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Introduction: Underlying mechanisms of speech perception masked by

background speakers, a common daily listening condition, are often investigated

using various and lengthy psychophysical tests. The presence of a social agent,

such as an interactive humanoid NAO robot, may help maintain engagement

and attention. However, such robots potentially have limited sound quality or

processing speed.

Methods: As a first step toward the use of NAO in psychophysical testing of

speech- in-speech perception, we compared normal-hearing young adults’

performance when using the standard computer interface to that when using

a NAO robot to introduce the test and present all corresponding stimuli. Target

sentences were presented with colour and number keywords in the presence

of competing masker speech at varying target-to-masker ratios. Sentences

were produced by the same speaker, but voice differences between the target

and masker were introduced using speech synthesis methods. To assess test

performance, speech intelligibility and data collection duration were compared

between the computer and NAO setups. Human-robot interaction was assessed

using the Negative Attitude Toward Robot Scale (NARS) and quantification of

behavioural cues (backchannels).

Results: Speech intelligibility results showed functional similarity between the

computer and NAO setups. Data collection durations were longer when using

NAO. NARS results showed participants had a relatively positive attitude toward

“situations of interactions” with robots prior to the experiment, but otherwise

showed neutral attitudes toward the “social influence” of and “emotions in

interaction” with robots. The presence of more positive backchannels when

using NAO suggest higher engagement with the robot in comparison to the

computer.

Discussion: Overall, the study presents the potential of the NAO for presenting

speech materials and collecting psychophysical measurements for speech-in-

speech perception.

KEYWORDS

speech perception, psychophysics testing, speech masking, NAO robot, human robot
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1 Introduction

Daily life often presents us with situations in which sounds
with overlapping properties originating from different sources
compete for our attention. Perception of speech in background
noise requires segregating target speech and interfering masker
signals. Further, in the case of competing background speech
(speech masking), listeners need to suppress the information
provided by the masking speech, oftentimes resulting in
informational/perceptual masking (Carhart et al., 1969; Pollack,
1975; Mattys et al., 2009). Speakers’ voice characteristics facilitate
segregating target speech from masking speech (Abercrombie,
1982; Bregman, 1990). Fundamental frequency (F0), related to
the pitch of a speaker’s voice (e.g., Fitch and Giedd, 1999), and
vocal-tract length (VTL), related to the size and height of a speaker
(e.g., Smith and Patterson, 2005), are two such speaker voice
characteristics often used in differentiating voices and speakers
(Skuk and Schweinberger, 2014; Gaudrain and Başkent, 2018).
Normal-hearing listeners have been shown to be sensitive to
small differences in F0 and VTL cues (Gaudrain and Başkent,
2018; El Boghdady et al., 2019; Nagels et al., 2020a; Koelewijn
et al., 2021), and can make effective use of these differences to
differentiate between target and masker speech (Darwin et al.,
2003; Drullman and Bronkhorst, 2004; Vestergaard et al., 2009;
Başkent and Gaudrain, 2016; El Boghdady et al., 2019; Nagels et al.,
2021). In contrast, hard-of-hearing individuals who hear via the
electric stimulation of a cochlear implant (CI), a sensorineural
prosthesis for the hearing-impaired, struggle in such situations,
and show less sensitivity to F0 and VTL cues (El Boghdady et al.,
2019). This challenge could be due to the inherent spectrotemporal
degradation of electric hearing [see Başkent et al. (2016) for
more information on the workings of CIs] and thus, difficulty
in perceiving various speaker voice cues (Gaudrain and Başkent,
2018; El Boghdady et al., 2019). Therefore, the investigation of
these vocal cues through psychophysical testing, both in clinical
and research settings, is important. On the other hand, evaluation
of speech-in-speech perception requires the use of long and
repetitive auditory psychophysical tests to ensure data reliability
(Mühl et al., 2018; Smith et al., 2018; Humble et al., 2023). This can
be a challenge for individuals being tested, especially for those with
short or limited attention spans, such as young children (Hartley
et al., 2000; Bess et al., 2020; Cervantes et al., 2023), or those with
hearing loss, such as the elderly (Alhanbali et al., 2017). Therefore,
any interface or setup that can improve engagement and focus may
be helpful in collecting such data.

The use of a computer auditory psychophysics testing has led
to methods that allow for better controlled experiments, more
complex test designs, and the varying of more test parameters
(Laneau et al., 2005). This has subsequently led to the use of
desktop or laptop computers as typical test interfaces for auditory
psychophysical tests (Marin-Campos et al., 2021; Zhao et al., 2022).
When used as the test interfaces, the computer presents stimuli
and collects responses. These capabilities have also expanded the
potential use of computers for psychophysics testing outside of
clinical or highly controlled environments (Gallun et al., 2018).
Sometimes interfaces are modified to resemble a game-like format,
especially for children (Moore et al., 2008; Kopelovich et al., 2010;
Nagels et al., 2021; Harding et al., 2023). However, in a previous

study by Looije et al. (2012), it was shown that during learning
tasks, the use of a robot was better able to hold the attention
of children in comparison to a computer interface. Furthermore,
literature has shown that the physical presence of a social actor,
both human and human-like, has a greater effect on engagement
(Lee et al., 2006), in comparison to its virtual counterpart (Kidd and
Breazeal, 2004; Kontogiorgos et al., 2021). This can be leveraged to
motivate users to exert more effort during a given task (Bond, 1982;
Song et al., 2021). This was also reported by Marge et al. (2022),
who comment that a robot can be advantageous in motivating
and engaging users. Therefore, it could be that the inclusion of an
interactive robot, such as the NAO humanoid robot, could be used
to further retain one’s attention, especially for psychophysical tests
of speech-in-speech perception.

Over the last two decades humanoid robots have gained
presence in a wide range of areas, including: high-risk
environments (Sulistijono et al., 2010; Kaneko et al., 2019),
entertainment (Fujita et al., 2003), home (Asfour et al., 2006), and
healthcare (Ting et al., 2014; Choudhury et al., 2018; Saeedvand
et al., 2019), to name only a few. Joseph et al. (2018) details more
specifically how humanoid robots have been involved in healthcare
applications, such as assisting tasks through social interactions
(McGinn et al., 2014), telehealthcare (Douissard et al., 2019), and
nurse assistive tasks (Hu et al., 2011). The use of social robotics has
steadily increased in recent years to the point where they are no
longer only being used as research tools, but being implemented in
day-to-day life (Henschel et al., 2021). The robots from Aldebaran
Robotics (NAO and Pepper) are the two most frequently recurring
robots in the field of social robotics. Moreover, the use of both the
NAO and Pepper robots has been suggested in the literature as a
facilitating interface in testing procedures for hearing research.
Uluer et al. (2023), for example, have explored using a Pepper robot
to increase motivation during auditory tests with CI children. The
NAO has frequently been used in healthcare contexts, as shown in
a scoping review by Dawe et al. (2019). Due to the robot’s small
size and its friendly and human-like appearance, the NAO has
been used often in the investigation of child-robot interactions
(Amirova et al., 2021). Polycarpou et al. (2016) used a NAO robot
with seven CI children between the ages of 5–15 years to assess
their speaking and listening skills through play. Although there
have been other audiological studies utilising robot interactions, to
the best of our knowledge, the evaluation or analysis of the human-
robot interaction (HRI) has been limited and has predominantly
focussed on task performance.

