 1 (B) dataset 2.
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FIGURE 11

Scatterplot of the feature set. (A) ResNet101 (B) DenseNet121 
(C) ResNet101  +  DenseNet121.

TABLE 4 Comparison with other state-of-the-art models.

Reference Dataset Method Accuracy

Gumaei et al. 

(2019)

Dataset 1 RELM 94.233%

Swati et al. (2019) Dataset 1 Fine-tuning the VGG19 

model.

94.82%

Ghassemi et al. 

(2020)

Dataset 1 Pre-trained GAN 95.6%

Deepak and 

Ameer (2021)

Dataset 1 CNN + SVM 98%

Sekhar et al. 

(2022)

Dataset 1 GoogLeNet+KNN 98.3%

Öksüz et al. 

(2022)

Dataset 1 Deep and shallow feature 

fusion

97.25%

Hammad et al. 

(2023)

Dataset 1 CNN model with 8 layers 96.86%

Saurav et al. 

(2023)

Dataset 1 Pre-trained ResNet50 97.48%

Kang et al. (2021) Dataset 2 Feature connection 91.8%

Demir and 

Akbulut (2022)

Dataset 2 R-CNN 96.6%

Hossain et al. 

(2023)

Dataset 2 Ensemble Model 96.94%

Alanazi et al. 

(2022)

Dataset 1 CNN 96.89%

Dataset 2 95.75%

Saurav et al. 

(2023)

Dataset 1 AG-CNN 97.23%

Dataset 2 95.71%

Proposed model Dataset 1 ResNet101 + DenseNet121 99.18%

Dataset 2 97.24%
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