User engagement (Kont and Alimardani, 2020) is one of the
most frequently used metrics in human-robot interaction (HRI)
analysis as it provides a measure of interaction quality, and thus
one’s perception toward an interface. One’s own perception toward
a robot is often performed using self-assessments, such as the
Negative Attitude toward Robots Scale [NARS; (Nomura et al.,
2004)]. The NARS is used to determine the attitudes one has toward
communication with robots in daily life and is divided into three
components: subordinate scale 1 (S1), negative attitudes toward
situations and interactions with robots; S2, negative attitudes
toward social influence of robots; and S3, negative attitudes
toward emotions in interactions with robots. In addition to
self-assessments, much can be gleaned regarding the perception
toward a robot as well as user engagement through the analysis
of behavioural cues using video recordings. Verbal or gestural

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2024.1293120
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1293120 February 6, 2024 Time: 17:5 # 3

Meyer et al. 10.3389/fnins.2024.1293120

behavioural cues, known as backchannels and defined as cues
directed back to a conversation initiator to convey understanding
or comprehension, and a desire for the interaction to continue
(Rich et al., 2010), have also been suggested as measures to evaluate
user engagement (Türker et al., 2017).

In this study, we aim to expand the use of a NAO robot
in psychophysical evaluations of speech-in-speech perception.
Combined with its speech-based mode of communication, the
NAO robot could be a relatively low-cost tool for auditory
perception evaluation. In both research and clinical contexts, such
an implementation could potentially provide participants with
an interactive testing interface, possibly helping with engagement
and enjoyment during experiments and diagnostic measurements
(Henkemans et al., 2017). On the other hand, a number of factors
related to the hardware and software of the robot could potentially
affect auditory testing. For example, the internal soundcard and
speaker combination may not be able to produce sound stimuli
of sufficient quality for all psychophysical measurements (Okuno
et al., 2002), such as stimuli measured close to hearing thresholds.
Non-experimental artefacts such as the noise of the fans or
actuators in the robot could add unintentional background noise
to the stimuli (Frid et al., 2018). Although the robot could
potentially offer beneficial engagement during psychophysical tests,
the different test setup with the NAO may impact the quality
of the test results. Therefore, we first need to investigate how
comparable the results are when conducting a psychophysics test
using a robot to those when using the standard computer setup,
while also evaluating the engagement factor via HRI analysis.

2 Materials and methods

The present experiment is part of a large project, Perception
of Indexical Cues in Kids and Adults (PICKA), and expands on
previous work conducted using the same NAO robot for other
psychophysical tests (Meyer et al., 2023). The purpose of the PICKA
project is to investigate the perception of voice and speech in
varying populations, such as normal-hearing and hard-of-hearing
adults and children with varying degrees and types of hearing loss
and hearing devices, and in varying languages, such as English,
Dutch, and Turkish.

In the present study, the PICKA speech-in-speech perception
test was used. The speech-in-speech perception test evaluates
speech intelligibility of sentences presented in competing speech,
using an adapted version of the coordinate response measure
(CRM, Bolia et al., 2000; Brungart, 2001; Hazan et al., 2009;
Welch et al., 2015). The test was performed via the computer
[identical to that reported in Nagels et al. (2021)] as well as with
a NAO humanoid robot named “Sam,” chosen to represent a
gender-neutral name. The computer and Sam versions of the test
differ slightly in their implementation, much of which was done
intentionally. The implementation differences are further explained
in the sections below.

To compare the test performance with the robot to both
the standard computer setup and to previous relevant work,
we have collected both auditory speech intelligibility scores and
data collection duration. To quantify the human-robot interaction
(HRI), we have collected data in the form of a questionnaire, the

Negative Attitude Toward Robots Scale (NARS), a common HRI
metric (Nomura et al., 2004), and behavioural cues exhibited during
the experiment to explore engagement related factors.

2.1 Participants

Twenty-nine (aged 19–36; 23.46 ± 4.40 years) individuals took
part in the study. Two participants did not meet the inclusion
criteria for normal hearing, and therefore data for the speech-in-
speech perception test was analysed from 27 participants (aged 19–
36; 23.23 ± 4.43 years). However, all 29 participants were included
in the analysis of the HRI as there was no inclusion criteria for this
component of the study. Sample size was determined based on a
rule of thumb for human-robot interaction studies in which it is
recommended that a minimum of 25 participants are included per
tested condition (Bartneck, 2020), and an extra four participants to
account for potential drop-outs. All participants reported English
as either native or additional language and completed at least
high school education. A pure-tone audiogram was conducted
to confirm normal hearing (NH). Hearing thresholds >20 dB
HL (Hearing Level) at any of the audiometric octave frequencies
(between 250 Hz and 8 kHz) qualified for exclusion. The study
was conducted according to the guidelines of the Declaration of
Helsinki, and the PICKA project protocol was approved by the
Medical Ethical Committee (METc) at UMCG (METc 2018/427,
ABR nr NL66549.042.18). Written informed consent was obtained
prior to the start of the experiment. The participants were
compensated €8/hr for their participation.

2.2 Stimuli for speech-in-speech test

The CRM sentence stimuli used were in English, introduced
by Hazan et al. (2009), Messaoud-Galusi et al. (2011), and Welch
et al. (2015), and similar in structure to the Dutch sentences used
by Nagels et al. (2021). The 48 English sentences contained a
carrier phrase with a call sign (“dog” or “cat”), one colour keyword
(selected from six colours: red, green, pink, white, black, and blue,
all monosyllabic), and one number keyword (selected from eight
numbers between 1 and 9, excluding disyllabic seven); e.g., Show the
dog where the pink (colour) five (number) is. The same 48 sentences
were used to create all stimuli for the present test. Each of the
stimuli sets (Dutch and English) of the PICKA test battery were
generated by a female speaker with a reference F0 of 242 Hz.

Target and masker sentences were originally produced by the
same speaker. Speech-in-speech conditions were implemented by
combining target and masker speech with two manipulations: (1)
the target-to-masker ratios (TMRs) were varied, and (2) the voice
cues F0 and VTL of the masker speech varied to introduce a
voice difference between the target and masker speech [see El
Boghdady et al. (2019) and Nagels et al. (2021) for a detailed
explanation on the influence of TMR and voice cues on speech-in-
speech perception]. For TMRs, expressed in dB, three conditions
were used (−6 dB, 0 dB, + 6 dB). F0 and VTL voice cues were
expressed in semitones (st.), an intuitive frequency increment unit
used in music and expressed as 1/12th of an octave. Four different
voice conditions were used: (1) the same voice parameters as

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2024.1293120
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1293120 February 6, 2024 Time: 17:5 # 4

Meyer et al. 10.3389/fnins.2024.1293120

the target speech, but with resynthesis to account for synthesis
artefacts (1F0: 0 st., 1VTL: 0.0 st.); (2 and 3) a difference of either
−12 st. in F0 or + 3.8 st in VTL (1F0: −12 st., 1VTL: 0.0 st.;
1F0: 0 st., 1VTL: + 3.8 st.); and (4) a difference of −12 st in
F0 and + 3.8 st. in VTL (1F0: −12 st., 1VTL: + 3.8 st.). This
resulted in 12 experimental conditions (three TMRs x four voice
conditions). An additional condition with no manipulations (no
TMR, no voice condition) was included as a baseline condition
for a check of the experiment paradigm, but not included in data
analyses. Each condition was tested with 7 trials (i.e., 7 target
sentences), resulting in a total of 84 experimental trials + 7 baseline
trials = 91 trials in the experimental corpus, all tested within
one block.

For familiarisation of the test, a small corpus of training stimuli
was created with nine F0 and VTL combinations: 1F0 = −12 st.,
1VTL = 0.0 st.; 1F0 = −12 st., 1VTL = + 1.9 st.; 1F0 = −12
st., 1VTL = + 3.8 st.; 1F0 = −6 st., 1VTL = 0.0 st.; 1F0 = −6
st., 1VTL = + 1.9 st.; 1F0 = −6 st., 1VTL = + 3.8 st.; 1F0 = 0
st., 1VTL = 0.0 st.; 1F0 = 0 st., 1VTL = + 1.9 st.; 1F0 = 0 st.,
1VTL = + 3.8 st. The first two trials had a TMR of 0 dB and the
remaining trials a TMR of + 6 dB. Of the nine training stimuli, four
were randomly selected for the training phase of the test.

For each trial, a target sentence was randomly selected from
the 48 sentences with the “dog” call sign, and the masker speech
was prepared from 48 sentences with the “cat” call sign. For the
masker speech, random sentences were selected while avoiding
sentences with the same number and colour keywords as the
target sentence. From these sentences, 150–300 ms segments were
randomly selected, applying 50 ms raised cosine ramps to prevent
spectral splatter, and concatenating these segments to produce
the masker speech. The masker speech started 750 ms before the
target sentence onset and continued for 250 ms after the target
sentence offset.

2.3 Human-robot interaction evaluation

The HRI was evaluated via the NARS questionnaire and
behavioural data captured in video recordings of the experiment.
The NARS is presented as a five-point Likert scale (1: strongly
disagree—5: strongly agree), used to grade each item, and the
higher the score, the more negative an attitude one has toward
robots. Total scores for each of the NARS subscales are obtained
by totalling the grades of each subscale (S1, S2, S3). Therefore,
minimum and maximum scores are 6 and 30 for S1, 5 and
25 for S2, and 3 and 15 for S3. For the video recordings, we
analysed behaviours that could be used to indicate engagement
(backchannels). “Smiling” and “laughing” (Türker et al., 2017) are
two behaviours which can be considered positive backchannels
and therefore positive engagement. To characterise negative
backchannels, “frowning,” and “grimacing” were used as opposites
to smiling and laughing.

2.4 Setup

As mentioned previously, the paradigm of the speech-in-
speech perception test is based on the CRM, which has been used

extensively in the literature (Hazan et al., 2009; Welch et al., 2015;
Semeraro et al., 2017; Nagels et al., 2021). In the standard version of
the test, to log responses, participants make use of a coloured and
numbered matrix representing all possible response combinations
(Figure 1). Although other tests of the PICKA battery have been
modified to resemble game-like interfaces (Nagels et al., 2020a,b;
Meyer et al., 2023), the speech-in-speech perception test has not
been similarly modified to remain consistent with literature and
allow for comparison to previously reported data.

2.4.1 Computer setup
The speech-in-speech perception test was run using MATLAB

2019b (MATLAB, 2019) on an HP Notebook (Intel Core i5 7th
gen) running Ubuntu 16.04. The user interface with the standard
numbered matrix (Figure 1) was used, similar to Nagels et al.
(2021). There are two deviations from the aforementioned study:
English vs. Dutch stimuli, and use of high-quality headphones
vs. internal soundcard and stereo speakers. We made use of the
computer’s loudspeakers in this study to present a more comparable
test setup with the NAO, on which there is no audio connection
for headphones.

2.4.2 Robot setup
A NAO V5 H25 humanoid robot developed by Aldebaran

Robotics (Sam) was used as an auditory interface to introduce
the speech-in-speech perception test and present all corresponding
stimuli. The PICKA Matlab scripts were rewritten into Python,
which allowed all tests and stimuli to be stored and run directly
on Sam. Housed in Sam is an Atom Z530 1.6 GHz CPU processor,
1 Gb RAM, and a total of 11 tactile sensors (three on the head,
three on each hand, one bumper on each foot), two cameras
and four ultrasound sensors (Figure 2A). The software locally
installed on the NAO robot is the NAOqi OS, an operating
system based on Gentoo Linux specifically created for NAO by the
developers. A cross-platform NAOqi SDK (software development
kit) framework is installed onto a computer, which can then
be used to control and communicate with the robot. The NAO
SDKs available are Python (Van Rossum and Drake, 2009),
C + + (Stroustrup, 2000), and Java (Arnold et al., 2005). NAO
has 25 degrees of freedom and is able to perform movements and
actions resembling that of a human.

To improve the useability of running the PICKA tests through
Sam, a simple website was designed for the researcher conducting
any of the PICKA tests and hosted on Sam. Through this
website, displayed on a Samsung Galaxy Tablet A, relevant
participant information (e.g., participant ID and language) could
be entered and the relevant PICKA auditory test could be
initiated (Figure 2B). Stimuli were presented through the onboard
soundcard, and the internal stereo loudspeakers located in Sam’s
head. The same tablet depicted a scaled down (approximately
by a factor of 1.8) version of the aforementioned standard
computer matrix for participants to log their responses (Figure 1).
Henceforth, the robot and tablet are referred to as the “robot setup”
and “auditory interface” refers to the robot only, as the tablet is
considered a response logging interface.

2.4.3 Auditory interface calibration
The computer and the NAO inherently differ in their abilities

to reproduce sounds due to the different hardware. To measure the
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FIGURE 1

The standard computer user interface, showing the speech-in-speech perception coordinate response measure (CRM) test matrix as presented on
the screen. Each item in the matrix represents a possible response option, corresponding to the target sentence. Bar at the top of the image depicts
progress indicating how many stimuli are remaining in either the training or data collection phases. The matrix and image are published under the
CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/).

FIGURE 2

Panel (A) The robot auditory interface, NAO V5 H25 humanoid robot from Aldebaran Robotics. Panel (B) Webpage displayed on the Samsung Tablet
to input participant details and begin one of the four PICKA psychophysics tests. Participant details included: participant ID, the phase of the test
(either training or data collection), and the language of the test (either English or Dutch). Test buttons from left to right are for starting the different
PICKA tests: voice cue sensitivity, voice gender categorization, voice emotion identification, and speech-in-speech perception (the focus of the
present experiment), respectively. The cartoon illustrations were made by Jop Luberti for the purpose of the PICKA project. This image is published
under the CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/).

output of the speakers, a noise signal that was spectrally shaped
to match the averaged spectrum of the test stimuli was used.
On both the computer and Sam, the noise was presented and
measurements were recorded in third-octaves using a Knowles
Electronics Mannequin for Acoustic Research (KEMAR, GRAS,
Holte, Denmark) head assembly and a Svantek sound level metre

(Svan 979). Measurements were conducted in a sound treated
room, identical to that used for experimentation. The KEMAR was
placed approximately one metre away from the auditory interface,
similar to how a participant would be seated during the experiment.
Replicating the experimental setup, the sounds were played on
both interfaces at the calibrated level of 65 dB SPL (Figure 3). To
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FIGURE 3

Comparison of auditory interface speaker comparison. Yellow and red lines show the levels of the noise signal when presented at the calibrated
65 dB SPL for the computer and Sam, respectively. Each point represents the total power within a third-octave band. The blue line is the digitally
extracted levels from the noise signal and shifted to the ideal presentation of 65 dB SPL.

further compare these signals, the digitally extracted levels from the
original noise signal used for calibration have also been included in
Figure 3 (blue line) to depict its spectral shape.

Figure 3 shows that both the computer and Sam have relatively
low level outputs below 250 Hz, compared to the original sound.
Furthermore, the computer shows lower levels than Sam at
frequencies below 800 Hz. To maintain the overall level of 65 dB
SPL, this lack of low frequencies is then compensated above 800 Hz
in the computer. These level differences will affect the perceived
loudness and timbre of the sounds, and could also potentially affect
audibility of lower harmonics in the speech stimuli.

2.4.4 General setup
Participants were seated at a desk with either the computer

or Sam and the tablet placed in front of them on the desk
in an unoccupied and quiet room. Participants were seated
approximately one metre from the auditory interface; however,
this varied as participants moved to interact with Sam or the
computer. The unused setup was removed from the desk and placed
outside the participants’ line of sight. To capture the behavioural
HRI data, two video cameras were placed to the side and in front
of the participant to capture their body positioning and facial
expressions, respectively.

2.5 Procedure

Prior to their experimental session, participants were requested
to complete the NARS questionnaire online. The order of the
setups with which participants started the test was randomised. The
speech-in-speech perception test consisted of two phases: a training

phase and a data collection phase. The task was the same for both
training and data collection. Participants were instructed that they
would hear a coherent target sentence with the call sign “dog” that
contained both a colour and a number (such as “Show the dog where
the red four is.”) in the presence of a speech masker to replicate
a speech-in-speech listening scenario. Participants were also told
that the speech masker might be louder, quieter, or have the same
volume as the target, or be absent. Participants were instructed to
log the heard colour and number combination on the provided
colour-number matrix either by clicking with the connected mouse
when using the computer or by touching the tablet screen.

Once the participant started the training phase and prior to
the presentation of the first training trial, all stimuli for both the
training and experimental corpora were processed with all TMR
and voice conditions, and the splicing and resynthesis of speech
maskers were randomised per participant. The training phase
presented participants with four trials to familiarise themselves
with the procedure of the test, but the participant responses were
not taken into account for scoring purposes. Once confirmed by
the researcher that the participant understood the test, the data
collection phase started, consisting of a single block of all 91
trials (84 experimental + 7 baseline) with all sentences presented
in a random order. Each logged response was then recorded as
either correct or incorrect. Responses were only considered as
correct when both the colour and number combination were
correct. Participants performed the speech-in-speech perception
test twice, once on each auditory interface with a break in-between,
in a single session lasting approximately 40 min. Following the
completion of the first iteration of the test on either the computer
or Sam, participants were offered a break by the researcher
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before being seated again at the same desk with the next setup
placed upon the desk.

When using the computer, participants were presented with
the start screen of the test. Once “start” was clicked, the test
immediately began with the training phase. Once completed,
participants would again be presented with the start screen, which
would initiate the data collection phase. No positive feedback
was presented to participants; however, negative feedback was
presented in the form of the correct colour-number pair briefly
being outlined in green before continuing with the next trial.
During the data collection phase, at predefined points, breaks
would be offered to participants. A pop-up window would inform
participants that they could take a break should they wish, and the
test would resume when the pop-up window was dismissed.

When using Sam, the robot first introduced itself to the
participant before explaining how the test would be carried out.
Similar to the computer, first a training phase was presented to
participants to familiarise themselves with the robot and the test
procedure. Sam informed participants when the training phase was
completed and waited for the participant to touch the top of its head
to continue to the data collection phase. To maintain motivation
and encouragement during the test, both positive (head nod) and
negative (head shake) feedback were presented to participants
throughout the training and data collection phases, as well as visual
feedback to signal when a response could be logged (eyes turning
green), and when the response was successfully logged (eyes return
to default white). During the data collection phase, at the same
predefined points as with the computer, a break was offered to
participants. Sam would verbally ask the participant if they wanted
to take a break, to which the participant could then verbally reply
with either “yes” or “no,” If the participant decided to take a break,
Sam would ask a follow-up question if they would like to stand up
and join in a stretch routine. Again, the participants could respond
verbally with either “yes” or “no,” If answered with “yes,” Sam would
stand and perform a short stretch routine. If answered with “no,”
Sam would stay in a seated position for 10 s before asking if the
participant was ready to continue, again awaiting a verbal response.
If “yes,” Sam continued the experiment. If answered with “no,”
Sam would allow for another 10 s break before continuing the test.
Once all trials were completed, Sam informed participants that they
reached the end of the test and thanked them for their participation.

2.6 Data analysis

2.6.1 Test performance
Test performance was quantified by speech intelligibility scores

(percentage correct) and data collection duration (minutes) with
the computer and Sam setups. Intelligibility scores were calculated
by averaging the recorded correct responses across all presented test
trials per TMR and voice condition per participant. Data collection
durations were calculated from when the first trial was presented
until the response of the last trial was logged. Therefore, neither
the interactions with Sam in the beginning and end of the test were
taken into account, nor the duration of the training phases.

A classical repeated-measures ANOVA (RMANOVA) with
three-repeated factors was performed for the intelligibility: the
auditory interface with which the test was performed (computer or

Sam), the four voice conditions applied to the masker voice (1F0: 0
st., 1VTL: 0 st.; 1F0: −12 st., 1VTL: 0 st.; 1F0: 0 st., 1VTL: + 3.8
st.; 1F0: −12 st., 1VTL: + 3.8 st.), and the three TMR conditions
(−6 dB, 0 dB, + 6 dB), resulting in a 2 × 4 × 3 repeated-measures
design. When RMANOVA tests violated sphericity, Greenhouse-
Geisser corrections were applied (pgg). Evaluation of data collection
phase duration was performed using paired t-tests.

As the purpose of this study is to present a potential alternative
auditory interface to the computer, we aim to look for evidence
that both setups (using the computer and Sam) are comparable in
their data collection. Therefore, for robustness, we also conducted
a Bayesian RMANOVA using the same three-repeated factors
as a conclusion of similarity cannot be obtained with classical
(frequentist) inference. Bayesian inferential methods focus solely
on the observed data, and not on hypothetical datasets as with
classical methods. Therefore, they can provide an alternative
interpretation of the data, the amount of evidence, based on the
observed data, that can be attributed to the presence or absence of
an effect [for more detailed explanations see (Wagenmakers et al.,
2018)]. The output of Bayesian inferential methods is the Bayes
factor (BF) and can be denoted in one of two ways: BF01 where
0 < BF < 1 shows increasing evidence for the null hypothesis as
the BF approaches 0, and BF > 1 shows increasing evidence for
the alternative hypothesis as the BF approaches infinity; and BF10,
which is the inverse of BF01; i.e., 0 < BF < 1 shows evidence for
the alternative hypothesis, and BF > 1 shows evidence for the null
hypothesis. The two notation methods can be used interchangeably
for easier interpretation depending on the inference to be made.
Since the intended focus of the inference of this study is evidence
for the null hypothesis, the BF10 notation is used. The degree
of evidence is given by different thresholds of the BF: anecdotal,
0.33 < BF < 1 or 1 < BF < 3; medium, 0.1 < BF < 0.33 or
3 < BF < 10; strong, 0.03 < BF < 0.1 or 10 < BF < 30.

2.6.2 Human-robot interaction
Analysis of the NARS was performed using one sample t-tests

were performed for each subscale to determine if the results were
significantly different from the expected means (18, 15, and 9 for S1,
S2, and S3, respectively), which would indicate neutrality toward
interactions with robots, and thus an unbiased sample.

To analyse the behavioural data from the video recordings,
two independent coders viewed the recordings and logged the
frequency of displayed behaviours using the behavioural analysis
software BORIS (Friard and Gamba, 2016). Total duration of
raw video footage was approximately 23 h 57 min. To reduce
the workload of coders, video recordings were post-processed
and segments of different phases of the test were extracted.
Segments were pseudo randomised and concatenated, resulting
in approximately 8 h 23 min of footage to be coded. Due to
the repetitive nature of the test, these segments would provide
“snapshots” during the different phases. Segments were created as
follows: 35 s from the introduction when using Sam (introduction
in its entirety); 30 s from the training phase for both the computer
and Sam; 2 min from the beginning, 1 min from the middle, and
2 min from the end of the data collection phase for both the
computer and Sam; 7 s from the break during the data collection
phase in the case where the total duration was less than 10, or
45 s if the break was up to a minute. Engagement was assessed
using the frequency of backchannels recorded by the two coders
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FIGURE 4

Boxplots depicting the range, quartiles, and median percent correct scores of the speech-in-speech perception test, shown for each
talker-to-masker ratio (TMR, rows from top to bottom) and voice condition (columns from left to right) for the computer and Sam setups (yellow
and red filled boxes, respectively), and in comparison to data reported by Nagels et al. (2021; empty boxes).

and were compared both within and between coders. Within coder
comparisons were performed using Student t-tests. Reliability
between coders was evaluated using intraclass correlation [ICC;
(Bartko, 1966)] based on the frequency of exhibited behaviours
during each of the concatenated video segments. An ICC analysis
is often used for ordinal, interval, or ratio data (Hallgren, 2012).
Because the frequency of behaviours is analysed per interval of the
full video recording, as well as all subjects are observed by multiple
coders, this makes an ICC appropriate.

3 Results

3.1 Test performance

3.1.1 Speech intelligibility scores
The baseline speech intelligibility scores with no speech

masker showed good consistency of the experimental paradigm:
99.0% on average when using the computer, and 99.5% on
average when using Sam. Figure 4 shows the intelligibility
scores per TMR and voice condition across all participants.
Table 1 shows the results of both the classical and Bayesian
RMANOVAs performed across both setups, three TMRs and four
voice conditions. Results of the classical RMANOVA showed no
significant difference between participants’ intelligibility scores
when using the computer or Sam [F(1,36) = 1.090, p = 0.306,
np

2 = 0.040], no significant interaction between the auditory
interface and the TMR [Fgg (1.490,38.746) = 0.065, pgg = 0.888,
np

2 = 0.003], no significant interaction between the auditory
interface and the voice condition [Fgg (2.353,61.182) = 0.673, p = 0.537,

np
2 = 0.025], and no significant interaction between all three factors

[F(3.643,94.730) = 0.587, p = 0.657, np
2 = 0.022].

Bayesian RMANOVA showed moderate evidence that
the auditory interface on which the test was performed did
not affect the results of the speech-in-speech perception test
(BF10 = 0.185), strong evidence of no interaction between the
auditory interface and the TMR (BF10 = 0.081), strong evidence
of no interaction between the auditory interface and the voice
condition (BF10 = 0.060), and strong evidence of no interaction
between all three factors (BF10 = 0.039).

3.1.2 Data collection duration
Figure 5 shows the duration of the speech-in-speech perception

test when performed using each auditory interface, and in
comparison, to previous data reported by Nagels et al. (2021). The
average duration of the data collection phase was 9 ± 1 min on
the computer and 15 ± 5.1 min on Sam. However, we observed
that three outlier participants took substantially longer to complete
the data collection phase when using Sam. Removing these outliers
resulted in an average duration of 13 ± 1 min. The removal of
the outliers showed that they had a significant effect on the total
duration of the data collection phase [t(45) = −12.22, p < 0.001].

3.2 Human-robot interaction

Average scores for the subscales were 14.8 ± 3.74, 15.8 ± 2.17,
and 8.5 ± 1.91 out of possible totals 30, 25, and 15 for S1, S2,
and S3, respectively. One sample t-tests for each subscale showed
only a statistically significant difference to the expected mean for

Frontiers in Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1293120
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1293120 February 6, 2024 Time: 17:5 # 9

Meyer et al. 10.3389/fnins.2024.1293120

TABLE 1 Results of the classical and Bayesian RMANOVAs.

Classical RMANOVA Bayesian
RMANOVA

Case Sphericity
Correction

F, p η p
2 B10

Main factors Primary test interface None F(1,36) = 1.090, p = 0.306 0.04 0.185

TMR Greenhouse-Geisser F(1.186,30.826) = 147.980,
p < 0.001

0.851 5.54E + 18

Condition Greenhouse-Geisser F(1.982,51.526) = 131.767,
p < 0.001

0.835 3.50E + 26

Interactions Primary test interface × TMR Greenhouse-Geisser F(1.490,38.746) = 0.065,
p = 0.888

0.003 0.081

Primary test interface
× Condition

Greenhouse-Geisser F(2.353,61.182) = 0.673,
p = 0.537

0.025 0.06

Condition × TMR Greenhouse-Geisser F(4.002,104.461) = 50.928,
p < 0.001

0.662 2.99E + 30

Primary test
interface × TMR × Condition

Greenhouse-Geisser F(3.643,94.730) = 0.587,
p = 0.657

0.022 0.039

FIGURE 5

Duration to complete the data collection phase of the
speech-in-speech perception test on the computer and Sam setups
(following the removal of three outliers), and in comparison to data
reported by Nagels et al. (2021).

S1 [t(19) = −3.83, p < 0.01], and non-significant differences for S2
and S3. The results are summarised in Table 2 below.

Behavioural coding results (Figure 6) showed on average
(after pooling all backchannels) more frequent “frowning”
when using the computer, although not statistically significant
[t(1.493) = 0.721, p > 0.05], and significantly more frequent
“smiling” when using Sam [t(1) = −13, p < 0.05]. “Grimacing”
and “laughing” showed near identical frequencies between the two
auditory interfaces. Intraclass correlation showed poor absolute
agreement between coders for the behaviours “frowning” [ICC(2,
k) = 0.175] and “laughing” [ICC(2,k) = −0.375], and high
correlation for the behaviours “grimacing” [ICC(2, k) = 0.671] and
“smiling” [ICC(2, k) = 0.697].

4 Discussion

The aim of the present study was to evaluate Sam as an
alternative auditory interface for the testing of speech-in-speech
perception. To explore this, we compared the test performance data
(both percent correct scores of intelligibility and data collection
phase duration) obtained from normal-hearing young adults for
the speech-in-speech perception test when using the proposed
robot setup, to data when using the standard computer setup,
as well as to previous studies using similar methods. Due to the
inherent repetition of the speech-in-speech perception test, we
propose Sam to offer an engaging experience for participants when
conducting such a psychophysical test. Although there have been
other studies in which psychophysical tests have been gamified
to offer more engagement (Moore et al., 2008; Nagels et al.,
2021; Harding et al., 2023), there may be certain tests for which
gamification may not be appropriate, either to be consistent with
literature, or gamification may result in an overcomplication (e.g.,
Hanus and Fox, 2015) of the test, having instead the opposite
effect. In such cases, it may be beneficial to incorporate a social
agent to facilitate engagement, not only due to its presence, but
also playing an active role in the procedure. To explore this, we
have also evaluated engagement with the two setups using an
HRI questionnaire and analyses of behavioural data from video
recordings.

4.1 Test performance

4.1.1 Speech intelligibility scores
Results of the classical RMANOVA showed no significant

difference between the percent correct scores obtained when
using the computer or Sam. In addition, there was no significant
interaction between the auditory interface and TMR, auditory
interface and voice condition, or a combination of auditory
interface, TMR and voice condition. Results of the Bayesian
RMANOVA reflected the results of the classical RMANOVA,
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TABLE 2 Results of the one sample t-tests comparing each of the NARS subscales to their respective expected means (indicating neutrality).

Questions Subscale Expected
mean

Mean SD 95%
CI

t-score p

I would feel uneasy if I was given a job where I had to
use robots.

S1 18 14.8 3.73 [13.05,
16.55]

−3.83 <0.01

The word “robot" means nothing to me.

I would feel nervous operating a robot in front of other
people.

I would hate the idea that robots or artificial
intelligences were making judgements about things.

I would feel very nervous just standing in front of a
robot.

I would feel paranoid talking with a robot.

I would feel uneasy if robots really had emotions.

S2 15 15.8 2.17 [14.79,
16.81]

−1.65 N.S.

Something bad might happen if robots developed into
living beings.

I feel that if I depend on robots too much, something
bad might happen.

I am concerned that robots would be a bad influence on
children.

I feel that in the future society will be dominated by
robots.

I would feel relaxed talking with robots*

S3 9 8.5 1.91 [7.61,
9.39]

−1.17 N.S.If robots had emotions I would be able to make friends
with them.*

I feel comforted being with robots that have emotions.*

The * symbol indicates inverse items.

showing strong evidence in support of the two auditory interfaces
being functionally identical. Visual inspection of Figure 4 also
shows that the spread of the data between the TMRs and voice
conditions are identical between the two auditory interfaces, and
in comparison, to data reported by Nagels et al. (2021). It is
also illustrated that most incorrect answers were given when the
TMR was −6 dB, and a clear ceiling effect was observed at the
TMR of + 6 dB. The relatively higher percent correct scores
for all conditions in the data reported by Nagels et al. (2021)
could be due to several reasons. One possibility is that in their
study the participants used high-quality headphones instead of the
built-in loudspeakers of the computer. In addition, their stimuli
were Dutch, whereas the stimuli presented to participants in the
present study were English. Although Nagels et al. (2021) used
Dutch stimuli, their population consisted of native Dutch-speaking
participants. In the present study, participants reported English
as either their native or an additional language. Therefore, the
lower intelligibility scores seen in the present study in comparison
to those reported by Nagels et al. (2021) may be due to a non-
native effect. It is not expected that the structure of the CRM
sentences would affect the intelligibility of the sentences since
the paradigm of the sentence structure is intended to work
across languages, as suggested by Brungart (2001). However, the
English stimuli were presented by a British English speaker.
This may have also affected the intelligibility of the target
sentences in the presence of the masker sentences, especially in

the −6 dB TMR condition, for the non-native English-speaking
participants who may be more acquainted with US English,
for example.

While we attempted to replicate the test procedure of Nagels
et al. (2021) as closely as possible, as has been detailed above,
there were some differences in the implementation of the test
between the computer and Sam. Some of these implementation
differences were necessary to perform a fairer comparison between
the computer and Sam, but others were related to the interaction
between the participant and Sam. These differences may have
inadvertently introduced differences in the overall percent correct
scores, resulting in the lower intelligibility scores.

In the present study, between the computer and Sam, stimuli,
language, and target and masker speaker were kept consistent.
Several factors were postulated to potentially limit the usability
of the robot, such as the soundcard, speaker quality, processing
speed, and non-experimental artefacts. An analysis of the speaker
quality of the two auditory interfaces showed that there was a
reduced quality of the computer in comparison to Sam, especially
at lower frequency ranges. However, the consistent scores of the
speech-in-speech perception test show that despite these limitations
and the implementation differences between the computer and
Sam, both setups were capable of presenting and collecting
comparable test data. In addition, both the computer and Sam
showed similar patterns in test results for the different TMR and
voice conditions to those reported in literature. Therefore, the
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FIGURE 6

Coded backchannel frequencies by coder 1 (C01) and coder 2 (C02)
when using both the computer and Sam.

comparable results between the computer and Sam, and previously
reported data, indicate that Sam can be used as an effective auditory
interface for the speech-in-speech perception test with a normal-
hearing population.

4.1.2 Data collection duration
The duration to complete the data collection phase of the

speech-in-speech perception test was longer when using Sam
in comparison to when using the computer; however, this
increased duration did not seem to affect the performance of
Sam’s setup for collecting comparable intelligibility scores. The
three outliers removed from the data collection duration were
the first three participants with whom this test was conducted.
During the experimental procedure with these participants, it was
discovered that the pauses between stimuli were increasing. This
was determined to be due to how response data was saved during
the test; with each response given, the size of the save file increased,
resulting in a longer duration to open and write to the file. Upon
discovering this response saving issue, the test code was amended
to save the results to a smaller file format during the test and
subsequently saving the full results once the test was completed,
thus rectifying the duration problem.

However, it can still be seen in Figure 5 that, even without the
outliers, the duration of the data collection phase when using Sam
was much longer than that when using the computer. We have
considered several factors that could contribute to this difference.
Potential delays due to online stimulus preparation were ruled out,
since the stimulus corpus was created prior to the training phase.
Further investigation into the data collection phase durations per
participant showed that on average, there were 6 s between the
logging of one response and the logging of the next response when
using the computer. With Sam, however, this was on average 9 s.
Closer analysis of this 3 s difference showed that this occurs due
to the feedback presented to participants following their response
logging (head nod or head shake). Subsequent to the completion
of data collection, separate measurements were taken by timing
the duration of the head movements of Sam. On average, when a
correct response was given, timings showed that it took 2.5 s for
Sam to nod its head and then present the next stimulus. When

an incorrect response was given, this time was on average 3.2 s
for Sam to shake its head before presenting the next stimulus.
Bootstrap simulations using the mean accuracy as the probability
of a correct or incorrect response (and thus a head nod or
head shake) for the various tested conditions showed that on
average, the movement of Sam’s head added 3.9 min ± 2 s over
the 91 trials. No positive feedback and brief negative feedback
(outlining of the correct response) was presented to participants
when using the computer. The inclusion of positive and negative
feedback when using Sam, although different to the computer
implementation, was done to increase the social presence of the
robot (Akalin et al., 2019).

4.2 Human-robot interaction

As mentioned previously, engagement during repetitive
auditory tasks can be challenging, especially for certain
populations, and to address this challenge we propose the use
of a humanoid NAO robot. The use of such an interface for these
tasks, at its core, relies on interactions, consisting of both social
and physical components, between humans and the robot. The
NARS questionnaire we used was developed as a measure of one’s
attitudes toward communication robots in daily life (Nomura
et al., 2004). The NARS is further broken down into three subscales
to identify the attitudes of individuals toward social interactions
with robots where the higher the score, the more an individual has
negative attitudes toward those situations. The subscales are: S1,
negative attitudes toward situations and interactions with robots;
S2, negative attitudes toward social influence of robots; and S3,
negative attitudes toward emotions in interactions with robots.
Performing such a questionnaire prior to any interaction involving
a robot allows it to be used as a cross-reference to explain any
potential skewing of subsequently collected HRI data following the
interaction. Results of the NARS subscales showed that only S1 was
statistically different from the expected mean. The non-significant
results of subscales S2 and S3 indicate that participants had neutral
attitudes towards the social influence of robots and emotions in
interactions with robots, respectively. However, the lower average
S1 score indicates that participants had overall a relatively positive
attitude toward situations of interactions with robots prior to their
interaction with Sam. This is also reflected in the behavioural
backchannels, coded from the video recordings. These showed
more frequent smiling when using Sam in comparison to the
computer, indicating both a state of comfort and engagement with
Sam. This is contrasted by the more frequent frowning (although
not significant, can be seen visually in Figure 6) when using the
computer, which could indicate either a state of confusion (Rozin
and Cohen, 2003) or contemplation (Keltner and Cordaro, 2017).
Due to the nature of the speech-in-speech perception test and its
fluctuating difficulty (especially when the TMR is −6 dB and where
the target and masker speech did not differ in voice cues, the most
difficult listening conditions tested), the more likely interpretation
of the frowning is contemplation as participants focus harder in
the more difficult voice conditions. Although this appears to be
more frequent with the computer, this is not necessarily to say
that the computer requires more focus. With both setups, this
directed focus may subsequently lead to mental fatigue during
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the task (Boksem and Tops, 2008). However, the results of the
speech-in-speech perception test show that this increased directed
focus does not affect the outcome of speech intelligibility between
the computer and Sam.

4.3 General remarks

Our overall results show that the NAO robot shows promise to
be used as an auditory interface for speech-in-speech testing. This
finding is in line with and adds to our previous work (Meyer et al.,
2023), which evaluated the test performance from two other PICKA
tests (voice cue sensitivity and voice gender categorization). Voice
cue sensitivity test measures the smallest difference between two
voice cues a listener can hear. The linguistic content seems to have
little effect on the voice cue perception (Koelewijn et al., 2021), and
the perceived voice could be biassed by the perceived gender of the
robot (Seaborn et al., 2022). Speech-in-speech perception relies not
only on processing voice and speech cues, but also on modulating
attention and inhibition to separate target speech from masker
speech, and further use of cognitive and linguistic mechanisms to
decode the lexical content. It is not clear if a voice bias due to
perceived robot gender would affect the speech intelligibility scores
(Ellis et al., 1996). Despite such differing natures of these tests,
our findings were consistent, and both showed comparable test
performance with both setups.

4.4 Future directions

In comparing the test performance between the two setups,
the only significant difference between the computer and Sam
was the increased duration of the speech-in-speech perception
test when using Sam. Although this is predominantly due to
the presentation of positive and negative feedback to participants
following the logged responses, we believe that it is an important
component in establishing and maintaining the social presence
of Sam. Therefore, instead of attempting to decrease the overall
duration of the speech-in-speech perception test on Sam by
removing the visual feedback, the social interaction with Sam
could be improved. This way, we accept the longer duration
with the inclusion of the feedback but provide the participant
with a more natural interaction when performing the test. One
such way this can be accomplished is by removing the use
of the Samsung Galaxy tablet, which pulls the attention away
from Sam with every response and replacing it with speech
recognition on Sam. This would maintain the interaction with
Sam both by not forcibly moving the participants’ attention
between Sam and the tablet, but also by engaging in more natural
speech communication with Sam. The use of automatic speech
recognition (ASR) for response logging has been explored in
another study from our lab by Araiza-Illan et al. (in press) with
the use of Kaldi (Povey et al., 2011), an open-source speech
recognition toolkit. The ASR was used to automatically score
participant’s spoken responses during a speech audiometry test.
Their results show the robustness of the ASR when decoding
speech from normal-hearing adults, offering a natural alternative
for participants to give their responses throughout the test.

Therefore, an ASR system, such as Kaldi, could be coupled
with Sam, enhancing its social presence and overall interface
functionality.

Literature has shown that the gamification of tests can also
have beneficial effects on attention and engagement (Moore et al.,
2008; Kopelovich et al., 2010; Harding et al., 2023). Although the
speech-in-speech perception test has been suggested above to not be
appropriate for gamification, it may indeed be interesting to explore
how an intentional gamification of the test compares to the data
collected here. This applies both to how speech intelligibility may
be affected by such a gamification, but also how engagement may
differ in comparison to Sam, especially after the implementation of
speech recognition and removal of the tablet.

Both the present study and our previous work show the
potential use of a NAO humanoid for speech-in-speech perception
(present study) and voice manipulation perception (previous
work) assessments by taking advantage of the robot’s speech-
related features. Furthermore, since current technical limitations
are expected to be improved in the future, the proposed setup with
the NAO provides exciting application possibilities in research and
clinical applications.
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Gaudrain, E., and Başkent, D. (2018). Discrimination of voice pitch and vocal-
tract length in cochlear implant users. Ear Hear. 39, 226–237. doi: 10.1097/AUD.
0000000000000480

Hallgren, K. A. (2012). Computing inter-rater reliability for observational data: An
overview and tutorial. Tutorials Quant. Methods Psychol. 8, 23–34. doi: 10.20982/tqmp.
08.1.p023

Hanus, M. D., and Fox, J. (2015). Assessing the effects of gamification in
the classroom: A longitudinal study on intrinsic motivation, social comparison,
satisfaction, effort, and academic performance. Comput. Educ. 80, 152–161. doi: 10.
1016/j.compedu.2014.08.019

Harding, E. E., Gaudrain, E., Hrycyk, I. J., Harris, R. L., Tillmann, B.,
Maat, B., et al. (2023). Musical emotion categorization with vocoders of varying
temporal and spectral content. Trends Hear. 27:23312165221141142. doi: 10.1177/
23312165221141142

Hartley, D. E., Wright, B. A., Hogan, S. C., and Moore, D. R. (2000). Age-related
improvements in auditory backward and simultaneous masking in 6- to 10-year-old
children. J. Speech Lang. Hear. Res. 43, 1402–1415. doi: 10.1044/jslhr.4306.1402

Hazan, V., Messaoud-Galusi, S., Rosen, S., Nouwens, S., and Shakespeare, B. (2009).
Speech perception abilities of adults with dyslexia: Is there any evidence for a true
deficit? J. Speech Langu. Hear. Res. 52, 1510–1529. doi: 10.1044/1092-4388(2009/08-
0220)

Henkemans, O. A. B., Bierman, B. P. B., Janssen, J., Looije, R., Neerincx, M. A., van
Dooren, M. M. M., et al. (2017). Design and evaluation of a personal robot playing
a self-management education game with children with diabetes type. Int. J. Hum.
Comput. Stud. 106, 63–76. doi: 10.1016/j.ijhcs.2017.06.001

Henschel, A., Laban, G., and Cross, E. S. (2021). What makes a robot social? A review
of social robots from science fiction to a home or hospital near you. Curr. Robot. Rep.
2, 9–19. doi: 10.1007/s43154-020-00035-0

Hu, J., Edsinger, A., Lim, Y.-J., Donaldson, N., Solano, M., Solochek, A., et al. (2011).
“An advanced medical robotic system augmenting healthcare capabilities – Robotic
nursing assistant,” in IEEE International conference on robotics and automation,
Shanghai, 6264–6269. doi: 10.1109/ICRA.2011.5980213

Humble, D., Schweinberger, S. R., Mayer, A., Jesgarzewsky, T. L., Dobel, C., and
Zäske, R. (2023). The Jena Voice Learning and memory test (JVLMT): A standardized
tool for assessing the ability to learn and recognize voices. Behav. Res. Methods 55,
1352–1371. doi: 10.3758/s13428-022-01818-3

Joseph, A., Christian, B., Abiodun, A. A., and Oyawale, F. (2018). A review on
humanoid robotics in healthcare. MATEC Web Confer. 153:02004. doi: 10.1051/
matecconf/201815302004

Kaneko, K., Kaminaga, H., Sakaguchi, T., Kajita, S., Morisawa, M., Kumagai, I.,
et al. (2019). Humanoid robot HRP-5P: An electrically actuated humanoid robot
with high-power and wide-range joints. IEEE Robot. Automat. Lett. 4, 1431–1438.
doi: 10.1109/LRA.2019.2896465

Keltner, D., and Cordaro, D. T. (2017). “Understanding multimodal emotional
expressions: Recent advances in basic emotion theory,” in The science of facial
expression, eds J. A. Russell and J. M. F. Dols (Oxford: Oxford University Press),
doi: 10.1093/acprof:oso/9780190613501.003.0004

Kidd, C. D., and Breazeal, C. (2004). “Effect of a robot on user perceptions,” in
Conference on intelligent robots and systems (IROS), Vol. 4, ed. R. S. J. International
Piscataway, NJ: IEEE Publications, 3559–3564. doi: 10.1109/IROS.2004.1389967

Koelewijn, T., Gaudrain, E., Tamati, T., and Baskent, D. (2021). The effects of lexical
content, acoustic and linguistic variability, and vocoding on voice cue perception. J.
Acoust. Soc. Am. 150, 1620–1634. doi: 10.1121/10.0005938

Kont, M., and Alimardani, M. (2020). “Engagement and mind perception within
human–robot interaction: A comparison between elderly and young adults,” in
Social robotics. Lecture notes in computer science, Vol. 12483, ed. A. R. Wagner
(Berlin: Springer International Publishing), 344–356. doi: 10.1007/978-3-030-620
56-1_29

Kontogiorgos, D., Pereira, A., and Gustafson, J. (2021). Grounding behaviours with
conversational interfaces: Effects of embodiment and failures. J. Mult. User Interf. 15,
239–254. doi: 10.1007/s12193-021-00366-y

Kopelovich, J. C., Eisen, M. D., and Franck, K. H. (2010). Frequency and electrode
discrimination in children with cochlear implants. Hear. Res. 268, 105–113. doi: 10.
1016/j.heares.2010.05.006

Laneau, J., Boets, B., Moonen, M., van Wieringen, A., and Wouters, J. (2005). A
flexible auditory research platform using acoustic or electric stimuli for adults and
young children. J. Neurosci. Methods 142, 131–136. doi: 10.1016/j.jneumeth.2004.08.
015

Lee, K. M., Peng, W., Jin, S.-A., and Yan, C. (2006). Can robots manifest personality:
An empirical test of personality recognition, social responses, and social presence in
human–robot interaction. J. Commun. 56, 754–772. doi: 10.1111/j.1460-2466.2006.
00318.x

Looije, R., van der Zalm, A., Neerincx, M. A., and Beun, R.-J. (2012). “Help,
I Need Some Body the effect of embodiment on playful Learning. In IEEE RO-
MAN,” in The 21st IEEE international symposium on robot and human interactive
communication, 2012, Piscataway, NJ: IEEE Publications, 718–724. doi: 10.1109/
ROMAN.2012.6343836

Marge, M., Espy-Wilson, C., Ward, N. G., Alwan, A., Artzi, Y., Bansal, M.,
et al. (2022). Spoken language interaction with robots: Recommendations for future
research. Comput. Speech Lang. 71:101255. doi: 10.1016/j.csl.2021.101255

Marin-Campos, R., Dalmau, J., Compte, A., and Linares, D. (2021). StimuliApp:
Psychophysical tests on mobile devices. Behav. Res. Methods 53, 1301–1307. doi: 10.
3758/s13428-020-01491-4

MATLAB (2019). version 9.7.0.1190202, R2019b. Natick, MA: MathWorks, Incorp.

Mattys, S. L., Brooks, J., and Cooke, M. (2009). Recognizing speech under a
processing load: Dissociating energetic from informational factors. Cogn. Psychol. 59,
203–243. doi: 10.1016/j.cogpsych.2009.04.001

McGinn, C., Cullinan, M., Holland, D., and Kelly, K. (2014). “Towards the design of
a new humanoid robot for domestic applications,” in IEEE international conference on
technologies for practical robot applications (TePRA), Woburn, MA, 1–6. doi: 10.1109/
TePRA.2014.6869155

Messaoud-Galusi, S., Hazan, V., and Rosen, S. (2011). Investigating speech
perception in children with dyslexia: Is there evidence of a consistent deficit in
individuals? J. Speech Lang. Hear. Res. 54, 1682–1701. doi: 10.1044/1092-4388(2011/
09-0261)

Meyer, L., Rachman, L., Araiza-Illan, G., Gaudrain, E., and Başkent, D. (2023).
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